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We have solved the system of Bloch equations with time-dependent coefficients analytically by 
using a group-theoretic approach based on dynamic SO(3)  symmetry. This method allows us to 
calculate in explicit form the evolution matrix for the Bloch vector when the relaxation rates of 
the components of this vector are equal, i.e., y,  = y,. For the case where these rates are different, 
we present a general formalism in which this matrix is used to calculate the Bloch vector 
components to any order in the small parameter ( y ,  - y,) t. We find conditions which define a 
class of amplitude- and frequency-modulated functions for which the solutions are expressible in 
terms of Legendre functions. In  particular, these conditions are identified for envelopes in the 
form of hyperbolic secants, Lorentz functions, and Gaussians. For amplitude modulations - sech(t /T) and frequency modulations - tanh(t  /T) ,  the parameters which determine the 
evolution matrix are given in terms of elementary functions. We discuss the possibility of applying 
our approach and the results we have obtained to the theory of the interaction of radiation with 
matter and thereby solving problems with the dynamic symmetry groups SO (3 )  and SU ( 1 , l ) .  

1. INTRODUCTION polychromatic excitation consisting of a set of monochro- 
matic components with equal amplitudes and identical dif- 

The equations introduced by F' B1och' describe the 
ferences between frequencies of neighboring components, 

interaction of classical radiation with two-level quantum 
which corresponds under certain assumptions to a mono- 

systems are widely used in quantum electronics and optics as 
chromatic field with a periodic amplitude. In Ref. 6 a solu- 

well as in the physics of magnetic resonance. This system of 
tion was obtained for a bichromatic exciting field in the form 

equations has a rather simple form in vector notation: 
of a series in harmonics of the frequency difference of the 

where the relaxation matrix and the matrix of coefficients in 
a rotating coordinate system acquire the following form in 
the "rotating-wave" approximation: 

where the vector f usually has a single nonzero component 
proportional to the population difference under thermal 
equilibrium conditions. In the case where the exciting field is 
monochromatic (a = 0 )  and has a constant frequency (A 
denotes the detuning from resonance) and amplitudeg, ana- 
lytic solutions of the Bloch equations were obtained by Tor- 
rey' by using Laplace transforms. For constant detuning and 
a monochromatic field with variable amplitude, analytic so- 
lutions are known for such special cases as the Rabi prob- 
lem' (A = 0, y,,, = 0, and B is an arbitrary function of 
time), the problem of adiabatic passage (At < y,', 0-0 / 
At, where At is the pulse length), the McCall-Hahn pulse 
[y,,, = 0, 8-sech( t /T)  (Ref. 4) and A = 0, y,,, #O, 
0-sech(t /T) (Ref. 5 )  ] and certain other cases. 

For the case of a monochromatic exciting field whose 
frequency or amplitude vary periodically, the Bloch equa- 
tions become a system of equations with periodic coeffi- 
cients, which can be solved by the Floquet-Lyapunov meth- 
od. However, this method is also applicable to the case of a 

components, whose amplitudes were expressed in terms of 
continued fractions. For weak excitation fields we can also 
use the field as a small parameter to expand in an asymptotic 
series.'-" However, when the amplitude or frequency (or 
both of these together) of a strong monochromatic field vary 
aperiodically, or when the polychromatic excitation cannot 
be reduced to a monochromatic field with periodic ampli- 
tude, the methods listed above are inapplicable. Note that 
the solution of the homogeneous part of the system ( 1 ) with 
variable coefficients can sometimes be written formally as an 
exponential matrix: 

1 

However, for this we require that the very strong condition 

be fulfilled (the so-called Lappo-Danilevskii criterion; see 
Ref. 10).  

