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An investigation is made of the kinetics of diffusion-controlled reactions in crystals with defects 
such as dislocations and interfaces. Asymptotic relationships are derived for the decrease of the 
concentration of a reagent in the case of parallel and randomly oriented dislocations. The 
characteristics of interfaces in the cases when the active particles are distributed at random at 
defects are determined. The influence on the reaction kinetics of fluctuations in the defect density 
and the concentration ofactive particles is analyzed. 

INTRODUCTION 

Real crystals are characterized by a high concentration 
of paths for accelerated diffusion of crystal lattice defects 
such as dislocations, grain boundaries, boundaries between 
phases, microcracks, etc.'-3 Defects are usually linked to 
form characteristic networks along which the diffusion pro- 
cess is much faster than through the undeformed part of a 
crystal. Moreover, the interaction of the stress fields of de- 
fects with impurity particles results in the segregation of the 
latter at the defects. It is natural to expect the kinetics of 
diffusion-controlled reactions in crystals with defects to ex- 
hibit some characteristic features because of a reduction in 
the diffusion stage of the reaction when the reagent particles 
travel along accelerated diffusion paths and also when parti- 
cle segregation occurs at defects. 

According to a theory of diffusion-controlled reactions 
first developed by Smolu~howski,~ the experimentally ob- 
served rate constant k,, ( t )  of an irreversible reaction 

which occurs in a spatially homogeneous medium, is equal 
to the flux Qd ( t )  of the concentration of a reagent A reach- 
ing a reaction sphere of radius a = R, + R,, surrounding a 
particle B at rest, divided by the equilibrium concentration 
c: at infinity: 

where R ,  and R, are the radii of the particles A and B; D, 
and D, are the diffusion coefficients of these particles; 
D =  D, + D,; d is the dimensionality of space; 
SLd' = 2 ~ ~ ' ~ a ~ - l r - ' ( d / 2 )  is the surface area of a d- 
dimensional sphere of radius a; T ( x )  is the gamma function. 
The concentration d, (r, t)  is found from the diffusion equa- 
tion 

ac, ( r ,  t )  -- 
at - D ACA (r ,  t )  , 

where A is the d-dimensional Laplace operator. The bound- 
ary and initial conditions for this equation are 

cA (a ,  t )  =O, (4)  

C A  (r ,  0) =cn0. ( 6 )  

After a time t%a2/D the rateconstant k :,dl ( t ) ,  calculat- 
ed using the Smoluchowski theory, is given by the following 
expressions for d = 1, 2, and 3: 

k,':' ( t )  =4 ( D l n t )  '", (7 )  

k:' ( t )  =4nDAn (Dt laZ)  , (8 

kk:' ( t )  =4naD { l + a  (nDt)  -I"). (9)  

The ratek L,d'(t) reaches its steady-state value in the limit 
t- w only in the three-dimensional systems: 

It is shown in Refs. 5-1 1 that the solution of the Smolu- 
chowski equation describes only the intermediate asympto- 
tic form of the reaction, because in the limit t- w the kinet- 
ics is governed entirely by fluctuations of the concentration 
of the initial (i.e., at t = 0)  reagent distribution. 

In Refs. 6 ,  9, and 10, for the problem of A particles 
carrying a random walk on a lattice containing immobile B 
traps, was tackled and the following fluctuation dependence, 
asymptotically accurate for large values oft, was obtained: 

In ( c A  ( t )  /cAO) .c -tdl'd+Z). (11) 

The concentration asymptotically satisfies a relation of the 
form ( 1 1 ) because A particles survive in the limit t+  w only 
in sufficiently large fluctuation-generated voids free of traps. 

The kinetics of reactions such as annihilation at traps, 
occurring in subthreshold percolation lattice systems in 
which in the absence of a reaction the particles of a reagent A 
are localized in finite free-volume voids right from the begin- 
ning, was investigated in Ref. 11. In the case when the local- 
ization of a reagent is due to relatively ineffective traps (ob- 
stacles), a large number of such particles is annihilated in 
accordance with the law 

In cA ( t )  /cAo.c -tdl(d+l).  (12) 

The fluctuation asymptotes of Eqs. ( 11 ) and ( 12) de- 
scribe a slower--compared with the laws of formal kinetics 
(7  )-(9)-decrease of the reagent concentration. 

A classification of the diffusion regimes in crystals with 
defects was made in Ref. 12 as a function of the depth of 
penetration of particles into the interior, i.e., as a function of 
values of a parameter L = (D  5"' t)"', where DiV'  is the 

725 Sov. Phys. JETP 70 (4), April 1990 0038-5646/90/040725-10$03.00 @ 1990 American Institute of Physics 725 



bulk diffusion coefficient. The cases when L is larger, equal 
to, or shorter than the characteristic length I were consid- 
ered specifically in Ref. 12 (here, 1 is the average grain size in 
the case of a network of grain boundaries or the average 
distance between two points at which dislocations are 
pinned). In accordance with the terminology adopted in 
Ref. 13, if L > l  we have regime A (Harrison's classifica- 
tion), when the diffusion fields of the adjacent accelerated- 
diffusion paths overlap and the effective diffusion coefficient 
isI4 

where f is the relative number of the lattice sites belonging to 
the accelerated-diffusion paths and D :, is the accelerated- 
diffusion coefficient. A regime labeled B occurs for L<I ,  
when the diffusion along adjacent paths is independent. If 
the bulk diffusion is negligible compared with the diffusion 
along defects and the depth of penetration is high ( L B I ) ,  
then we have a regime labeled C when the concentration 
profile of the penetrating particles is the same as the profile 
established by bulk diffusion with the coefficient D :, instead 
of D LV'. 

