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Neutron scattering by ideal polyatomic crystals with an arbitrary unit cell is described by means 
of recurrence relations. 

1. INTRODUCTION 

The expressions for the reflection and transmission am- 
plitudes in the case of an arbitrary one-dimensional periodic 
potential are obtained in Ref. 1 on the assumption that the 
reflection rand  transmission t amplitudes of a single period 
are known. It follows from these expressions that the reflec- 
tion R, and transmission T, amplitudes of a periodic chain 
of length L = NI, where I is the period and Nis the number of 
periods in a chain, are 

RN= [R-exp  ( i q L ) R  exp ( i q L )  ] 

x [ I - R  exp ( i q L ) R  exp ( i q L )  I-'. 

where b is the amplitude for coherent scattering of this neu- 
tron by a nucleus, 

kL?=koZ- ( k o l l + ~ i )  ', 

and a new quantity is introduced: 

ei=exp (ik,,1/2). (7)  

The matrix element Rij of the reflection amplitude of a crys- 
tal semiinfinite along the normal to its entry surface is then 

Rfj=sirfjsj/  ( I-eie,) , (8)  

which is very similar to Eq. (5 )  where the additional coeffi- 
cients si satisfy an infinite system of equations 

( 2 )  s i = i + s i  z r i j s j / ( l - e i e j ) .  
(9 )  

Here, R is the amplitude of reflection from a semiinfinite 
chain and q is the Bloch wave number. The following equa- 
tions are obtained for R and q in Ref. l :  

Equation ( 3 )  has a very simple solution for the scattering of 
scalar particles.' However, in the case of spinor or other 
particles all the amplitudes and the number q are matrices 
and Eq. (3 )  is a system of equations which cannot always be 
solved analytically (in the spinor case this solution is possi- 
ble in its general form). 

Equations (1)-(4) are generalized in Ref. 2 to the 
three-dimensional case. The diffraction of neutrons by a 
three-dimensional ideal monatomic crystal with a tetragonal 
unit cell, in which one of the axes is perpendicular to the 
plane of the entry surface, is considered in Ref. 2. A crystal is 
assumed to be divided into separate crystalline monolayers 
of thickness equal to one unit cell, parallel to the entry sur- 
face plane assumed to be infinite. The reflection rand  trans- 
mission t amplitudes of each layer are infinite-dimensional 
matrices. The matrix elements rij and t,. represent the reflec- 
tion and transmission amplitudes of a single monolayer 
when the component of the wave vector k ,  parallel to the 
entry surface plane, changes from koI l  + .rj to ko l l  + T , ,  

where kol l  is the component ofthe wave vector of the primary 
neutron parallel to the monolayer and T~ is the reciprocal 
lattice vector inside the crystal plane parallel to the entry 
face. 

It is shown in Ref. 2 that 

This system is readily terminated since the factors e ,  fall 
exponentially beginning from a certain number i, which 
gives rise to a finite system of equations that is readily solved. 
In those case when the denominators in Eq. ( 9 )  are small, 
the Bragg conditions are obeyed and the equations become 
particularly simple. However, if the denominators are not 
small, the coefficients si are close to unity because of the 
smallness of the amplitudes b (which is typical of neutron 
physics). 

The present paper generalizes the above expressions to 
the case of a polyatomic crystal with an arbitrary unit cell 
when the expressions ( 5 ) and (6 )  become more complex. 
The solution analogous to Eqs. ( 8 )  and (9 )  will be found. 

The problem will be solved using the recurrence rela- 
tionships, i.e., a crystal will be assumed to be divided by 
infinitesimally narrow (thin) vacuum spacers into separate 
layers parallel to the entry surface. The wave field in one 
interval between the crystal periods is expressed in terms of 
the wave field in the next interval. This method is quite effec- 
tive and it can be used to solve many problems in mathemat- 
ical physics. In particular, it is shown in Ref. 3 that the meth- 
od of recurrence relationships provides a new approach to 
the numerical solution of the Schrodinger equation with an 
arbitrary potential. This method is used in Ref. 4 to solve the 
diffusion problem. 

