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A theory is developed of the electric dipole two-pulse echo produced in glasses by the interaction 
between an oscillating electric field and two-level systems (TLS) that determine the low- 
temperature properties of glasses. It is indicated that the echo signal differs substantially in 
glasses and in spin systems. The shape of the echo pulse is studied as a function of the pump-pulse 
amplitude over a wide range of amplitudes. The time dependence of the echo damping is 
determined. It is shown that this dependence in many cases follows a power law rather than an 
exponential law. 

1. INTRODUCTION 

Many low-temperature properties of glasses are known 
to be determined by two-level systems (TLS) that exist in 
them.'-3 A two-level system is an atom or a group of atoms 
that move (relative to some generalized coordinate) in a 
field whose potential relief has the form of two wells separat- 
ed by a barrier. At low temperature this barrier is overcome 
by quantum-mechanical tunneling. The energy E of a TLS 
(the distance between its first two levels) is a random quan- 
tity distributed over a rather wide range, with an approxi- 
mately constant density of states. In such a TLS ensemble an 
echo appears, after some time, consisting of the response of 
the system to several short high-frequency pulses of an oscil- 
latory field. Since the TLS interacts in dielectric glasses 
(which have an electric dipole moment) with both sound 
and an electric field, the echo can be either of the acoustic 
(sound) or electric-dipole type (mixed forms of echo are 
also possible). 

We develop here a theory of the electric dipole echo that 
appears in glasses after the action of two pulses of a high- 
frequency electric field-known as the two-pulse or sponta- 
neous echo. 

Echo (acoustic and electric) in glasses has been the sub- 
ject of many studie~."~ As a rule, echoes in glasses are de- 
scribed there in terms of results obtained for spin echo in 
paramagnetic salts. There is, however, a fundamental differ- 
ence between these two physical systems. 

In a paramagnetic system the Zeeman splitting is prac- 
tically the same for all spins. As a rule there is only a small 
spread in the transition frequencies, due to the inhomogen- 
eous broadening. The form of the spin-echo signal coincides 
in this case with the Fourier transform of the inhomogen- 
eous line-broadening p r ~ f i l e . ~  

The situation in glasses is different. The TLS energy 
(just like the tunnel parameters of glasses; see below) is uni- 
formly distributed over a wide interval. This is the main rea- 
son why the results of spin-echo theory cannot be used di- 
rectly to describe echo in glasses. This difference in the 
description is most strongly manifested in the theoretically 
predicted form of the echo signal. This form is quite compli- 
cated and varies with the pump-signal amplitude. This does 
not occur in paramagnets, where the form of the echo is 
independent of the amplitude. 

The second aspect to which we call attention in the pres- 
ent paper is the character of the damping of the echo signal 
as the time interval between the pump pulses increases. The 

main cause of echo damping in glasses at low temperature is 
spectral diffu~ion '~- '~ due to interaction of the resonant TLS 
with the surrounding thermal TLS. 

It is customarily assumed that the decrease of the echo 
amplitude with the delay time is In the 
work known to us, however, no attention is paid to the scat- 
ter of the tunnel transparencies of resonant TLS. Yet they 
are what governs the interaction with the surrounding ther- 
mal TLS. In particular, symmetric resonant TLS (produced 
in a symmetric two-well potential) do not interact at all with 
the environment. The contribution of the echo signal from 
such TLS is attenuated only because of their interaction with 
phonons. 

Allowance for the spread of the tunnel transparencies, 
as shown in the present paper, leads to a power-law rather 
than exponential decrease of the echo signal. This raises the 
question of explaining the exponential decrease observed in a 
number of  experiment^.'^.'^ This important problem is dis- 
cussed in the next section. 