An analysis of the diffusion in a medium with an ensem- 
ble of parallel dislocation tubes in the regime B was made in 
Refs. 15-18. Estimates of the effective diffusion coefficient 
were obtained there from the concentration profile of pene- 
trating particles and the absorption and desorption diffusion 
coefficients were determined for a system of this kind. 

In spite of the fact that diffusion in crystals with defects 
has been investigated theoretically on a number of occasions, 
a theory of diffusion-controlled reactions in such systems is 
not yet available. We shall show that substitution of the ef- 
fective diffusion coefficient into standard relationships of 
the type described by Eqs. (7)-(9) does not solve the prob- 
lem. 

We analyze the kinetics of the reaction ( 1 ) in crystals 
with defects in the form of dislocations and interfaces (for 
example, grain boundaries, boundaries between phases, 
etc.). We find the relationships describing the decrease of 
the concentration of a reagent A diffusing in the crystal ma- 
trix and reacting in accordance with Eq. ( 1 ) when in contact 
with active particles B, which are distributed at random at 
defects representing accelerated-diffusion paths. We also 
consider the diffusion stage of the reaction in the case of 
various diffusion regimes. 

In Sec. 1 we discuss the kinetics of the reaction ( 1 ) in a 
system with one dislocation at which there is a single particle 
of type B. Generalization to a system with one dislocation, 
but with randomly distributed B particles on this dislocation 
is given in Sec. 2; Sec. 3 is devoted to an analysis of the 
kinetics in the case of an ensemble parallel dislocations dis- 
tributed at random in a system, whereas Sec. 4 deals with an 
ensemble of dislocations parallel to one another and carrying 
B particles. An ensemble of randomly oriented dislocations 
is considered in Sec. 5 and an analysis is made of the effects 
associated with fluctuations of the dislocation density and 
the reagent concentrations; Sec. 6 deals with the kinetics in a 
crystal when a single B particle is at an interface, whereas 
Sec. 7 is concerned with the problem of the kinetics in the 
same system but with many active B particles. 

In most cases (Secs. 2-5 and 7) such an investigation is 
carried out using the concept of an effective medium devel- 

oped for diffusion-controlled reactions in Refs. 19 and 20, 
which makes it possible to obtain the solution of the many- 
particle problem on the basis of the initial solution G(r,  t )  of 
the one-particle diffusion problem. The solution of the La- 
place-transformed diffusion equation (3 )  can be represented 
by a linear combination 

N 

h 
1-1 

with 

where x 2  = s/D, and G ( x )  is the Green function of the one- 
particle problem, for example, the absorption at one sink or 
motion in a crystal containing one dislocation etc; R, is the 
radius of the vector of an ith B particle or a dislocation, 
ci ( x )  are the weighting coefficients found from the bound- 
ary conditions and N is the total number of B particles or 
dislocations in the system. To  first order in the small gas 
parameter a = nud< 1, equal to the fraction of the volume 
occupied by dislocations or active particles, the functions 
ci (x )  are equivalent to one another: 

where n is the dislocation density or the concentration of B 
particles and a is their characteristic size. The criterion for 
this approximation to be valid sometimes contains time, i.e., 
after a long time the criterion may be fail (Sec. 5 ) .  

In the case of a homogeneous distribution of disloca- 
tions or  B particles in the reaction space we find that averag- 
ing Eq. ( 14) with respect to r allows us to go from summa- 
tion over the index i to integration over the volume V of the 
svstem: 

where Z, (s) is the Laplace-transformed average concentra- 
tion of the reagent A in the system. 

1. REACTION IN A SYSTEM WITH ONE DISLOCATION AND A 
SINGLE BPARTICLE 

We consider the simplest case when the reaction occurs 
in a crystal with a single dislocation. We shall assume that 
such a dislocation is an infinite tube of radius R which con- 
tains one active particle B. The diffusion along this disloca- 
tion is much faster than the regular part of the crystal: 
D LV)/D Ld' = fg 1, where DLd) is the diffusion coefficient of 
A particles in this dislocation tube (in the case of real crys- 
tals we usually have f- lo-' - lo-'). In the absence of a 
reaction an  equilibrium distribution of the reagent A is estab- 
lished in the volume Vand at  a dislocation 9 characterized 
by homogeneous concentrations c,,, and cod = p, c,,,, where 
p, is the segregation coefficient of the A particles equal to 
the concentration of A at the boundary between the disloca- 
tion tube and the undeformed part of the crystal: 
pa  = (cd/cV) I,, , Usually p, 3 1. We consider the most 
typical case when all the B particles are on the dislocation 
(p, - cc ). Generalization of these results to thep, - 1 case 
presents no difficulties. In the system under consideration 
the parameters obey f g 1 andp, > 1, the transport of A to B 
occurs mainly along the dislocation, and we can assume that 
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FIG. 1 .  Dislocation D with a particle B. 