The method of recurrence relationships has been 
known for a long time. It was used by Darwin5,' back in 19 14 
to describe the diffraction by a layer system and was called 
the invariance principle by Ambartsumyan7 and Chandra- 
sekharS in the 1940s in studies of the diffusion of light. Engi- 
baryan and Mnatsakanyan9 formulated in 1974 a system of 
equations which makes it possible to describe the reflection 
and transmission of arbitrary radiation by a medium of finite 
thickness in terms of the reflection from a semiinfinite medi- 
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um. However, this system of equations was not solved by the 
authors. This is clearly the reason why subsequently the 
scattering by a layer of finite thickness has been described 
using integrodifferential  equation^,'^^" also formulated in 
Refs. 7-9. In the derivation of these equations the scattering 
by a monolayer is assumed to be infinitely weak and is treat- 
ed only in the first order of perturbation theory.9." In this 
approach one immediately loses sight of the fact that the 
scattering by a semiinfinite medium can be described identi- 
cally [Eqs. (3) and (4) ] in terms of the parameters of ele- 
mentary layers and also in terms of parameters of layers of 
finite thickness. The equations not solved in Ref. 9 can be 
solved only if we avoid the differential approach', as demon- 
strated by Eqs. ( 1) and (2).  

In Sec. 2 we obtain the scattering matrices rand t for a 
layer parallel to the entry surface and of thickness equal to 
one period of a crystal. For simplicity, we shall use perturba- 
tion theory, which is quite satisfactory in the case of a single 
layer. In Sec. 3 we derive the equations for R and find their 
solution. We consider some special cases in Sec. 4. Among 
them one important result on the n-e interaction is of special 
interest.".13 

2. SCATTERING OF NEUTRONS BY A MONOLAYER 

We consider a layer parallel to the entry surface (xy 
plane) and assume that one unit cell can be fitted within its 
thickness. We assume that this layer is located in vacuum. 
The rand t matrices can be found from perturbation theory. 
The incident neutron is described by a plane wave 

where the arrow does not indicate that the quantity is a vec- 
tor, but simply shows that the wave is incident on the layer 
from the left. The scattered neutron is described 

where rai is the coordinate of a nucleus a in a cell i; b, is the 
coherent amplitude of the scattering by this nucleus; $,i is 
the amplitude of the resultant wave incident on the nucleus; 

From now on the scattered waves traveling to the right, i.e., 
those that have traversed the layer must be considered sepa- 
rately from the waves traveling to the left, i.e., those reflect- 
ed from the layer. We distinguish these two types of wave by 
the direction of the arrows above $. Applying perturbation 
theory, we obtain rjai = $o(r,i ). 

We can use the representation 

( r )  = j d3p exp ( ipr )  /2n2 (p2--k2-ie) = i d2p1l 

Xexp (ipllrll+ip, 1 z 1 )72np,, p,= ( k 2 - ~ ~ ~ 2 )  '' 
(12) 

and the summation rule 

f(n) = J exp (2nirnx) fb) ax. 

Then, 

* * = - 2niN2 exp ( ig ,r)  2 (bulkT,) exp [i (Go - gT) r,],, 
T a 

where N,  = I / \  [d,d,] 1 is the two-dimensional intensity of 
the unit cells in the layer, d l , ,  are the two-dimensional lattice 
periods, 

and T ~ ,  are the vectors of the reciprocal two-dimensional lat- 
tice. The symbol 1 1  represents the components of the vector 
parallel to the layer, whereas 1 is used for the components 
perpendicular to the layer. 

It is convenient to introduce the total scattering ampli- 
tude of a unit cell 

and to express all the lengths in units ofA = 1/2?rN2b,. (In 
the neutron scattering case the value of A is =: lop4 cm.) 
Then, Eq. ( 14) can be written in the following simple form: 

r.C 

(P = (- ilk,,) exp ($,r) 7 b, exp [ i  (Go - e) r,], 
'C a 

4 

where b, is the scattering amplitude reduced to the total 
scattering amplitude of a unit cell b,. 

We introduce 
4 a 4 r+ 

= exp (iGTr), I;), = exp [ikT (r  - I)], $,, = 1 a)l7 
(17) 

where the indices I and r represent the spaces to the left and 
right of the layer, respectively. Then, the wave functions of 
the neutron reflected by the layer and transmitted by it are 

f=12)L;~<;1$~, $=17>,<<>1$0. ( 1 8 )  

The arrows above the matrices rand t indicate the direction 
of propagation of the incident wave. Since a unit cell may be 
asymmetric, the scattering depends on this direction. 