2. FUNDAMENTAL RELATIONS 

In our model for the TLS its Hamiltonian in the "node" 
representation is 

where A, is the overlap integral due to the possible quantum- 
mechanical tunnelling between the walls, and A is the asym- 
metry of the two-well potential (the difference between the 
potential energies at the minimum of each well). The Hamil- 
tonian of the TLS interaction with an external electric field 
$ = $, cos wt in this representation takes the form 

where m = ( 1/2)dA/d% is the electric dipole moment of 
the TLS. There is also a TLS-phonon interaction whose 
Hamiltonian is 

where A, is the tensor of the strain potential of the TLS and 
UFt is the strain tensor at the location of the TLS. After 
diagonalizing HTLs, i.e., changing to the proper representa- 
tion, we get 
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where E = ( A 2  + A: ) 1'2,p = 2Am/E,pf  = A,m/E. 
The contribution to the macroscopic dipole moment of 

the system from one TLS is 

wherep is the density matrix averaged over the phonons (the 
TLS density matrix). It can be represented in the form 

where n is the average population of the TLS upper level and 
f is the off-diagonal part that differs substantially from zero 
only for the so-called resonant TLS, for which E z f i w .  Using 
(6), we obtain from(5) 

To obtain the electric dipole moment per unit volume this 
expression must be summed over all the resonant TLS per 
unit volume of the glass. 

The equation for the density matrix of the resonant TLS 
is (see, e.g. Ref. 11) 

d n 
-= -7 (n-no) -F Ref,  
at (8a) 

where no = ( 1 + e E I T  ) - ' is the equilibrium population of 
the TLS upper level; F = A , m g , / m  is the Rabi frequency 
of the resonant TLS; y is the TLS intrinsic damping due to its 
interaction with the phonons. 

Equations (8)  for the density matrix take into account 
spectral diffusion, which consists of the following. Consider 
a resonant TLS in which the distance between levels is close 
to The TLS interacts with neighboring thermal systems, 
i.e., with those in which the distance between levels is of the 
order of T. This interaction is due to elastic stresses and 
electric fields produced by the thermal TLS. Of importance 
for our problem is the dynamic part of the interaction, i.e., 
the part whose value depends on whether the thermal TLS is 
in the ground state or an excited state. But since the energy of 
a resonant TLS depends on the strain and on the electric field 
at its location, the quantum transitions (jumps) of thermal 
TLS cause the spacing of the resonant TLS levels to fluctuate 
with time. These fluctuations lead to loss of phase coherence 
of the wave function of the resonant-TLS wave function, and 
by the same token to damping of the echo signal. Thus, 

E ( t )  =E+fiAo ( t )  , ( 9 )  

where fiAw ( t )  is the contribution made to the energy of the 
resonant TLS by its interaction with surrounding thermal 
TLS. 

3. SOLUTION OF EQUATIONS FOR THE DENSITY MATRIX 

Let the TLS in glass be acted upon by two pulses of a 
high-frequency electric field of equal amplitude go and, gen- 

erally speaking, of different durations T, and T,. We denote 
the time interval between the pulses by T,,. 

The solution of the equations for the density matrix is: 
a )  in the absence of a pump field 

n ( t )  =no+ [n(O) -no]e-fl, ( 1 0 )  
t 

where z = E / A  - 6.1;" 
b) in the presence of a pump field but in the absence of 

damping and spectral diffusion 

n(t)=n(O)-2 

F 

F2 gt z F2 gt 
+ f ( ~ ) ( c o s g t + ~ s i n ' ~ + i ~ s i n g t  -r(O)-sin2-, g2 2 

(13) 

where 

g= (F+zZ) ". 

Neglect of damping and of spectral diffusion during the 
action of a pump field means that the pulse is so short that 
the following inequalities hold: 

I. r. 

Assuming that the values at the beginning of the first pulse 
were 

n ( 0 )  =no, f ( 0 )  =0 

and using the above equations, at t = t ; when the second 
pulse ends we have 

Z g=i 
x (s in  g~,+Pi - sin2 - 2 ) exp [- - ~ ~ ~ + i z ~ ~ ~  

g 

TI, 

+ i j Arn ( t )  dt] + c. c.] , (15) 
0 

F 1 z 
f ( tZe)  = - Z-) ( sin gg+2i - g sin2 - g" 2 
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F 1 z 
x exp (-lr21) + -(no - T )  ( sin grl+2i - sin2- 

g g grl 2 ) 
FZ gtz z x ( 00s gt2 + - sin2 -+i-singz, . 
g2 2 g 1 

It can be seen from ( 15) and ( 10) that the population of 
the upper level of the resonant TLS is an even function of the 
cosine of the angle between go and m. Therefore the first 
term in expression ( 7 )  for d makes no contribution to the 
total dipole moment of the system after averaging over all 
the orientations of the TLS dipoles m, since there is no pre- 
ferred direction in glass. 

