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The interaction and nonlinear dynamics of acoustic and electromagnetic fields in crystals with 
quadratic electrostriction are considered. An exact solution of the dynamic equations for the 
wave amplitude is obtained. This solution describes the evolution of self-compressing coupled 
acoustoelectromagnetic pulses, which are nonlinear solitary waves evolving from an acoustic 
initializer. The interaction of such waves is manifest in their quasisoliton behavior. In a 
dissipative medium, nonlinear pulses can be formed when two thresholds are exceeded, one 
connected with the initial energy of the acoustic initializer pulse and the other with the input 
amplitude of the pump wave. 

I. INTRODUCTION 

Wave propagation in media with cubic nonlinearity can 
cause, depending on the input-signal power, various nonsta- 
tionary excitations of both soliton and nonsoliton origin.'-4 
The overall picture, however, becomes much more compli- 
cated if waves of different nature (electromagnetic and 
acoustic waves5) are coupled in such a medium. 

The complexity of such processes usually makes it nec- 
essary to restrict their description either to a stationary in- 
teraction regime or to self-similar solutions of the traveling- 
wave [ f(x - v t )  ] type.' This, however leaves unclear the 
physical picture and the conditions under which such waves 
are formed, as well as the dynamics of the transition from the 
linear regime to the nonlinear regime as a result of the onset 
of various instabilities. Allowance for wave dissipation only 
adds to these difficulties.' 

From the formal point of view the main difficulty lies in 
the absence of explicit solutions of the nonlinear dynamic 
equations with initial or boundary conditions corresponding 
to the physical meaning of the problem. Progress is made 
possible in this field at present by advances in the mathemat- 
ical formalism of the inverse scattering matrix problem9 and 
some other methods.'x4 These have made possible a com- 
plete study of the formation of three-wave soliton envelopes 
in quadratically nonlinear media9 and, in particular for par- 
allel acoustoelectromagnetic intera~tion. '~." Interactions 
of distinct types of waves in cubically nonlinear media have 
been much less studied.'.I2 

It is shown in the present paper that acoustoelectro- 
magnetic interactions can produce solitary wave envelopes 
in anisotropic crystals with nonlinear electrostriction. These 
waves become enhanced as they evolve and are strongly 
compressed, and their speed is of the order of that of sound. 
An exact solution of the nonlinear dynamic equations has 
revealed a number of distinct features of such a process due 
to the thresholdlike decay of the initializing pulse and to the 
attenuation of sound. 

Themain difference between this system and the much- 
studied case of quadratically nonlinear medium is that the 
former is nonlinear even in an approximation with a con- 
stant pump-wave amplitude.5 It is therefore impossible to 
use directly in this case an analysis based on the concept of 
the known published13 linear instabilities. 

On the other hand, effects connected with electrostric- 

tion that is nonlinear in the sound amplitude are usually 
weak in view of the presence of linear electrostriction, which 
prevents them from building up to noticeable magnitude as 
second-order effects. Particularly interesting are cases in 
which there is no linear electrostriction (e.g., the corre- 
sponding moduli are equal to zero because of crystallograph- 
ic symmetry). The elastic nonlinearity plays no noticeable 
role here in view ofthe short length of the acoustic pulse. ' ' It 
is this case which is investigated in the present paper. 

2. FORMULATION OF PROBLEM AND EQUATIONS OF 
MOTION 

Consider a uniaxial crystal of symmetry 3m, with a co- 
ordinate system aligned with the crystallographic axes. We 
investigate ordinary and extraordinary electromagnetic 
waves (with frequencies w, and w, and wave vectors k ,  and 
k,) interacting with a transverse acoustic wave (frequency 
and wave vector K) :  

u=U (x, t) [e,+ael]exp(i03) +c.c., 

where 

U are slowly varying wave amplitudes, and 
a = u,/u, = 0.86 (Ref. 14). Since the electrostriction con- 
stants are zero for waves of the specified polarizations 
(a,, = a,, = 0 )  the first nonvanishing nonlinearity causing 
an interaction is nonlinear (quadratic) electrostriction, cor- 
responding to terms of the following type in the free energy 
(we put here and elsewhere u, = au, ) 

whereg,,,,, are the effective components, renormalized with 
allowance for the piezoeffect, of the quadratic electrostric- 
tion; the explicit expressions for these components are too 
unwieldy to present here. 

The equations of motion, which consist of the Maxwell 
equations and the equations of elasticity theory with 
allowance for (2 )  take the form 
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where E , , ,  are the diagonal components of the dielectric ten- 
s ~ r , ' ~  s is the speed of sound, and p is the density of the 
crystal. 