Comparing Eqs. ( 18) and ( 16), we readily find the 
main elements from which the matrices rand tare construct- 
ed. These elements are the factor KT = l/k, and the form 
factor 

-7 'Z  
-r z 

F ~ ,  , = b. exp [ i  (k, - k,r) ra] .  (19) 
a + 

Using them we can express the matrices I. and t as follows: 

+ 
where the matrix 9 consists of thepmatrix elements of Eq. 
( 19), whereas the matrices X and Z9 are diagonal and con- 
tain the matrix elements K, and 

* z 
E,=exp ( ik , l ) ,  (21 

respectively. 
We can find the reflection apd transmission on the right 

if k in Eq. ( 19) is replaced with k, and r, with r, - 1, i.e., in 
the case when a plane wave is incident on a monolayer from 
the right, the form factor of Eq. ( 19) should be replaced by 

+T', s 
Ft.  r = OL b, eap [ i  (g. - k,.) (ra .- 111. 

The expressions in Eq. (20) now become 
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It is convenient to introduce 
* z? 

= exp ( ikd,) ,  (24) 

so that Eqs. (20) and (23) become 
-. 4 4 

r - i ,  t = ~ ( ~ - i ~ e ' - l ~ . ~ f ) , ,  (25) 

- -* tC C 

r=-iz%8e-l%..Ne8-1, t=(l - i~:- l33.N;)&l,  

(26) 

where the matrix is diagonal and its elements are the 
amplitudes b,; this matrix acts only in the space of the pa- 
rameters a. The matrix JV acts in the space of the param- 
eters T and has all the elements equal to 1, whereas the matrix 
e is diagonal both in the space T and in the space a, and 
contains the matrix elements defined by Eq. (24). 

3. REFLECTION FROM A HALF-SPACE 
-t 

The equations for the matrix R representing the reflec- 
tion by a half-space and for the Bloch wave vector 3, repre- 
senting the propagation of a wave inside a crystal from its 
entry surface (the arrow indicates the direction of propaga- 
tion, which in this case is from left to right) are fully analo- 
gous to Eqs. (3)  and (4)  given above (see Ref. 1 ) : 

-. ..-A 64. - 2 = r + t R(l -rR)-l t ,  
-. 

exp (ipl) = ( I  -:@-I 7. 

We rewrite Eq. (27) in the form 

It follows from Eq. (25) that the matrix t - ' is 
-. 
t.-l = ( 1  + i x ; - l3  .x$&l, (30) 

where the matrix 9 is found from the condition t - '  t = 1: 

and the matrix 2 consists of the elements 

The matrices 9 and 2 are defined only in the space of the 
parameters a. In this space they are nondiagonal; 

We seek the solution of Eq. (29) in the form R = x%. 
We shall substitute this solution and also Eqs. (25), (26), 
and (30) into Eq. (29). Since 

is true for any matrix d, we can readily show that 

Then, Eq. (29Lafter division by X on the left and multipli- 
cation by %' = %' on the right becomes 

and it can be rewritten in the form 

(A' - 8-193) [ I  + i x 2 - 1 3  N (z +- >3Er%'-lA'g)] 
= - i @-l.@Z?l+ 3 a N (; +>~%-l.&)% 

which leads to 

where the matrix Y acts in the space of the indices a and is 
described by the equation 

whereas the matrix 7 also acts in the space of the indices a 
and consists of the elements 

..- ~,,. = (;Ta~,,, + e ,~ ,8 ; '~~ , ,Z , , )  ~,;;?a(. ( 39 I 
TT' 

It can be written in the form 3- = L3 + 2 r ,  where the ma- 
trix 9? is defined by Eq. (32) and the matrix LiJ consists of 
the elements 

oaa ,= ~,,sr;;la,T~T~xTZ~;laa. (40) 
77' 

However, since 3 ( 1 + i%? 9 ) - ' = .g, as deduced 
from Eq. (3 1 ), we find that 

Usually the scattering by a monolayer is weak, so that 
the elements of the matrix 9 B are small and we can assume 
that Y = B. 