Recently, one of the authors of the present paper used a 
group-theoretic approach based on identifying the dynamic 
symmetry group and a parametrization corresponding to it 
to solve the Bloch equations with time-dependent coeffi- 
cients (see Ref. 11 ) .  Analytic solutions were found f o r 2  
special class of time dependences of the coefficient matrix A 
when relaxation is neglected. In this paper we will develop a 
general formalism to solve the Bloch equations ( 1 ) with co- 
efficients which depend on time in an arbitrary fashion and 
including relaxation (Sec. 2 ) .  The formalism is based on the 
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finding the evolution matrix of the homogeneous part of sys- 
tem ( 1)  in explicit form. In Sec. 3 we use the dynamic sym- 
metry group SO(3)  to find conditions under which the 
Bloch equations have analytic solutions in terms of associat- 
ed Legendre functions, and identify a whole class of ampli- 
tude- and frequency-mgdulated functions which satisfy 
these conditions. In Sec. 4 we find amplitude-frequency 
pairs for envelope fields with the following forms: the hyper- 
bolic secant, the Lorentz function, and the Gaussian, and 
calculate in explicit form the parameters of the evolution for 
an amplitude modulation -sech ( t / T )  and a frequency 
modulation of the form -tanh(t / T ) .  In Sec. 5 we calculate 
the contribution of relaxation to the evolution matrix of the 
Bloch vector to first order in the quantity ( y ,  - y,)t. 

2. GENERAL FORMALISM 

The method used to obtain the solution to the inhomo- 
geneous system of Bloch equations ( 1 ) is well-known: it in- 
volves the evolution matrix of the matrizant U,,, of the 
homogeneous system (see, e.g., Ref. 12): 

The matrix ( 7 )  can be written in the form of the following 
sum: 

where the symmetric and antisymmetric matrices have the 
form 

Substituting Eqs. ( 11 ) and ( 12) into Eq. ( lo), we obtain the 
following system of differential equations for the terms of 
the series ( 1 1 ) 

h 

where the matrix U , , ,  satisfies the evolution equation d ( 1 ) -  
- x - A - ~ - I ) X ! ~ ~ + X , , ,  x:,:: ( t=o )  =o, 

d dt 
- q,o"7 (-%+A) Oh<>, , O,,,,(t=O) =I,  ( 3 )  . . . dt 
h 

and I is the 3 X 3 unit matrix. In order to solve the matrix 
d (n)- -xknl  - ( ~ - n t - ~ i ) x : Z !  +r( . ) ,  x,',:' ( t = o )  =o, dt 

equation (3 ) ,  we transform to the interaction representation 

Qonr ~00;, ,1 ,  
h 

where the matrix U,, has the form 

Oo=exp A,t. 
h 

The matrix U,,,, satisfies the equation 

d :A A 

- D,,,, = AU , , , , ,  u,,,, ( t  = 0 )  = 3, dt 

(4 )  where the vector r'"' for even and odd n is expressed in 
terms of the vector x,',:: ( i  = 0,1,2, ..., n - 1 ) in the following 
way: 

A 

where 2 = ̂U; 'A^^U,,. We write this matrix in the explicit 
form 

0 - A  

- - Be-Yt 0 
( 7 )  

where y r  y ,  - y, is the difference in relaxation rates. 
From these equations it follows that we can cast the 

evolution of the "homogeneous" Bloch vector in the follow- 
ing form 

It is not hard to show that the solution to the inhomogeneous 
equation for the n-th term of the series x,',:: is found by using 
the evolution matrix for the first term x,',::) 

where the vector x,,,, in its turn evolves according to the A 

relation where the matrix U satisfies the equation 

x,,,1=U,,,xo 

and satisfies the equation 
d A 

(~t x,," = Ax,,,,, x,,,, (t  = 0) = xo. (10) 
From this we see that the solution to the full system of Bloch 
equations can be found by using the evolution matrix for the 

Introducing the dimensionless variable T = yt, we write the homogeneous part of the system without including relaxa- 
solution to this equation in the form of a power series tion. 
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3. ANALYTIC SOLUTIONS TO THE BLOCH EQUATIONS IN 
THE ABSENCE OF RELAXATION 