the height h of a sink B in the form of a cylinder of radius R is 
zero (Fig. 1 ) . Concentration of the reagent A, given by the 
expressions pV (r, x, t )  and p, ( r ,  x, t )  in the regions V and 
B, is described by the relevant diffusion equations when the 
reaction ( 1 ) begins. For convenience, we shall calculate the 
quantities 

' After the Laplace transformation the diffusion equa- 
tions for c ,  and c,  become 

D:" {A& (r ,  X ,  s )  -I- d ' h ( r ~  S )  } = s~~ (1, I ,  s ) ,  r P R ,  
ax2 

where 

is the radially symmetric Laplace operator. The boundary 
conditions are 

It is shown in Ref. 15 that for c< 1 the average concen- 
tration depends weakly on r  and we have - 
C ,  (r, X, S) =:Cd (R, x, S) . Averaging Eq. ( 17) with respect to 
r between 0 and R, we obtain 

where OD 

is the average concentration of the A particles in the disloca- 
tion tube. In view of the symmetry of the system with respect 
to the x = 0 plane, it is sufficient to solve the problem for the' 
half-space x > 0. If we Fourier-transform Eqs. ( 16) and 
(23) with the kernel cos k ,  and bear in mind that the flux 

across the x = 0 plane vanishes, we find that 
(Z,/dx) 1, =, = 0, i.e., we obtain 

(24) 
- 

D:" {Ar; (r ,  k ,  s )  -k2%(r, k, s ) ) = &  (r ,  k, s ) ,  (25) 

where Z(k, s )  is the Fourier transform of the function 
T(x, s). It follows from Eqs. (24) and (25) that 

where x2 = k + s/D 2V) ,  M = const, and K,, (x)  is the modi- 
fied Bessel of the second kind. The Laplace-transformed 
boundary condition ( 19) becomes 

where S," cos kx dx = 7TS(k)/2 and S(k)  is the Dirac delta 
function. It follows from the condition (28) that 

When the initial condition is selected in a special man- 
ner, so that p, c,, = c,, , the first term in the numerator of 
Eq. (29) responsible for the process of relaxation of the dis- 
tribution of the A particles between the undeformed bulk 
and the dislocation tuke vanishes. The inverse Fourier trans- 
formation applied to Z, and ?,, yields 

m 

where 

It follows from the boundary condition (20) that 

The reaction rate constant k,, ( t )  is governed by the 
fluxes of the concentration of the reagent A to a particle B 
along a dislocation from the positive and negative directions 
of x, anh also by the flux of A to B directly from the regular 
(undisturbed) part Vof the investigated crystal. The latter 
flux vanishes in the limit f 9 1, p, & 1 and h -0. In this ap- 
proximation we can find kc,  (s) from Eq. (2): 
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For short times t < R 2 / D  av) the inverse Laplace trans- 
formation of Eq. (33) gives the following result which is of 
the same type as the one-dimensional solution of the Smolu- 
chowski equation (7): 

Consequently, in the limit t-0 the reaction involves only 
those A particles present in the dislocation tube at t = 0 and 
the diffusion stage ofthe reaction occurs in the C regime, i.e., 
mainly along the dislocation. We can easily show that in the 
case when a B particle diffuses along a dislocation with the 
diffusion coefficient D  Ld', the constant k,, ( t )  is given by 
Eq. (34) provided we replace D  y' with Dad' + D  Ld'. 

After a long time t% R ' / D  a"' the constant k,, ( t )  
reaches its steady-state value 

eff - k,,(t) I ,,,=4nRDA -k, ( D i f f  / D : ~ ) )  (35) 

which has the form of the three-dimensional Smoluchowski 
constant of Eq. ( 10) for a spherical trap of radius R and with 
the effective diffusion coefficient for the A particles given by 

The solution (35) can be represented also in the form 

where 

which is identical with the solution of the problem of the 
absorption in a homogeneous medium containing an ellip- 
soidal sink elongated along a dislocation and characterized 
by the semiaxes b and c (Ref. 21 ). The corresponding steric 
factor F, is given by 

In our problem the parameters of this effective ellipsoid of 
revolution are 

Therefore, when the transport of a reagent A to a particle B 
occurs in the diffusion regime A ( t- co ), the reaction kinet- 
ics obeys the familiar law ( 10) with the effective diffusion 
coefficient Dj;R which differs considerably from the value 
established earlier and given by Eq. ( 13). It readily follows 
from Eqs. (35) and (36) that if < / p ,  4 1, we have 
k,, ( 2 )  I,-, B k ,  i.e., the presence of a dislocation in the reg- 
ular structure of a crystal may considerably increase the dif- 
fusion-controlled reaction rate constant. 