Such an interaction is most pronounced when the reso- 
nant parametric-coupling conditions w ,  - w, = 2R + Aw, 
k ,  - k, = 2K + Ak, where Aw and Ak are small mis- 
matches. The sound frequency here is 

(n,,, = E;:: are the refractive indices) and is usually in the 
ultraviolet. 

Taking into account the weakness of the interaction, it 
is easy to obtain dynamic equations for the complex ampli- 
tudes of the waves, by substituting ( 1 ) in ( 3 )  and retaining 
the synchronous terms. Changing to dimensionless vari- 
ables, we rewrite these equations in the form 

dAi z - = rA2, id ,2  sin rp, 
G 

d d (- + - + 1') A ,=A ,A~A,  sin rp, 
dg  87 

d91.2 A2 i - = A 3 2 - L  
% 

cos ~ J - - ~ R ~ , ~ A ; ,  
A1.2 

I,, is a characteristic scale connected with the specified non- 
linearity, y is a phenomenological sound-absorption coeffi- 
cient, 

and g,, is the pump-wave input amplitude. In the derivation 
of (4) we discarded terms of type (n,,, /c)ag ,,, /at, which 
are small, of order the parameter s/c- 10 - < 1 are connect- 
ed with transient propagation of electromagnetic wave. The 
attenuation of the laser emission in the transparency region 
was also assumed negligibly small. 

3. SOLUTION OF EQUATIONS 

Equations (4)  can be easily solved in the constant- 
pumping approximation (A, -- 1 ,A,,, < 1 ). We shall there- 
fore focus on the nonlinear regime, when pump depletion is 

significant (Al -A,-A,) and the amplitudes of all waves 
must be taken into account under equal conditions (the con- 
ditions under which such a regime sets in are discussed be- 
low). 

It is easy to obtain from Eqs. (4 )  the relation 

dAs2 
A , . ~ ~ A ~  cos ~ = A R A :  (A?-A:) - { ( -- + ~ I ' A ~ ' )  

0 d r  

where 

and $ ( T )  = A : +A depends only on the time. In an iso- 
tropic medium we have n ,  = n, and g ,  = g,, " SO the param- 
eter AR is indicative of the degree of anisotropy of the crys- 
tal. Usually In, - n n  5 0 1  and although few 
experimental studies have been made of the magnitudes of 
g,,, , it is easily seen that, at any rate for a weakly anisotropic 
crystal, the condition ( (g ,  - g,)/g,( < 1 should be met and 
correspondingly (AR ( < 1. We shall therefore neglect AR 
henceforth. ' 

For R = 0 the relation (5)  is satisfied for 4)-  IT/^, 
@=const, if one of the waves has zero amplitude on the 
boundary; from ( 5 ) ,  in particular, we obtain hw = - hk. 
The phases are expressed then in terms of the wave ampli- 
tudes in the form 

Equations ( 6 )  have a simple physical meaning. In a cubical- 
ly nonlinear medium the terms containing g,,, in (2 )  give 
rise to dc components of the modulation of the refractive 
indices by sound and of the elastic moduli by the field. This 
leads to renormalization of the phase velocities or to rotation 
of the wave phases. For a mismatch 

the shift of the relative phase p is cancelled out and the inter- 
action is optimal. The equations for the moduli of the ampli- 
tudes in (4)  then acquire the simple form: 

At first, assuming the excitations to be delocalized, we 
investigate the simplest situation, when an electromagnetic 
pump wave of frequency w, and sound 
A,,, ( - W,T) = f,,, ( r ) ,  are applied to the boundary at 
(= - W ,  and sound A2(  - cc , r )  = 0 is excited in the 
course of the interaction. The crystal in this case contains an 
initializing sound pulse A,((,O) = A,,,((). 

Introducing the variable 
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i.e., a stationary solitary wave propagating at a velocity 
v  = 1 - 1/P. Here A, and A, have respectively the form of a 
step and of a solitary wave: 

which is connected with A,,, by the relations AI=@ (E-VT) P I ,  A,=P,, PI= [ l + P 2  ( E - V T ) ~ ] - ' " .  

Ai=ji cos (D, Az=f ,  sill O1 

we obtain from (7)  for cP the closed equation 

Equation ( 8) is easily solved if the sound damping is negligi- 
bly small ( r  = 0)  andf? = 0. The corresponding solutions 
for the initial wave amplitudes in ( 7 )  are 

where 

~ = { l +  [ c t g ( ( D o ( ~ - T ) ) -  j : ( ~ ' ) h ' ] ~ } - ' ~  , 

It is important that (9)  contains explicitly the envelope 
A,,,(&), which has not been specified beforehand, of the ini- 
tializer. This makes it possible to investigate the space-time 
evolution of the waves without confining oneself to the non- 
linearity level, i.e., under conditions such that energy ex- 
change between the field and the sound is intense. 