In this sectionAwe will find analytic solutions to Eq. 
( 18) with a matrix A of the form ( 2 )  with parameters which 
depend on time. Since this matrix is completely antisymme- 
tric, it can be cast in the form of a sum of three real antisym- 
metric matrices 

which form a basis for the Lie algebra of the rotation group 
S O ( 3 ) .  Passing from the Cartesian basis to the spherical ba- 
sis: 

h 

we rewrite the matrix A in the form 

Because Â  generakes the Lie algebra of the group SO( 3  ), the 
evolution matrix U, which satisfies Eq. ( 18 ) ,  is an element of 
this group and can be written in terms of its generators. In 
our case, it is convenient to choose the Wei-Norman parame- 
trizationI3 in the form of a product of exponentials: 

The explicit form of the evolution matrix in terms of the 
group parameters of S O ( 3 )  is given in the Appendix. Substi- 
tuting the solution (21 ) into Eq. ( 18) with the "Hamilto- 
nian" ( 2 0 )  gives the following system of differential equa- 
tions for the complex functions g,,, g + - : 

I t  can be that the system of equations ( 2 2 )  re- 
duces to a single Riccah equation for the variables y  = g,,, 
y ( 0 )  = - i A ( 0 ) :  

. 
&-ii  a- ip  A2+a2+p2 

y+'12y2 - - y + i ( ~ - A  -) + -- = 0 .  
a- ip  a-ap 2  

In the case of an exciting field with time-independent detun- 
ing A,, and amplitude Po, the solution to Eq. ( 2 3 )  is found 
without difficulty and yields the following expressions for 
the parameters: 

go=2 ln ( cos  - - i - s i n -  , 
A0 2 Qo 2 

ao+ipo n o t  ( 
g- = - s i n -  

2  
cos -- - 

5 2 0  

-ao+ipo QJ  [ Qf :o 
g + = - s i n -  cos - - i - s i n -  

8 0  2 

where R , ,  [ A :  + 0 : + a: ] "* is the generalized Rabi fre- 
quency. The solution ( 2  1 ) with parameters ( 2 4 )  provides an 
explicit form of the evolution matrix for stationary fields, 
which is a generalization of the corresponding matrix in Ref. 
15. 

Let us now investigate Eq. ( 2 3 )  when the coefficients 
are time-dependent. We first set a = 0 ,  which corresponds 
to excitation of a two-level system by a single field with vari- 
able amplitude and frequency: 

where Q = [A' + fl ' ] I" is the variable Rabi frequency. The 
substitution y = 2a/a  transforms this equation to one of sec- 
ond order: 

Passing now to a new variable z ( t ) ,  Eq. ( 2 6 )  can be written 
in the following form: 

where the prime denotes differentiation with respect to the 
new variable z. The dynamic symmetry of the Bloch equa- 
tion with respect to the group S O ( 3 )  allows us to assume 
that the solutions can be expressed in terms of spherical 
functions or Legendre functions of the first and second kind 
P',: (z) and Q(f ( z ) .  Comparing Eq. ( 2 7 )  with the Legendre 
equation 

we obtain the conditions for identity of these two equations: 

The following solutions for the field amplitude and detuning 
satisfy these equations: 

where 0 and 7 are complex numbers such that 

Reverting to the substitution go = 2  In a  + const, and to 
Eqs. ( 3 0 ) ,  ( 2 6 ) ,  ( 2 5 ) ,  and ( 2 2 )  with the initial conditions, 
we can explicitly calculate all the parameters go,* of the 
evolution matrix ( 2 1 ) .  From this we see that the homoge- 
neous system of Bloch equations without relaxation has ana- 
lytic solutions in terms of associated Legendre functions of 
the first kind P',: ( 2 )  and second kind Q':. ( z )  for an infinite 
set of temporal dependences of the amplitudep and frequen- 
cy A of the exciting field, connected to each other by the 
relation ( 3 0 ) .  Solving this system yields the evolution ma- 
trix ( 1 8 ) ,  from which we have a solution to the complete 
system of Bloch equations ( 1 ) in the sense of Eq. ( 17 ) .  Set- 
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ting v #  f i, we can obtain solutions in terms of Legendre 
functions P,. (z)  and Q,, (z)  with zero upper indices. 