If we consider the limit 5- 1 and p, - 1, we find the 
expected result k,, ( 2 )  I,+, -k , ,  as in the case of a system 
without dislocations. 

2. REACTION IN A CRYSTAL WITH ONE DISLOCATION 
CHARACTERIZED BY A RANDOM DISTRIBUTION OF B 
PARTICLES 

We consider a system with a single dislocation in which 
there are Nparticles of type B distributed at random at posi- 
tion xi ( i  = 1, ... , N) and characterized by an average linear 
concentration c i  (Fig. 2 ) .  The solution Td (x, s) of the 
many-particle problem can be represented, in accordance 
with the concept of an effective medium described in the 
Introduction, by a linear combination of the solutions of the 
type given by Eq. (3  1 ) for dislocations with one B particle: 

-pA Z c i  % I . -!- j f ( ~ ,  k, S )  cos k (x-x,) dk. 
i = i  ==xi n , 

When the concentration of the B particles distributed on a 
dislocation is low, then in the first approximation involving a 
small parameter a = c: R < 1 we find that the functions 
c, and (&, /dx)  1. = ,, are the same for all the particles 

The substitution of the solution (37) into the boundary con- 
dition (20) and a change from summation over i to integra- 
tion with respect to x between the limits - w < x < cc gives 
the following expression for the experimentally observed re- 
action rate constant k,, (s) : 

For short times t<min{R ' / D  a''), R 2 / ( D  ad) a*)) ,  the 
constant k,, ( t )  decreases in accordance with the one- 
dimensional law 

which, to within a quantity on the order of the small gas 
parameter a, is identical over this time interval with Eq. 
(34), i.e., it corresponds to the diffusion regime C. Hence, 
the absorption of the reagent A by each of the B particles is an 
independent process. 

The kinetics of the next stage of the reaction is governed 
by the value ofthe gas parameter a. At times t% R * / D  a"' Eq. 
(38) for the reaction rate constant k,, (s)  is given by 

If the parameter a is sufficiently large, 

then the value of k,, (t)per unit dislocation length decreases 
in accordance with the law 

k,, ( t )  = 4 n ~ F '  lln (D:' t / R 2 ) .  (41 
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FIG. 2. Dislocation D with B particles. 

This dependence is exactly the same as the two-dimensional 
solution of the Smoluchowski equation ( 8 )  in the problem of 
absorption of a reagent by an ideal sink of radius R .  This 
regime is established because by the time t - R Z /  
( D  Ld'a2) & R / D  L V )  the particles of the reagent B initially 
present on a dislocation are lost and the A particles reaching 
the dislocation at times t$- R ' / D  2") are annihilated at the B 
particles with a probability close to unity (because <& 1 ). In 
this regime the reaction is controlled by the transport of the 
reagent A to a dislocation tube from the undeformed bulk of 
the crystal. 

For a sufficiently small gas parameter a <a, a steady- 
state dependence described by Eq. ( 3 4 )  is established at 
times t$-R ' / D  L V )  and after a very long time 

t%, o: ( H ~ I D : ~ ' )  exp (2aila) 

it changes to the relationship (41 ). Since the concentration 
B is low, the particles A penetrating a dislocation can leave it 
so that the process in which the dislocation acts as an ideal 
sink [see Eq. ( 4 1 ) ]  competes with the regime when the A 
particles are lost independently at single B particles [see Eq. 
( 3 4 )  1. The change in the dominant regime after an exponen- 
tially long time t - ~ ,  is due to logarithmic factors and does 
not have clear limits on the time scale. 

It therefore follows that in the course of the transforma- 
tion the diffusion stage of the reaction follows consecutively 
in the regimes C and A (when the average distance between 
the B particles is I/& ) and is characterized by a change of 
the asymptotic relationships governed by a change in the 
effective dimensionality of the system in accordance with 
8" = 1-3-2ifaga,,butinaccordancewithdeR= 1-2 
for higher values of a. The observed reaction rate constant 
k,, ( t )  cannot be found by simple substitution of the effec- 
tive diffusion coefficient from Eq. ( 16) into Eq. ( 10) .  

3. REACTION IN A SYSTEM WITH PARALLEL DISLOCATIONS 

In many cases we can expect dislocations in a crystal to 
have a preferential orientation along crystallographic 
 axe^.^.'^ Let us consider an ensemble of M parallel disloca- 
tions with an average density aand assume that each of them 
contains active B particles (Fig. 3 ) .  