4. ECHO SIGNAL 

A contribution to the echo is made only by an off-diag- 
onal component of the density matrix, f, and furthermore 
only by the last term of Eq. ( 1) for f ( t  ) . The first two terms 
in this expression, on the other hand, describe the damping 
of the polarization after the second pulse, the next (third) 
term describes the polarization damping after the first pulse, 
and only the last (fourth) determines the echo signal. The 
contribution to this signal from one resonant TLS is given by 

z 
X ~rn{~"'  - F3 sin2 - gr2 (sin gr, - I- sin2- 

g3 2 g grt 2 1 

where 

We introduce new variablesp = (A0/E),,E, and 8, the 
angle between go and m. The TLS distribution function with 
respect to these parameters is 

No sin 0 
2 p ( l - p ) ' "  2 ' 

where No is the TLS density of states. The dipole moment per 
unit volume is 

where ( . . .). ,( denotes respectively averaging over the con- 
figurations of the thermal TLS (the subscript c) and the 
random transitions (jumps) in thermal TLS (subscript f)  
surrounding the given resonant TLS. 

Since there are no other preferred directions in glass, it 
is clear that the dipole moment P given by ( 19) is directed 

along the applied oscillatory electric field 8,. We have 
therefore for its value 

1 1 

where y = cos 8,F = me$''* y/fi, and I is an integral over z: 

Z 
sin gr,-2i - sin2 

g 

The approximation usually employed in paramagnetic 
systems is that since the inhomogeneous-broadening line 
profile is narrow the spread in the spin-splitting frequencies 
(and correspondingly the detuningz) is assumed to be small 
compared with the Rabi frequency, z<F. In this case [see 
( 14) ] g = FBz and the second term in the parentheses of 
(21 ) can be neglected. On the other hand, the distribution 
function in z is not constant, and it must be inserted as a 
factor in the integrand of ( 2  1 ). Next, taking outside the inte- 
gral sign the combination 

which does not depend on z(g  =A, we obtain the known 
result that the form of the echo signal is determined by the 
Fourier transform of the inhomogeneous-broadening line 
profile, and its amplitude is proportional to the product 

This result is used in fact in this form to describe echos in 
glasses.k8 

That this approach is invalid is quite obvious, since the 
distribution function in z in glasses is a constant and a contri- 
bution to the echo signal is made also by TLS with z ?  F. 
Putting t - 2 ~ , ,  -t,, we have 

where 

sin[ (F2+z2) "'TI , 
COS zt, 

is odd in .r and even in t,, and 
m 

z sin zt2 
'2 (') = .f (FZ+z2) Z 

(1 - COS[ (F2+z2) % ~ ) ) d z  
0 

is even in T and odd in t,. 
As can be seen, a connection exists here between I, and 

I,: 
r 
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The expression for I, (T) should lead to the form 

and I, can be calculated using (25). It can be shown here 
that the term outside the integral sign in (26) makes no con- 
tribution to (22), since the corresponding terms cancel. Al- 
lowing for this (to within these terms) we obtain 

where 

and J,(x) and J, (x)  are Bessel functions of order zero and 
one, respectively. Here O(x)  is the Heaviside unit step func- 
tion [O(x)  =Oforx<OandO(x) = 1 forx>O].Itfollows 
from (26), (27), and (22) that an echo signal can exist only 
within a time +_ (T, + r2) relative to the point r2 = 0 (i.e., 
t = 2r2,). There is no echo signal at any other time. This is, 
in final analysis, a consequence of the constancy of the TLS 
density of states in glasses, and differs from the situation in 
paramagnetic salts. In the latter the echo-signal duration is 
determined by the frequency spread of the paramagnetic im- 
purities, but in glasses, as shown above, by the total duration 
of the pump pulses. 

5. FORM OF ECHO SIGNAL 

Let us investigate the form of the echo signal for times 
r2, SO short that the contribution from relaxation processes 
connected both with the intrinsic damping of the resonant 
TLS and with spectral diffusion can be neglected. The form 
of the echo signal is then given by 

We consider next the case in which both pump pulses 
have the same length T, = T, = T; then 

Expanding the Bessel function in (26) in a series in the exter- 
nal-field amplitude and integrating term by term, we get 

d p p  It (T) <L (.) ) r v  = I 4 y ' I  
0 

where a = mg,r/fi is the dimensionless amplitude of the 
pump pulses. 