We have obtained solutions to Eq. (25) with a = 0. 
Returning to the original equation (23), we will show that it 
has exact solutions in terms of Legendre functions under the 
condition (30) in the following cases: 

1. The case obtained above, i.e., a = 0, fl #O; 
2 . @ = 0 ,  a#O; 
3. a and p are real quantities; 
4. a and p are pure imaginary quantities; 
In the latter two cases, Eq. (23) takes the form 

where 
&=a-iP. 

4. VARIOUS PULSE SHAPES AND FREQUENCY 
MODULATIONS OF THE FIELD 

From Eq. (30) we can find physically interesting pulse 
shapes for the field and the corresponding frequency modu- 
lation functions for which the analytic solutions obtained in 
the previous section are valid. We recall that these solutions 
belong to one of the four cases listed at the end of the section. 
For definiteness we will assume that a = 0. In principle all 
the quantities entering into (30) can be complex. For a case 
where B and A are real, which has a transparent physical 
meaning, the Hamiltonian (20) is an anti-Hermitian matrix, 
and consequently the evolution matrix is unitary. For rea l0  
and A, condition (30) is fulfilled if 

1. z, 8 , ~  are real quantities, p and v are pure imaginary 
numbers. 

2. z ,  8 , ~  are pure imaginary numbers, v is a pure imagi- 
nary number, and p is a real number if v2 < 1 and a pure 
imaginary number if 7' > 1. Setting 6' = - ibo and 7 = ico, 
we obtain the following expressions for the indices v a n d p  of 
the Legendre functions: 

Taking into account the initial conditions 
a [z ( t  = 0 )  ] = 1 and a [z( t  = 0 )  ] = 0, the solutions to the 
Legendre equation with index 1/2 have the form 

a ( z )  = i / z ( l - ~ 2 )  - l i d {  [ ( I - z 2 )  "2f i z ]  '+'/a 

We take the variable z in the form z = i tgp, where p is an 
arbitrary real differentiable function of time. Then the am- 
plitude and frequency modulations take the simple forms: 

l=b ,$ ,  A=-b,c,$ t g  rp. (33) 

From this it is not difficult to obtain the frequency modula- 
tion functions for field envelope shapes which are interesting 
from a physics point of view, e.g., 

The hyperbolic secant = sech b,t: 

A=-co sech bi t  t g  cp,, 
q , = 2  ( b o b l )  -' (arctg eb"-n/4)  ; 

The Lorentz function = 1/( 1 + t 2,  : 

A = - [  c0/ ( l + t Z )  1 tg cp2 ,  (pz=bo-' arctg t ,  (35 

The Gaussian function B = exp( - b i t  2 ,  : 

A=-co exp  ( -b2Y2)  tg cp3, 

rps= (2bob,)-ln'"erf ( b z t )  , 

where b ,,, are arbitrary real quantities with the dimension of 
frequency. 

Once we specify the form of the substitution z ( t ) ,  we 
can find an infinite set of such Band A pairs. Let us calculate 
in explicit form the parameters go + , for the substitution 
z = i s h ( t / T ) ,  8 = - ibT, 17 = ic/bTwhich leads to a solu- 
tion well-known in the theory of phase m o d u l a t i ~ n l ~ ~ ' ~  in the 
form of a hyperbolic secant for the envelope field and a hy- 
perbolic tangent for its frequency: 

P=b sech ( t l T ) ,  A=-c  th ( t l T )  

(here the parameter T determines the length of the pulse). 
The parameters of the evolution in this case are ex- 

pressed in terms of elementary functions if we have 
p = 112. From (31) it follows that this condition is ful- 
filled if the modulation depth of the amplitude and frequen- 
cy are connected with each other in the following way: 