The concentration Pd ( x ,  s )  inside a selected dislocation 
9,  can be represented, in accordance with the concept of an 
effective medium, by a linear combination of the solutions 
(37)  for isolated dislocations 

where N, is the number of the B particles at the jth disloca- 
tion; R, - R>R; j =  1 ,  ... , M. The quantities cii and 
(&?,/ax) 1, = ,!, to first order in the small parameters a g 1 
and uR < 1 ,  can be regarded as having the same values for 
all cases defined by i( j(M, 1 ( i ( N j .  If we modify Eq. ( 4 2 )  
so that integration is carried out in the plane 0<r  < co in the 
range 0 < p(27.r and if we use the boundary condition ( 2 0 ) ,  
we obtain the following expression for z,, ( s ) :  

where = R ( s / D  LV' )  ' I 2 .  Compared with Eq. ( 3 8 )  for one 
dislocation, we find that the denominator of Eq. ( 4 3 )  now 
has an additional term because the diffusion flux is redistri- 
buted between dislocations. 

For short times defined by tgmin{R' /DLv) ,  R 2 /  
( D  y )  a 2 ) )  the quantity k,, ( t )  decreases in accordance 
with the one-dimensional law ( 3 9 )  for B-type diffusion, ex- 
actly as in Sec. 2. 

For 

the observed rate constant k,, ( t )  is described by Eqs. ( 3 5 )  
and (41 ) under the conditions discussed in Sec. 2. Within 
the range of times defined above, we find that in the vicinity 
of each of the dislocations the reaction occurs in the diffu- 
sion regime A with respect to the average distance l / c i  
between the B particles and at the same time it occurs inde- 
pendently at each dislocation, i.e., in the B regime when the 
average distance between the dislocations is (TO) - ' I 2 .  

In the next stage of the reaction for t )  r2 in the diffusion 
regime A the competition between dislocations has the 

FIG. 3. Ensemble of parallel dislocations with B particles. 
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dominant influence on the distribution of the reagent flux A.  
After the inverse Laplace transformation, we find Eq. ( 4 3 )  
becomes 

where 

We can easily see that for t&r2,  the average concentra- 
tion in the system (c,, ( t ) )  decreases in accordance with the 
law 

( c y  ( t )  )=coy e x p  [ - u ( t )  crt] . ( 4 5 )  

Consequently, the true value is k,, ( t )  = u ( t ) R  and it is 
identical with the corresponding value for a single disloca- 
tion. 

If the dislocation density is sufficiently low, 

u< (4nR2)  -' exp  ( -2a i la)  =oil 

then in the interval r2 < t  < 7 ,  the average concentration 
(c ,  ( t )  ) is described by an exponential dependence of the 
Smochulowski solution form for d = 3  

rff eff 
ln ((cV ( t )  )lcOv) m - k ~  n~ t ,  ( 4 6 )  

where k Lff is given by Eq. ( 3 5 )  and nkff = c ~ c i  is the effective 
concentration of the B particles in the system. 

At times t % r ,  the reaction is limited by the diffusion of 
the A particles to dislocation tubes and is described by the 
dependence 

In ( ( c ,  ( t )  >/c,,)  sr:-4n03kv) tlln ( ~ : ~ ' t l ~ ~ ) .  ( 4 7 )  

The fractions of the reagent A annihilated in accordance 
with the laws ( 4 6 )  and ( 4 7 )  are A ,  and A,. They are de- 
scribed by 

A higher proportion of the reagent A is lost in accordance 
with the law ( 4 6 ) .  

If the dislocation density is relatively high (cTsa,), 
then at times t s r ,  the dependence ( 4 6 )  is not obtained and 
the bulk of the reagent disappears in accordance with the law 
( 4 7 ) .  

As in Sec. 2, where we considered a system with one 
dislocation, a crystal with an ensemble of parallel disloca- 
tions exhibits a change in the effective dimensionality of the 
reaction system: deff = 1 - 3  - 2.  This model describes more 
satisfactorily the kinetics of crystals than the treatments giv- 
en in Secs. 1 and 2, because the dislocation density is not 
usually low. Calculations predict the decrease in the average 
concentration in the system ( c ,  ( t ) )  in accordance with the 
laws ( 4 6 )  and ( 4 7 ) ,  which can easily be observed experi- 
mentally, since in the case D  y' - 10IX cm2/s. R  - l o F X  cm, 
and cr- 10"'-10'2 cmP2, the characteristic time when this 
change occurs is fairly long and represents a value from sev- 
eral minutes to tens of hours. 

4. REACTION IN A SYSTEM WITH AN ENSEMBLE OF 
PARALLEL DISLOCATIONS IN ONE PLANE ("DISLOCATION 
WALL") 

A group of dislocations can pile up in front of some 
obstacles under the action of stresses in a crystal; for exam- 
ple, this can happen in front of grain boundaries preventing 
the motion of the head of the dislocation. As a rule, disloca- 
tions become aligned head-t0-tai1.~ We shall consider the 
kinetics of the reaction ( 1 ) when B particles are distributed 
in such a dislocation ensemble. As in Sec. 3, the concentra- 
tion of these particles Z d  ( x ,  s )  inside a given dislocation 22, 
is given by Eq. ( 4 2 )  The observed rate constant of the reac- 
tion it,, (s), calculated by the effective medium method, is 
then 

where p  is the linear dislocation density in the ensemble 
( p R <  I ) ,  0 = R ( S / D : " ' ) ' ' ~ ,  and 

During the early stage of the reaction at times 
t  <min{R ' / D  LV' ,  R  2 / ( D  Ld)a2) )  the inverse Laplace trans- 
formation of Eq. ( 4 8 )  gives the one-dimensional law ( 3 9 )  
(see Secs. 2  and 3 ) .  