The coefficient B, satisfies the recurrence relation 

Similarly 

In weak fields with a 9 1 we have 

The form of the echo in this approximation is symmetric 
about the point t, = r/2 (see Fig. 1 ) . The echo amplitude is 
proportional to a3. 

This symmetry is violated, however, even when second- 
order terms are taken into account: a nonzero contribution 
of negative polarity is produced on the interval 
- 2r  < t2 < - T, namely, 

where w, = m?T,/fi is the Rabi frequency for symmetric 
TLS. In the intermediate field region the echo-signal form 
can be obtained only by numerically summing the series 
(30) and (33). Figure 1 shows how the form of the echo 
evolves as the pump amplitude is increased, with a compli- 
cated oscillatory structure appearing on the echo-signal en- 
velope. 

We consider now the case of strong fields, namely a % 1, 
i.e. w,r% 1. Making in (28) the change of variables 

and integrating with respect to 7, we get 
1 

where now F = w,c. Substituting (23 ) in (38), making the 
change of integration variable z-+F sinh z, and integrating 
with respect to with the aid of the equation 

where J,(x) is a Bessel function of second order, we get 

931 Sov. Phys. JETP 70 (5), May 1990 Gurevich etal. 931 



where 

Similarly 
i 1 

J v ( ~ - c ~ ) " u T ) ~ c  =*J de ~ ~ ( 1 - i ~ ) "  e r p ( - m l S l ~ l  
o 401 , 

x 
dz- sh z  [ F + ( z ) - F - ( z )  1. 

ch3z (42) 

We used Eqs. (40) and (42) to calculate the form of the echo 
numerically at a field value a >  10, when the alternating se- 
ries (30) and (33) are difficult to sum numerically. The 
results of these calculations are also shown in Fig. 1. 

An analytic expression for the echo form can be ob- 
tained for a , )  1 by evaluating the integrals of the Bessel 
function by the saddle-point method. This calculation is giv- 
en in the Appendix. As a result we get 

for Itzlt<r (43a) 

and 

for r<t2<2.t. (43b) 

Examination of these equations convinces readily that for 

FIG. 1 .  Normalized envelope of echo pulses for var- 
ious pump amplitudes a: I-a = I ,  2+,3-7,4-12, 
5-20.6-25. 

large w ,T the form of the echo is determined by the last term 
of (43a). The remaining terms are small and lead to oscilla- 
tions on the tails of the echo-signal envelope. 

At large pump amplitudes the form of the echo pulse 
thus becomes asymmetric. Its width decreases as a function 
of w , in inverse proportion to w , , and the amplitude, conver- 
sely, increases in proportion tow,, since it is proportional to 
w , ~  @. Figure 2 shows the dependence, plotted on the basis of 
our numerical calculations, of the echo amplitude on the 
pump amplitude a.*' 

6. AREA OF ECHO PULSE 

Interest attaches frequently to the area under the echo- 
signal envelope 

2111 

x sin Fr,  exp ( - y r Z i )  (exp [--i ~o ( t r )  a ( t ' )  dt , ]  ) 
o c.E 

For T,,-0 (small interval between the pulses) and 
T, = T, = T, leaving out the factor ?rN,mfitanh(h/2T), re- 
duces the expression for the area to the form 

FIG. 2. Dependence of echo amplitude (@a: ) on the pump-pulse ampli- 
t u d e ~ .  ' 
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S, arb. 

FIG. 3. Dependence of area under the echo signal on the pump amplitude. 

where 
I 

n 
q (r) = (I-x2) ' sin (olrx) dz = --HI (ol.r), (45) 

0 2017 

and H, ( z )  is the Struve function. 
For weak fields (w ,r g 1 ) we obtain 

For large field amplitudes (w, r$ l )  we have 

- sin (at% + ;)I}. 
Figure 3 shows plots of S ( a )  . 