It follows from Eq. (37) and (41) that the matrix ele- 
ments can again be represented in a form similar to Eq. (8) .  
However, in the case of an arbitrary cell these elements are 
generally asymmetric so that it is more convenient to solve 
Eq. (37) directly for the matrix elements 9,,. : 

All the terms on the right-hand side of Eq. (42) are 
small with the exception of those cases when the denomina- 
tors are small. In fact, only the "resonance" terms character- 
ized by small denominators are important. There are only a 
few resonance terms, so that the system of equations is finite 
and readily soluble to the desired accuracy by modern com- 
puters. The nonresonance terms are readily calculated em- 
ploying perturbation theory. In the first approximation, we 
can assume that these terms are 

a,,, = - i z : ; ~ b a ~ , , r / { l  - exp [ i l l  (kvr  + ~ , ' L ) I ) .  (43) 
a 
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If the product 9.93 in Eq. (41) cannot be ignored 
(which is true of the tight-binding case), then Eq. (42) be- 
comes somewhat more complex, but it is still fully soluble by 
modern computers to any desired accuracy. 

4. EXAMPLES 

1. The solution of Eq. (42) is obtained most simply in 
the presence ofjust one resonance term. This corresponds to 
the two-wave approximation in the conventional theory of 
diffraction. One matrix element x = 9,,. is then important. 
If the amplitudes b, are scalars, thenx satisfies the quadratic 
equation 

i(1-e)~=f+ex(1/kz~+llk,,)+f'(e~)Zlk~,k2,, (44) 

where 

The solution of Eq. (42) can be represented in the form 

x=- (k,,k,,)" exp(irp) [(F,+)"-(F,-)"I/[ (F,+)'h+(F,-)'h], 

where 

exp (irp) =exp[-i(k,-k,)l] (flf ') '", (47) 

We can readily see that if the element 9,,, also exhibits a 
resonance, the expression for this element is found to be of 
the same type as that given by Eq. (46), but in Eqs. (47) and 
(48) we have to make the substitution (k,  - k2) 1 
- (kl - k2llIl. 

For 7 = T', we are dealing with purely specular reflec- 
tion and the amplitude of this reflection R = x / k , ,  is de- 
scribed-as demonstrated by Eq. (46)-by the expression 

where 

F,*=l* 1 f 1 +ik,, [I-exp (-2ik,,l,) 112. (50) 

Since in the case of a "resonance" we characteristically have 
2k,,l, z27in, it follows that on the assumption that 
k!, = 7in/l,, we can use an approximate equation 

ik,, [I-exp (-2ik,,l,)] 

and, recalling that all the lengths are expressed in' units of 
l/277N2b,, we obtain the amplitude of the specular (Bragg) 
reflection in the form 

R=exp (irp) [ (E-E,) '"- (E-E,-2u,I f I)"] / 

where dimensional quantities are used and the following no- 
tation is employed 

If k ,, I, 4 1, we obtain the familiar expression describing 
specular reflection of slow electrons: 

2. We now consider the scattering of a neutron by a 
magnetic crystal (allowing for the nuclear and electron mag- 
netism). At each point inside such a crystal there is a field 
H ( r )  and the amplitude of the magnetic scattering by a unit 
volume d3r is Bi = ,uuH(ri ) d  3ri,  i.e., it is a spinor. More- 
over, each matrix element 9,,, is also a spinor. In the pres- 
ence ofjust one resonance term we again have a second-order 
equation, but the sequence of the factors in this equation has 
to be maintained strictly. 

If the field H inside the unit cell is homogeneous, then 
the direction of this field can be selected as the spin quantiza- 
tion axis and we can separate the equation for the spin matrix 
R,,. into two scalar equations representing the two polariza- 
tions of a neutron parallel and antiparallel to the field H. 
Bearing in mind that, in addition to the magnetic scattering 
process, there is also the purely nuclear scattering, we can 
obtain the solution for the diffraction of a spinor neutron in 
the same form as in the case of a scalar neutron, but the 
coherent scattering amplitude of the cell b, for two different 
polarizations should now be the sum or difference between 
the nuclear and magnetic amplitudes. 