Using the solution (32),  we obtain the following expressions 
for the evolution parameters starting at the time t = - cc, : 

go=ln sech ( t l T )  - ( T - l i i c )  t ,  
ib 

g+ = 2 (T- '+ ic )  exp (T- '+ic)  t ,  (37) 

g-=- ( t h  ( t / T )  + I )  (T- '+ic)  ( i b )  -' exp  [- (T- '+ic)  t ]  , 

h 

Substituting these expressions into the evolution matrix U 
(see Appendix), we can obtain an explicit form for the com- 
ponents of the Bloch vector for an atom which is initially 
found, let us say, in the ground state x ( t  = - CO) 
= (O,O, - 1): 

1 t 
x2= - - sech - , 

b T T 

5.THECONTRlBUTlON OF RELAXATION 

Within the framework of our algebraic approach, we 
can take into account variable relaxation when the relaxa- 
tion rates for the longitudinal and transverse components of 
the Bloch vector are equal, i . ~ ,  y,,, ( t )  = y,,(t). For this case 
we must add the unit matrix I to the basis ( 19) of the algebra 
SO (3  ) and include an additional exponential factor 

in the evolution matrix (21).  Unfortunately, using this ap- 
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proach it is difficult to obtain exact analytic solutions to the 
Bloch equations when these relaxatio? ratzs are different, 
because in this case the Bloch matrix A + A , ,  generates the 
Lie albegra Sl(3,C) or the Algebra SU(3) ,  whose higher 
dimensionality (eight) considerably complicates the proce- 
dure for finding the group parameters g. In this section, 
within the framework of the general formalism of Sec. 2 we 
will compute the contribution of relaxation of the longitudi- 
nal and transverse components of the Bloch vector to the 
evolution of the latter. The calculations are carried out to 
first order in the small parameter yt, i.e., they are valid for 
small times or  for small differences in the relaxation rates. 
From the expressions of the general formalism ( 17), ( 16), 
and (8 ) ,  it follows that the evolution of the homogeneous 
part of the Bloch vector in this approximation appears in the 
following form: 

t 

A 

Because the evolution matrix U is k n i t a r ~  f o r ~ e g l  functions 
P, A, and a [see (22) 1, the matrix 2, = U - ' A ,  Uis Hermi- 
tian." The matrix A, has the form (13).  I t  is not difficult to 
calculate the components of the Bloch vector 
x,,, = ( x , ,  x2, x3) in the case where the atom is initially 
found in the ground state (0, 0, - 1 ). They are expressed in 
terms of the matrix elements gu of the evolution matrix in 
the following way: 

where ii,, is the third column of a Hermitian matrix whose 
elements for a = 0 equal 

The matrix elements g,, in their turn are expressed in terms 
of the group parameters go, whose explicit form was given 
at the end of the previous section for a field envelope and its 
frequency modulation in the form of a hyperbolic secant and 
hyperbolic tangent, respectively. 

6. CONCLUSIONS AND DISCUSSION OF RESULTS 

We have used a group-theoretic approach to calculate 
the evolution matrix which determines the dynamics of the 
Bloch vector, and to find analytic solutions to the Bloch 
equations with arbitrarily varying coefficients. In the case of 
equal relaxation times these solutions are expressed in terms 
of associated Legendre functions of the first and second kind 
if the variable amplitude of the field and its variable frequen- 
cy are related to each other in a definite way. 

There is an infinite set of shapes for such amplitude and 
frequency modulations, specific examples of which, having 
physical meaning, were presented in the Section 4. In partic- 
ular, the dynamic problem of interaction of a two-level sys- 
tem with an external field whose envelope varies as a hyper- 
bolic secant and whose frequency varies as a hyperbolic 

tangent was solved in terms of elementary functions. For the 
case T, # T, a general formalism was proposed to solve the 
Bloch equation which in principle allows us to calculate the 
components of the Bloch vector to any order in the quantity 
yt, if the evolution matrix is known which corresponds to the 
problem in the absence of attenuation. In the fifth section we 
presented an example of calculating the contribution of re- 
laxation to the evolution matrix to first order in the small 
quantity yt. 