At times t% R  , /D  L V )  the kinetics is governed by the 
relationship between the small parameters a and pR. When 
the first of these small parameters obeys a <a ,  and the dislo- 
cation density is sufficiently high that 

we find that in the time intervals defined by 

the constant k,, ( t )  is independent of time and is given by 
Eq. ( 3 5 ) .  For t% r ,  the reaction is controlled by the trans- 
port of the reagent A to a dislocation wall. The observed 
constant k,, ( t )  calculated per unit area for the dislocation 
ensemble is 

The effective dimensionality of the reaction system again 
becomes unity, as in the t -  oo case when k,, ( t )  is described 
by ( 3 4 ) ,  except that now the diffusion coefficient Dav' is 
smaller than D  jp'. 

If the dislocation density is low ( p  < p ,  ), then for R '/ 
Div'  < t < r ,  the rate constant k,, ( t )  is given by Eq. ( 3 5 ) ,  
whereas at times 7 ,  < t< ( p 2 D  Lv') - '  1dpR an intermediate 
asymptote of Eq. (41 ) is established which changes for times 
t s r ,  to the law ( 4 9 ) .  If the gas parameter is relatively high 
( a ,  <a< 1 ), the dependence ( 3 5 )  is not obtained and the 
kinetics occurs in accordance with the laws (41 ) and ( 4 9 )  at 
times R  2 / D  jqv' < t < r 3  and t s  r,, respectively. 

We conclude this section by noting that in the course of 
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the reaction the effective dimensionality of the system 
changes nontrivial: 

I 3 ;  a<al, p>p1 
deff=l--t 3-2; a<al, p e p l  - + I .  

2; a,<a<l I 
Therefore, after a long time a "dislocation wall" can absorb 
A particles in the same way as a perfectly absorbing plane. 

5. REACTION IN A SYSTEM WITH RANDOMLY ORIENTED 
DISLOCATIONS SUBJECTTO FLUCTUATIONS OF THE 
CONCENTRATION OF BPARTICLES AND OF THE 
DISLOCATION DENSITY 

We next consider the kinetics of the reaction ( 1 ) in a 
crystal containing M equiprobably oriented dislocations 
(i.e., we assume that a unit area of an arbitrary section of the 
system is crossed by udislocations). As in Sec. 4, the concen- 
tration c, ( x ,  s) inside a selected dislocation is a superposi- 
tion of the solutions of the form given by Eq. (42) for single 
dislocations carrying B particles, where xq are the coordi- 
nates of these B particles for the jth dislocation which is 
directed along a vector 1, and R, is the distance from the 
origin of the coordinate system to the jth dislocation (Fig. 
4 ) .  We now sum the contributions made to Ed (0, s) due to 
ensembles of quasiparallel dislocations, i.e., of dislocations 
oriented along angles 8 and q, within the intervals [8, 
0 + dB] and [p, q, + dp], where 8 and q, are the angles 
which vary from 0 to 7~/2 in a spherical coordinate system 
linked to a specific dislocation 9,. Going over from summa- 
tion to integration with a unit weight, because different di- 
rections of dislocations are equally probable, we find that in 
the case of small parameters obeying a 4 1 and a, = UR (< 1 
the average concentration (c, ( t )  ) of the particles in the sys- 
tem decreases in accordance with the law given by Eq. (44),  
i.e., it decreases in exactly the same manner as in the case of 
an ensemble of parallel dislocations. 

In the case of real crystals the dislocation density and 
the concentration of the impurity atoms are distributed ho- 
mogeneously only on a macroscopic scale. It is of practical 
interest to analyze the kinetics allowing for fluctuations of 
the dislocation density and of the concentration of the active 

FIG. 4. Ensemble of randomly oriented dislocations with B particles. 
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B particles, when the latter are also present in the regular 
part of a crystal ( p ,  = ci/n-R 'nLv' # CO, where n r '  is the 
concentration of the B particles in the regular part of volume 
V) . The concept of the effective medium yields the following 
dependence of the average particle concentration: 

where the coefficient in front of the expression enclosed in 
braces is equal to the volume of the reaction tube around the 
path of a particle A which lies in the regular part of the crys- 
tal and is traversed in an average time ( 1 - a,,)t. 