7. SPECTRAL DIFFUSION 

It is known that in glasses at low temperatures the de- 
crease of the echo signal as a function of the interval r,, 
between the pulses is due to spectral diffu~ion. '~- '~ Owing to 
the interaction of the resonant TLS with the thermal TLS 
surrounding them, the energy of the former contains time- 
dependent increment fihw ( t )  defined by Eq. (9).  It can be 
represented in the form' ' 

where W l  is the energy of the interaction between the given 
resonant TLS and the I th thermal one. It is proportional to 
the product of the factors ( A / E )  of the resonant arid thermal 
TLS and inversely proportional to the cube of the distance 
between them (Ref. 10): 

Here GI depends on products of the components of the 
strain-potential tensor A, of the resonant TLS and Aik ( I )  of 
the thermal TLS, and also on the direction of the vector r l  
relative to the principal axes of the tensors A, (Ref. 10): 

where we have set e = = r l / r I ,  g, is the density of the glass, 

and W, and W, are the transverse and longitudinal sound 
velocities in the glass. 

It would also be possible to calculate similarly the con- 
tribution from the electric (dipole-dipole) interaction. It 
depends on the distance r, in the same manner as (49). Rec- 
ognizing, however, that for a number of glasses, such as 
fused quartz, the characteristic value of A is about 1 eV and 
the characteristic values of the TLS dipole moments are 
about 0.5 D, it turns out that the elastic contribution is some- 
what larger for them than the dipole-dipole contribution. 
For simplicity we accordingly take into account only the 
elastic contribution. 

The function <I ( t )  describes a random telegraph pro- 
cess." It takes on values + 1 at random instants of time, 
with the average frequencies of the downward (from + 1 to 
- 1 ) and upward jumps equal to I': and I?, , respectively. 

They are equal respectively to the reciprocal of the lifetime 
of the thermal TLS in the upper and lower states. Since only 
the thermal TLS, i.e., those with energies E z T ,  execute 
transitions, we have rl+ r; for them. In the present paper 
we assume for simplicity that these two quantities are equal 
and denote them by I?,. This approximation leads only to a 
certain inaccuracy in the calculation of the numerical coeffi- 
cient in the argument of the exponential in (55), which will 
appear in front of the result ( I GI I ) of averaging /GI / over the 
 direction^.^' The present lack of the necessary information 
on the probability distribution of the strain potential in 
glasses justifies this simplification. 

The dependence of the echo-signal amplitude on the 
time 721 is determined by the values, averaged over the time 
(i.e., over the telegraph processes g, ) and over the configu- 
ration of the thermal TLS, of the quantity 

271' 

K (r,,) = exp[ -i 1 bo (r') s (tn) dt ' ]  . (51) 
0 

wheres(t) is the step function ( 17b). Owing to the contribu- 
tions to Aw(t) [Eq. (48)]  from the different thermal TLS 
and to the absence (which we assume) of a correlation 
between the different telegraph processes Cl ( t ) ,  the time 
averaging can be carried out independently for each of the 
thermal TLS. We denote this average by 

ZT*' 

k (r,,) = (exp[ -iJ I (f') s (tr) dt'] ) . 
0 E 

(52) 

For simplicity we have left out here the subscript I from 
k ( ~ ~ ~ ) ,  J, and C. 

The function k ( r )  can be calculated by the method de- 
scribed in Klyatskin's book.'' These calculations were actu- 
ally carried out in Ref. 11, and k ( r )  can be obtained from 
Eq. (3.18) of that paper, by putting 7' = 0 in it. As a result 
we have 

The average over the telegraph processes (51 ) is expressed 
in terms of products of the mean values (52) of each of the 
thermal TLS separately. Our task is to average the resulting 
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expression over all the configurations and parameters of the 
thermal TLS. 

The influence of a thermal TLS on a resonant one de- 
pends on the distance r,, on the angles that determine the 
orientation of r, relative to the principal axes of the tensors 
A, and A::', and on the frequency of the jumps TI.  There- 
fore the configuration averaging reduces to averaging over 
these quantities. As to averaging over r, we assume that all 
the positions of the thermal TLS in space are equally prob- 
able. The distribution in r (i.e., physically, in the tunnel 
transparency of the barrier) takes the form 
1/T(1 - T/To)"2 (Ref. 3 ) ,  where ro is the characteristic 
jump frequency of the TLS for which we have E=: T. In order 
of magnitude we have 

where A is the characteristic value of the strain-potential 
tensor components A:/', and W is the average speed of 
sound. 