The matrix form of the solution to the Bloch equation is 
especially convenient for calculating the time evolution of a 
two-component system for a many-pulse excitation. In this 
case the calculation of the signal from a multipulse echo 
(light or spin) for a field with amplitude and frequency mod- 
ulation reduces essentially to multiplication of the evolution 
matrices. Due to the general character of the solution, the 
results we have obtained are valid not only for the Bloch 
equations in classical form but also for any system of linear 
differential equations with variable coefficients, whose dy- 
namic symmetry group (algebra) is SO(3)  or SU( 1, I ) .  

The realization of the algebras SO(3) -SU(2) and 
SU ( 1, l )  by using angular momentum operators and bilinear 
components of Bose operators allows us to use these analytic 
solutions in various problems of quantum optics and elec- 
tronics, where it is required to calculate the corresponding 
evolution operator. In  Ref. 21, as an example of bilinear pa- 
rametric processes it is shown how to calculate the evolution 
operator for SU ( 1 , l )  , once it is known for SU (2) .  

In particular, this method can find application in the 
theory of two-level lasers with phase m o d u l a t i ~ n , ' ~  where 
the ca t r ix  of coefficients of Eq. ( 1 ) has the form of the ma- 
trix A from Eq. ( 2 )  with = 0. 

As we noted in the third section, the equation for the 
quantity g,, in this case is equivalent to Eq. (25).  Serving as 
another example is the dynamic theory of the interaction of 
two-level atoms with light in a compressed state, in which a 
central role is played by the system of quantum Langevin 
equations for the psuedospin operators of an atom. I' For this 
case, the matrix of coefficients has the form of the matrix A 
with A = 0 and a and B are random operator functions of 
time which commute with each other. The technique is ap- 
plicable also for calculating evolution not only in time but in 
space. 

In the theory of resonant reflection of light from the 
boundary of an ionized gas, which is described by a two- 
component model,"' a system of equations was obtained for 
the elements of the density matrix of the moving atoms 
which formally coincides with the system of Bloch equations 
( I ) ,  (2) ,  but with a derivative of the Bloch vector with re- 
spect to the coordinate instead of time. In Ref. 20 the detun- 
ing from resonance, which includes the Doppler shift, and 
the field amplitude both have constant values. Inclusion of 
the spatial modulation of the amplitude and phase of the 
field leads formally to the results we have obtained for the 
temporal behavior of the Bloch vector. 

The possibility of wide application of our group-theore- 
tic approach based on representations of evolution matrices 
(operators) in the form of products of exponentials in order 
to solve dynamic problems in various areas of physics (we 
note here the theory of echo processes,'4 propagation of 
waves in nonuniform media," the theory of free-electron 
lasers," bilinear parametric processes," and compressed 
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statesz4) is based on the fact that the evolution of a physical 
process is determined by the structure of the corresponding 
dynamic Lie group (or  algebra), and not the conditions im- 
posed on the coefficients, i.e., for a Hamiltonian which is, let 
us say, independent of time within the method of Laplace or 
for a periodic time dependence within the Floquet-Lya- 
punov method. 

On the other hand, the system of differential equations 
for the parameters of the evolution is, generally speaking, 
nonlinear. Such a system is integrable for the class of soluble 
Lie algebras of any dimensionality," but the difficulties of 
solving this system increase with the dimensionality. For a 
simple algebra of low dimensionality it can be reduced to a 
single nonlinear equation, as in the case of SU(2)  and 
SU( 1 , l ) .  If the algebra is not soluble and is not simple, then 
its decomposition into a semisimple subalgebra and a radi- 
cal, and subsequent decomposition into simple subalgebras 
(if possible) leads to a decomposition of the system of equa- 
tions for the parameters (for details on this see Refs. 13 and 
14). 
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