4. DYNAMICS OF LOCALIZED EXCITATIONS 

By way of illustration we consider in greater detail cer- 
tain cases that describe quite fully the essential features of 
this process (in the case of small fluctuations, the linear re- 
gime, i.e., for 

we have in (7) 

1. A,, , ( l )  = [a/(  1 + p212) 1 I". For a = P >  0 we ob- 
tain 

Note that this solution can also be obtained directly from 
(7)  for r = 0 ,  by putting A , = A , ( l - v r ) .  For 
0 < p  < 1 or 1 we get respectively v < 0 or v)O, i.e., the 
pulse moves, depending on p, in the positive or negative x 
direction. In the general case the character of the evolution is 
more complex and depends substantially on the relation 
between a and p. Figure la illustrates the case 
a < p ( a  = 1, p =  3 ) .  It can be seen that in the course oftime 
the sound pulse is appreciably amplified and strongly com- 
pressed. Its total energy 

increases and tends to the value n-. On the other hand, in the 
case a > P ( a  = 1 , o  = 0.8), (Fig. lb)  the initial pulse 
breaks up into two shorter pulses that move in opposite di- 
rections, and after a time r -4  they are well separated in 
space. These pulses are subsequently independently ampli- 
fied and compressed. 

2. A,,(&) = [a/ch(p&) ] ' I2 .  For a = f l  we obtain a so- 
lution in the form 

The position of the center of the pulse can be obtained from 
the condition sinh [P ( r  - &) z T I ,  from which it follows that 
the pulse propagates at a velocity v = 1 - 1/p(1 + 2) ' I2,  

and its amplitude increases a A, cc ( 1 + ?) 'I4. Since the en- 
ergy of such a pulse is fixed at W = T, the pulse will com- 
press in the course of time. Just as in the preceding case, for 
a > 0 the initializer breaks up into two or several pulses. 

3. Of great interest is head-on collision of these solitary 
waves. This occurs for an initial state equal, e.g., to the sum 
of the initializers considered above (in case 1, the pulse 
moves in the opposite direction at a = 0 < 1 ) . Figure 2 
shows the evolution of two pulses whose initial distribution 
is of the form 

forp, = 0.4, P, = 1. It can be seen that the evolution in time 
can be arbitrarily divided into three stages. In the first stage 
the pulses approach each other and their amplitudes change 
little. In the second stage the interaction sets in: the pulses, 

FIG. 1. Nonlinear evolution of initial acoustic pulse at 
a - a =  1 , p = 3 ; b - a =  l , B = 0 . 8 f o r ~ = 0 , 2 , 4  ,... . 
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FIG. 2. Collisions of head-on acoustic pulses for r = 0; 2.5; 5 ;  7.5; ... . 

while not overlapping, exchange energy, and during the in- 
teraction the distance between them is constant. In the last 
stage the pulses diverge, so that the opposing pulse is not 
noticeably changed, but the forward pulse is strongly com- 
pressed. The result of the collision of the pulses thus demon- 
strates their quasisoliton behavior and is reminiscent of cer- 
tain soliton-collision regimes. l6  

5. ALLOWANCE FOR ABSORPTION BY THE WAVES 

For long times T-  co account must be taken of the sec- 
ond absorption r#O. However, instead of solving Eq. (7)  
directly, it is convenient to obtain from (8 )  a relation that 
defines the evolution of the total energy of the acoustic wave 
in the form 

m 

From the instant when the input signalf, = 0 is turned off, 
the change of W is determined by the balance between the 
absorption of the sound and its amplification by the nonlin- 
ear interaction with the field. At f, = 1, which we assume 
henceforth to be satisfied, we have f, = 0 and if absorption is 
neglected ( T  = 0)  the solution of ( 10) takes the form 

As T - w  the energy W increases from 
n.rr to (n + 1 )n-, where n = 0,1,2, ... . In the case of an initial 
energy 

the pulse will be amplified until its energy reaches n-. This 
relation is similar in meaning to the area theorem for self- 
induced transparency.I6 Note that at T = 0 the right-hand 
side of Eq. ( 10) is non-negative, and consequently station- 
ary states with W = n?r are unstable. As T+ w allowance for 
sound absorption therefore becomes important. For r #O, 
the solution of Eq. ( 10) is not expressed in terms of elemen- 
tary functions, and it is best investigated qualitatively by 
graphical means. 