Using the Holtsmark method,16 we obtain 

where (we use now the notation of Ref. 11 ) 

and 

The quantity IG, I [see Eq. (50) ] is averaged in (57) over 
the orientations of the vector r,/r,. In contrast to Ref. 11, it 
is now important to take into account in (55) the asymmetry 
factor ( 1 - p )  'I2 of the resonant-TLS two-well potential, 
since in a number of cases it determines the law governing 
the decrease of the echo amplitude with increase of r,,. 

As follows from Ref. 11, the behavior of the function 
S(r,O)/r depends only on the product Tor, with 

where S(0)  is a constant of order unity introduced in Ref. 
11. 

8. DAMPING OF ECHO SIGNAL 

The law governing the decrease of the echo amplitude 
with time is different at temperatures that are low and high 
relative to the temperature 

determined from the condition r0rd = 1. 
In the low-temperature region T< Td (Tord < 1 ), 

where most experiments on echo in glasses are performed as 
a r ~ l e , " ~ . ' ~  the value of S(r,O)/rd in the argument of the 
exponential (55) becomes comparable with unity at 

where 

is the time over which the wave function of the resonant TLS 
loses phase coherence by spectral diffusion. " Over times r of 
this order (but not longer than T; I ) ,  as follows from (58), 
we have 

S(T, 0) T2 -= 
'Cd "2 

It is easiest to determine the law of decrease of the echo 
amplitude as a function of the time r,, in the region of low 
amplitudes a <  1. We confine ourselves here to this case. 
Since we have a 4  1, the quantity I in (20) is independent of 
F, hence also of the tunnel transparency p. The dependence 
of the echo amplitude on the time interval r,, is determined 
by the following integral: 

1 

dp P a = J - e x p [ - p ~ -  ( I -P)~~~ - s ( ' c ~ ~ * o ) ] .  (61) 
(1-P)"' 'Co 'Cd 

In (61) we have taken into account y =p/ rm,  where ra is 
the minimum relaxation time of a resonant TLS with dis- 
tance E = fiw between levels. 

For r, $ ro ,  the decrease of the echo signal begins at 
delays r,, > r,, and in the interval r, < r,, < r; ' follows 
the power law 

In this case S(r,O) is determined by Eq. (60), and the main 
contribution to the integral (61) is made by p close to uni- 
ty,i.e., almost symmetrical resonant TLS. When r,, in- 
creases in the interval To < rZ1 < r, we have 
S(r,,,O) = r,,S(O) and (62) gives way to a smoother de- 
pendence 

Finally, at r,, > rm , the power-law decrease changes to expo- 
nential: 

For r, <r, < I?; I ,  the decrease of the echo signal begins as 
before at delays r,, > r,, and is given by (62) in the interval 
rm < r,, < rm . AS r2, increases this variation becomes expo- 
nential: 

which holds in the interval rm <r , ,  < T;'. Finally, for 
r,, > I?; ' the decrease is given by (4) .  

For rd < ra < r, the decrease of the echo amplitude be- 
gins with times r,, > rm and in the interval r, < rZ1 < r, has 
the power-law variation (62). The main contribution to the 
integral (61) is made in this case by smallp, i.e., by strongly 
asymmetric resonant TLS. In the interval r, < r,, < </r, 
this variation becomes exponential 
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and for </r, < r 2  < I it takes the form (65). The main 
contribution is now made by values ofp close to unity. Ulti- 
mately, for r2, > r; we again obtain the decrease (64). 