Fluctuation effects appear also in the limit t- CC, when 
the reaction kinetics is governed by those A particles which 
are localized in large fluctuation voids free of the B particles 
and whose outer boundary is not crossed by dislocations. 
The solution of the diffusion equation (3 )  in a spherical void 
fl subject on its surface Z to the boundary condition 

and subject to the initial condition 

yields the following dependence, which applies to the aver- 
age concentration (c,, ( t )  ) inside the cavity when the condi- 
tion DL"' t )  1 is obeyed: 

In& ( t )  ) = -(+) -). Dlv),, 
cov 

where I is the radius of the void. In this regime the reaction is 
controlled by the diffusion ofA toward the internal bound- 
ary Z. We average (c,, ( t ) )  over all the voids using the 
expression 

<cV(t) )=J ( ~ a ( t )  )pr,(Vr,, S a ) d ~  
V 

subject to the weighting function 

equal to the probability for of a void of volume V,, with a 
surface area S,, to form free of B particles and uncrossed by 
dislocations. Using the steepest descent method, we find that 
the radius of the optimal void I ( t )  is described by the follow- 
ing equation: 2a. n ~ y )  t 

I+-y=- 

where y = a/ l ( t )  and ar' = nr' a3. 
If we assume that the dislocation density is sufficiently 

low to satisfy the inequality a,< y-'akv', we find that Eq. 
(56) yields I ( t )  a t  I", which gives rise to a fluctuation de- 
pendence ( 1 1 ), the establishment of which is governed by 
the inhomogeneity of the B particle concentration. The re- 
gime ( 1 1 ) alters the relationship (50) over times 

aZ ' 
D y j  ( a r ) ) a , z  

where 
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If the dislocation density is high i.e., if y- 'a;'' <a,< 1 ,  
there is an intermediate asymptotic of ( c , ( t ) )  which is 
characterized by I ( t )  -t ' I 4  and by 

In(<cv ( t )  ) lcov)  a ( O D ~ ~ '  t)'". ( 5 7 )  

The dependence (57) replaces the regime described by Eq. 
( 5 0 )  for 

where ,-., 

Since l ( t )  increases over a time satisfying 

the quantity ( 2 a , / m F ' )  y in Eq. ( 5 6 )  associated with fluc- 
tuations of the dislocation density becomes less than unity. 
The intermediate asymptotic form of Eq. ( 5 7 )  is then re- 
placed by the dependence described by Eq. ( 1 1 ) .  The 
changes of the time intervals T,, and 7, are then 

It therefore follows that when the dislocation density is 
high compared with the concentration of the B particles, i.e., 
for y-'a;"' <a, < I ,  the law ( 5 7 )  indicates that aconsider- 
able fraction of the reagent A is annihilated; this is governed 
by the survival of A in dislocation-free fluctuation voids. At 
times t$r .  the number of voids free of the B particles be- 
comes larger than the number of voids which are not inter- 
sected by dislocations, so that the fluctuation regime 
changes. The laws ( 1 1 ) and ( 5 7 )  predict a slower reaction in 
the limit t -  GC than that which follows from the Smolu- 
chowski theory. 

6. REACTION IN A POLYCRYSTALLINE SAMPLE WITH A 
PARTICLE BAT AN INTERFACE 

Diffusion along interfaces in a polycrystalline sample is, 
like that along dislocations, much faster than in the regular 
lattice,'." so that in the case when the B particles are located 
at such interfaces the diffusion stage of the reaction is much 

FIG. 5 .  Interface Fwith a localized B particle. 

shorter than the corresponding stage of the reaction in the 
undeformed crystal. 

We first consider the simplest model in a single cylindri- 
cal particle B of radius R and of height L is located on an 
infinite plane boundary F of thickness L (Fig. 5 ) .  The parti- 
cles of a reagent A diffuse along the regions Fand Vwith the 
diffusion coefficients D  in and D iV). The corresponding 
concentrations of these particles Zf ( r ,  x,  s )  and 7 ,  ( r ,  x,s)  
obey the diffusion equation ( 16) subject to the boundary 
conditions 

We apply the Fourier transformation to the diffusion 
equation for Z ,  ( r ,  x,  s )  with a kernel cos kx and we shall 
average the equation for c f  ( r ,  x,  s )  over x  in the interval 
[ - L, 0 ]  with a unit weight: 

We now subject Eqs. ( 6 5 )  and ( 6 6 )  to the Hankel transfor- 
mation 

rn 

where J, ( x )  is a Bessel function of zeroth order. After the 
transformations we obtain 

2, ( a ,  k ,  s )  = - - 

where x = D  $"'/D L f )  < 1. The inverse Fourier transforma- 
tion applied to Eq. ( 6 7 )  gives 

The boundary condition of Eq. ( 5 9 )  subject to the additional 
conditionp, c,, = cof leads to 
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where 
'I. 

r(a,s)={pA(a~++)++(az++) A . 
Substituting the derivative (b'cv/ax) 1, =, from Eq. (70) in 
the boundary condition (61 ), we obtain 

m 

aE, - I = ?[ l+pAR a'ty (a, s )  lo ( a ~ )  1, ( a ~ )  dn] / 
dr  o 

m 

PAR aty (a,  s )  12 (aR) h. 
0 

The reaction rate constant k,, ( f ) is equal to the sum of the 
fluxes of the reagent A to B arriving from the interface and 
from the regular lattice, divided by A the concentration at 
infinity, c,,: k,, ( t )  = k:{'(t) + k:;'(t). The quantity 
2 :f (s) deduced from Eq. ( 2 )  is 

21,' ( x )  ax 
X( x2+g:+z (x8+gv2)' )-I} 

where pf = R (S/D in) 'I2, P, = R (s/ D:~ ' )"~,  and 
z = XR (p, L )  - ' 4 1. At sufficiently short times R  2/ 

D if' g t g R  '/(zD 2')) the inverse Laplace transformation 
applied to Eq. (72) gives the following time dependence 
k:$ ( t ) :  

which corresponds to a solution of the type given by the two- 
dimensional solution of the Smoluchowski equation (8).  