The stationary values of Ware determined by the inter- 
section of the straight line 2T W with the function sin2W 
(Fig. 3) .  The picture of the intersection depends in this case 
substantially on the value of T. 

For T> 1 there is only one stationary point W = 0; all 

FIG. 3. Solution of the equation sin2 w = 2r W for = 1, 0.36, 020.1, 
0.005. 

the perturbations in the medium are then damped. For 
smaller r, however, starting with a threshold value T,,, , two 
additional stationary points appear-one stable and the oth- 
er unstable. This corresponds to formation of a new inhomo- 
geneous state in the system-an undamped nonlinear pulse. 

The condition for the onset of such a state can be easily 
established in the case W 5  n-/2. The solution of (10) can 
then be written in the form 

where a, is a constant connected with the initial energy. If at 
7 = 0 the initializer had a sufficiently high energy: 
W, > W, ~ n - / 2  - J? - A, then as T -  w the system goes over 
into a state with energy W = W, = n-/2 - r + A, which 
does not depend on the details of the initial distribution. In 
particular, for a,eZrA < 1 we have 

and we see hence that the system is unstable for A2 > 0. The 
instability threshold corresponds to the equality A = 0, from 
which we get the threshold value 

It is easily seen that T,,, is the first bifurcation point of Eq. 
(10). 

Thus, when account is taken of sound absorption, an 
inhomogeneous state of the nonlinear medium we are study- 
ing sets in when two thresholds are exceeded (two types of 
supercriticality). The first determines, in the initial vari- 
ables, the minimum amplitude of the pump wave 

The second threshold (the switchover threshold) is connect- 
ed with the minimum energy of the initializing acoustic 
pulse and takes at r 5 I?,,, the form 

m 

This condition is certainly not met as U-0, so that the corre- 
sponding instability is nonlinear. 

When ( 13)  and ( 14) are satisfied, instability appears in 
the crystal and gives rise to a nonlinear pulse. Far enough 
above threshold, E,$ E,,, , depending on W,, more compli- 
cated states can set in with several solitary waves. Such states 
form nonstationary dissipative structures, since it is indeed 
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magnetic interaction. Collisions between these waves reveals 

FIG. 4. Nonlinear interaction of initial acoustic pulse with an external 
signal in a dissipative medium for T = 0,3,6, ... . 

the dissipation which stabilizes their energy. 
Besides the global characteristics, interest attaches also 

to the direct form of the inhomogeneous state that is formed 
in the medium. However, an analytic solution of Eq. (8)  is 
difficult in this case. Figure 4, obtained by numerical solu- 
tion of (8),  illustrates the nonlinear dynamics in a semi- 
bounded system with an external signal for initial and 
boundary conditions in the form 

A302(5) =0,1/[1+0.01 (E-10) '1, 

During the initial stage, the pulses are spatially separated at  
the chosen parameters, and the initial pulse moves towards 
the boundary. At T- 10, both pulses merge into a single 
pulse, which then propagates along the system, increasing 
and becoming strongly compressed, while its energy stabi- 
lizes at W = 0.76~. Since T(T,,, holds in this case, one soli- 
tary wave is formed in the medium. Similar states are formed 
also under multipulse initial conditions, when only one pulse 
"survives" the competition (the remaining pulses are 
damped). If the condition W,,% W,  and T < T,,, obtain, a 
decay into two or more solitary waves takes place, and each 
wave is amplified and strongly compressed. Computer cal- 
culations have shown that this behavior continues up to the 
limits of applicability of the present system of equations. 

6. CONCLUSION 

Thus, in crystals with nonlinear electrostriction, soliton 
envelope waves can be formed in parallel acoustoelectro- 

them to have quasisoliton properties. The pulses are formed, 
amplified, and compressed when two thresholds, connected 
with the pump-wave amplitude and with the energy of the 
initializing acoustic pulse, are exceeded. The amplification 
and compression of the signals can be observed in crystals of 
trigonal symmetry (lithium niobate on barium titanate for 
T< - 90 "C in the microwave band, when the anomalously 
large static values of the dielectric constant are still pre- 
served. "," 

In addition, this nonlinear system, owing to its solvabil- 
ity and simplicity, can serve as a convenient model in the 
theoretical study of the dynamics of solitary waves formed as 
a result of some arbitrary instability. 

' )  Note that at AR #O the correction to the solution for the relative phase 
is Ap=. A R ( A  : - A : ) and is of second order of smallness in the nonlin- 
ear regime. In strongly anisotropic materials the deviation of the phase 
from optimal can slow down the formation of solitary waves. 
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