Finally, if the case T, (T, (7, is realized, the decrease 
(62) holds for r, <T2,<7,, Eq. (66) for r, < r2 ,< r ; ' ,  
while for r2, > I?, we get 

We consider now the case of high temperatures 
T) T, (I?,,T, ) 1 ). In this case the quantity S(r,O)/rd in the 
argument of the exponential (55) becomes comparable with 
unity at TZT, ) 1/I?,. Hence for T~,, ST, the decrease of the 
echo signal begins at times r,, > T, , following the power law 
(63) for T, < T,, < T, (a contribution to (61 ) is made by 
values ofp close to unity), and the exponential law (64) for 
T, 4 T,, . If, however, T, 4 T, holds, the decrease begins at 
T, < TZ1, while for rc0 < T,, < T, we obtain thedecrease (62), 
and the main contribution is made by asymmetric resonant 
TLS with p 1, while for r2 , > T, the following law is valid: 

It follows from the picture we have presented that 
owing to the distribution of the tunnel transparencies of the 
resonant TLS, the initial section of the echo-signal decrease 
is practically always not exponential but is a power-law vari- 
ation, and only for longer times r,, does the damping be- 
come exponential. This raises the question of the cause of the 
exponential dependence, observed in some experi- 
m e n t ~ , " ~ " ~  of the echo signal amplitude A on the delay time 
7 2 1  

We wish to point out situations in which the echo-signal 
damping is exponential. First is the case when there is no 
spread in the tunnel transparencies, i.e., the values of the 
parameterp, which then has only one characteristic value. A 
probable example of such a situation may be TLS produced 
by OH impurity groups in amorphous SiO,. 

A second situation is one in which a combination of two 
damping mechanisms "operate," for example spectral diffu- 
sion and the intrinsic damping due to interaction with phon- 
ons. 

Finally, one more explanation of the observed experi- 
ments may be the most realistic. Its essential idea is that 
besides the interaction of type S, - S, between TLS pseudo- 
spins, which we have been considering here, a role can be 
played also by interactions of the form S, - S, and S, - S, 
(Ref. 17). The latter, insofar as can be judged from experi- 
mental data, play a lesser role in relaxation processes. Thus 
during the initial stage the damping of the echo pulses 
should obey the theory developed in the present paper. It 
then acquires an exponential character and is determined by 
these unaccounted-for interactions. 

APPENDIX 

The integral (4)  is given by (the factor ?r/8w: is omit- 
ted) 

We introduce the variables a = w ,r and P = w 1 t2 I and de- 
note the integral of F* by Y* . We have then 
Y= Y+  + Y-',where 

For the case f l >  a ,  using (26), we can obtain 
1 

~ - 4 r n ~ ~  J &'(I-t2)'exp(-ol l f1 t )d t .  (A31 
0 

For It, 1 > T integration yields 8r/o; It, 13. 
We have thus to calculate Y + and Y- under the condi- 

tion a >fl. Substituting the asymptotic expression for the 
Bessel function 

in the integral Y + , we obtain 

where f(z) = acoshz + psinhz. 
At the stationary point z, we have 

Expanding f(z) in the vicinity of the point z, and calculating 
the integral, we obtain 

2 
Y+ = --cos[o,(~~-t~")"].  oi212 (As)  

One can show analogously that 

With allowance for the factor ?r/8w: in (40) we find that 
1 

n 
2 J63(1 - t2 ) '*~ , (~ )d6  = - ~ c ~ s [ w ~ ( r ~ - t ~ ) ~ ] .  (A6) 

0 

The second term of (42) yields 

In the case r < It,[ we have for (42) 

For w, It2/ > w , ~  the integral (A8) is equal to 
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(sign t2)  . 3nz2/o,' 1 t ,  I '. 
We have used here the fact that for T > 1 tZ 1 

at 
I ,  ( T )  = 7 z2 exp ( -F I t2 1 )  . sign t2.  (A91 

As a result, designating the integrals of I ,  (7) and I , (T)  
respectively by @, ( t )  and @, ( t ) ,  we arrive at the expressions 

The shape of the echo is determined in accordance with 
(29),  by the expression 

1 1 
@=@, ( 7 )  --@I ( 2 t )  +2@2 ( T )  - - Q2(22).  

2 2 

Therefore, using ( A  > 10) and (A1 1 1, we arrive at Eqs. 
(43a, b) .  

" It must be borne in mind that the presence of the frequency w in ( 1 1  ) is 
due only to representation of the nondiagonal density matrix in the form 
(a) ,  i.e. separation of the factors e + ""'. Actually, of course in the ab- 
sence of the pump, w does not enter in the expression for the density 
matrix. 

"When the echo signal contained several maxima the largest one was 
chosen to determine the amplitude. 

"This coefficient was calculated in Ref. 12. 
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