For r ) R  2/zL iV), the constant k :,f'(t) is given by 

k::' ( t )  I t+m = 4nR0kQ~0, (74) 

where A, = + ~ - ' l n - ~ z - ' %  1, i.e., the quantity kL,f' ( t )  in 
the limit t+ UJ reaches a steady-state regime described by 
Eq. (74) of the same type as the three-dimensional solution 
of the Smoluchowski equation ( 10) for a spherical particle B 
of radius R  and with the effective diffusion coefficient 
DiV' A,. 

In the limiting casep, - 1, X -  1, we find A,- 1, and the 
constant k g' ( t )  of Eq. (74) is identical with the solution for 
a regular crystal free of defects. 

We now consider the constant k i r ' ( t ) .  The flux of par- 
ticlesA to B from the region Vwhen the interface represents 

an impermeable surface at r ) R  and an ideal sink at 0<r  < R  
is proportional to D 5"' R .  This is easily demonstrated in the 

A ,andp, = 1. When case discussed in Sec. 1 for D iv' = D 
the boundary conditions are described by Eqs. (58) and 
( 5 9 ) ,  this flux is even less because of penetration of the A 
particles into the region F so that under these conditions we 
have k Lr' g k :{). Annihilation of the reagent A occurs main- 
ly on a side surface of B, i.e., within the interface. The posi- 
tioning of the active B particles at such defects accelerates 
greatly the reaction. 

We can show that after a long time a system in which 
the B traps are distributed at random on a plane interface 
absorbs in the same way as an ideally absorbing plane, by 
analogy with the system investigated earlier2' and consid- 
ered also in Sec. 4 above. 

CONCLUSIONS 

We have analyzed the kinetics of a reaction of the 
A + B - B  type in crystals in the presence of accelerated- 
diffusion paths in the form of dislocations and interfaces. 
When active B particles are distributed in an ensemble of 
parallel dislocations, the observed reaction rate constant 
k,, ( t )  decreases for short times in accordance with the one- 
dimensional law (34), which is determined by the flux of the 
A particles to B when the latter are located at dislocations at 
t = 0. During the subsequent stages of this reaction we can 
expect the A particles arriving at the dislocation from the 
regular bulk of the crystal to participate also. If the linear 
concentration of B at dislocations is sufficiently low, then 
k,, ( t )  assumes a steady-state value given by Eq. (35), 
which is considerably higher than the corresponding Smolu- 
chowski solution for d = 3: k z )  k, . This dependence then 
changes to that described by Eq. (47), when the process is 
controlled by the transport ofA to dislocation tubes. At high 
values of a the steady-state relationship of Eq. (35) does not 
apply and a considerable fraction of the reagent A is annihi- 
lated in accordance with the law (47). 

When the B particles are on a wall of parallel disloca- 
tions, the kinetics is characterized consecutively by (34), 
(46), and (47). In the limit t+ a the reaction is limited by 
the diffusion of the A particles to a dislocation wall and the 
rate constant k,, ( t )  is described by the one-dimensional 
dependence (49). 

The consecutive changes in the kinetics in accordance 
with the sequences d =  1-3-2 and d =  1-3-2+1 are 
due to changes in the effective dimensionality of the system. 
The physical reasons for these changes are analyzed above. 

We also considered fluctuation effects associated with 
an inhomogeneous distribution of the dislocation orienta- 
tion. If the dislocation density is sufficiently high, a consid- 
erable fraction of the reagent A is annihilated in accordance 
with the fluctuation law (57). 

We also considered the kinetics of a system in which a B 
particle is located at an interface. At early times the observed 
rate constant for a cylindrical B particle is given by Eq. (73) 
*hen the flux of a reagent A to a particle B consists of A 
particles present initially at the interface. In the limit t- UJ 

the constant k,, ( t )  is independent of time and is greater by a 
factor than the Smoluchowski rate constant of Eq. (10) 
which applies to a homogeneous medium free of defects. 

It therefore follows that the presence of active B parti- 
cles along accelerated-diffusion paths can reduce greatly the 
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diffusion stage of such a diffusion-controlled reaction and 
can alter greatly the kinetic relationships. 

The authors are grateful to A.A. Ovchinnikov for his 
constant interest, to V. N. Likhachev and G. S. Oshanin for 
valuable discussions, and to I. A. Lubashevskii for pointing 
out the existence of relationships of the form ( 16) and (50). 
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