In the presence of an inhomogeneous field, we can as- 
sume for the sake of simplicity that 

i.e., the magnetic field averaged over the cell is zero, so that 
the equation for x allowing for the magnetic scattering pro- 
cess is 

where 

h. = J H  (ri) exp [ -i (k,-k,) ril d3ri .  (57) 

Multiplying both sides of Eq. (52) on the left by Cf 'h'u) and 
denoting the product u' + h8a)x by y, we obtain the readi- 
ly soluble equation for y: 

where 

It follows from Eqs. (56)-(58) that the spinor scattering 
amplitude R reduces to 
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Note that although the average field vanishes, magnetic 
scattering still takes place. In particular, neutron reflection 
may polarize an unpolarized beam and depolarize a polar- 
ized one. However, if we ignore the polarizations, we still 
must bear in mind that the magnetic form factor influences 
the overall scattering process. It must be allowed for in, for 
example, determination of the n-e scattering amplitude. I2,l3 

This magnetic form factor may explain also the anomalies of 
the scattering of slow neutrons by tungsten. 

In fact, if the average field vanishes, i.e., when the con- 
dition (55) is satisfied but the form factor of this field given 
by Eq. (57) differs from zero, the intensity of the diffraction 
peaks (hk l )  for an unpolarized neutron beam considered in 
the kinematic approximation can be written in the form l 3  

where K is a coefficient constant for all the reflections; a is 
the coherent scattering length of a tungsten nucleus; Z is the 
number of electrons in an atom; f ,,,,, is the atomic electric 
form factor of tungsten; a,,, is the scattering length due to the 
n-e interaction; A,,, , ,  is the absorption factor; if,,,,, is the 
Bragg angle; exp ( - W(,,,, ) is the Debye-Waller factor 
where W =  B(sin 9/A)2, and A is the neutron wavelength; 
y2 ctg2 if, where y = (p,, fi/2Mc) (Ze2/fic) allows for the 
Schwinger scattering; and /hi is the magnetic scattering 
form factor reduced to the coherent amplitude a. Comparing 
Eq. (64) above with Eq. (2 )  in Ref. 12, we can see that a1 hl 
acts as the anomalous amplitudep introduced in Ref. 13 to 
account for the anomalous scattering by tungsten. 

Naturally, the above results do not exclude the possibil- 
ity that the anomalous amplitudep may be partly associated 
with the magnetic variation representing inclusions of for- 
eign magnetic atoms in the tungsten matrix. The magnetic 
scattering effect discussed above can be distinguished by in- 
vestigating the diffraction of polarized neutrons. In the case 
of a thick crystal when the polarization of the reflected neu- 
trons is of no interest, the reflection coefficient deduced from 
Eq. (60) is 

This reflection coefficient may differ considerably for neu- 
trons polarized parallel and antiparallel to the vector P, as 
defined by Eq. (62). Naturally, a similar dependence of the 
intensity of reflection on the polarization of the incident neu- 
trons can be derived also for the case of a thin crystal. Unfor- 
tunately, the direction of the vector p must also be found 
experimentally. 

It should be noted that the form factor Ihj generally 
varies nonmonotonically with transferred momentum. This 
can account, in particular, for the anomalous increase in the 
amplitude of some of the reflections reported in Ref. 14. 

The scattering discussed here is not paramagnetic. It 
may be due to different deformations of the electron shells 

with opposite spins. Determination of this deformation with 
the aid of neutrons would be very useful in studies of the 
behavior of atomic electrons in solids. 

5. CONCLUSIONS 

We considered the simplest cases as examples because 
investigation of these cases would not require the use of com- 
puters. However, if computers are used, we can deduce im- 
mediately the reflection spectrum for a given structure of a 
single crystal both for x rays and for neutrons. Moreover, we 
can find not only the positions of the peaks, which can be 
deduced from the simplest considerations without invoking 
the procedures described above, but also the structure of 
each peak. This is particularly important because if the reso- 
lution is sufficiently high, we can then determine the crystal 
structure from a single peak without any need for a Fourier 
analysis of the spectrum. 

The problem of the scattering by point scatterers was 
solved earlier. By way of example, we can cite the work re- 
ported in Refs. 15-18. However, the methods employed in 
these investigations are not physically clear and are too 
mathematical, so that the solutions were obtained in a form 
difficult to interpret physically. 

A multilayer description of the crystal is encountered 
quite frequently in the literature. 1s.19 However, in such cases 
no allowance is made for the diffraction by one layer, since 
this diffraction is allowed for by specifying the required com- 
bination of the wave fields which are then reflected between 
the layers as a whole. In either case it is not possible to de- 
scribe consistently the Laue diffraction process. 

The method used above is physically clear, completely 
closed, provides a unified description of the Bragg and Laue 
diffraction cases, and can be employed in calculations of any 
number of reflections with any degree of accuracy. 
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