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A closed set of equations is derived for nonstationary transfer of resonance radiation under 
conditions of partial frequency redistribution. A method for numerical solution of the set is 
developed for cylindrical geometry. Theoretical and experimental results are compared. It is 
shown that the generalization of the theory of resonance radiation transfer to the nonstationary 
case proposed in Ref. 16 constitutes an excess of accuracy. 

INTRODUCTION the equations of the theory developed in Ref. 7 under the 

~h~ transfer of resonance radiation in an optically conditions of this experiment gives results which are in good 

dense medium is determined by the degree of correlation of agreement with the 'ystematic theory. 

the frequencies of the absorbed and emitted photons. If 
many collisions take place during the lifetime of the excited 
atom 7, = 1/A (where A is the probability of spontaneous 
emission) that change the phase and the frequency of the 
oscillator ( y,, r, $1 where ye, is the frequency of the oscilla- 
tor), the emitted photon "kills" the excitation conditions. 
Such a regime is known as complete frequency redistribution 
(CFR). The equations that describe the transfer of reso- 
nance radiation under these conditions were formulated in 
the works of Bibermanl and H o l ~ t e i n . ~  At sufficiently low 
pressures in gases, in astrophysical objects,' and in a plasma 
of multiply charged ions4 another limit applies: y,,r ,  g 1, in 
which effects of frequency "memory" of the conditions of 
the excitation of the atom are important for the emitted pho- 
ton. In this case the transfer of radiation takes place under 
conditions of partial frequency redistribution (PFR)  . The 
equations of resonance radiation transfer in this case were 
investigated in works of the astrophysicists Unno' and 
Hummerh and later in Refs. 3, 4, and 7-10. The theory of 
resonance radiation transfer in the PFR regime has been 
verified experimentally under nonstationary condi- 
tions.7.~ 1-13 Comparisons of the theory with the results of 

these experiments were carried out in Refs. 7 and 12-1 5. The 
strongest qualitative difference between the experimental re- 
sults of Ref. 7 and the theory of PFR1s2 consists in the pres- 
ence of a minimum in the fluorescence rate at the 1048 d; line 
of argon, excited in the near-axis region of the cylindrical 
volume by a proton beam of nanosecond duration, as a func- 
tion of the pressure of the argon gas (P,,,, -0.04-0.09 torr). 
Similar results were obtained in Refs. 11-13. 

In Ref. 16 the question was posed of the applicability of 
the equations of resonance radiation transfer that describe 
the effects of PFR3s7 under nonstationary conditions. The 
authors of this paper, criticizing Ref. 7, advance a new ver- 
sion of the theory of nonstationary resonance radiation 
transfer that contains additional terms in the equations for 
the spectral density of the excited atoms. In the present pa- 
per we investigate the question of the applicability of the 
theory of nonstationary radition transfer in the P R F  regime, 
and we derive a system of equations, which generalizes the 
results of Refs. 3, 7, and 16. A technique for the numerical 
solution of the obtained system of equations is developed and 
a comparison is made of the results of the calculation with 
e~periment .~ It is shown, in particular, that the solution of 

1. KINETIC EQUATIONS DESCRIBING RADIATION 
TRANSFER 

The theory of transfer under PFR conditions requires 
the introduction of the spectral density of the excited atoms 
N ( r , ~ , t ) , " ' - ~  which characterizes the number of particles 
capable of emitting a photon with frequency w. The CFR 
limit corresponds to the equilibrium relation between the 
spectral density N(w) and the concentration of excited par- 
ticles N: 

Here a(w ) is the spectral line shape. In the limit ye, r, 9 1 
relations of the form ( 1 ) break down since the spectral den- 
sity N(w) is determined by the conditions of radiative exci- 
tation. As a result of the Doppler effect the velocity distribu- 
tion of the excited atoms is also noaequilibrium. In general, a 
description of the transfer of resonance radiation requires a 
knowledge of the total velocity-frequency distribution func- 
tion N(r,  v, w, t ) .  The natural apparatus to use to obtain the 
kinetic equations of excitation radiative transfer is the meth- 
od of kinetic Green's  function^,'^.'^ which was applied to 
these problems in Refs. 8 and 9. 

In the present paper we will restrict the discussion to 
the simplest case of a nondegerate two-level system. We will 
use the index 1 to denote the ground state and the index 2 to 
denote the resonantly excited state. We seek the projections 
of the Green's functions on the ith state ( i  = 1,2). Thus, the 
main object of the theory is to find the set of Green's func- 
tions G :'(x,x1) (the upper indices a and a', in accordance 
with the Keldysh technique, I 7 - l 9  take the values f and - , 
which characterize the order of the field operators). In the 
absence of coherent pumping the nondiagonal elements G,, 
( i#  k )  are equal to zero. By virtue of the assumption of non- 
degeneracy of state 2 the nondiagonal elements over the pro- 
jections of the magnetic quantum numbers m? and m; also 
do not figure i n t ~  our treatment. Assuming that the particle 
field operators \y obey Fermi statistics, we present a semi- 
classical relation between the kinetic Green's function 
G, + and the spectral distribution function of the excited 
particles I n :  
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Here 

The wave vector p is related with the particle velocity v by 
the reltaion v = fip/M where M is the mass of the atom. 

The transfer equations for the Green's functions are the 
Dyson equations in which, first, the deviations of the fre- 
quencies from the resonance value a,, = w2 - W ,  are as- 
sumed to be small: 

second, the variations of the quantities figuring in the theory 
in time and space are assumed to be sufficiently smooth (cf. 
Refs. 17 and 18) for a theory in the form of kinetic equations 
to apply, and, third, the theory uses the dipole approxima- 
tion of the interaction of the resonant atoms with the pho- 
tons. 

In addition to the atomic Green's functions, the photon 
Green's function D :fn'(x,x), defined in terms of the Heisen- 
berg operators of the electric field intensity of the photons, 
figures in the system of equations. For example, for 
D ,, + (x,x' ) according to Ref. 18 we have 

For an ideal photon gas in unbounded space the function 
D; + (o ,k )  has the form'" 

iD,,-+ (o, k )  = (bij-kik,/k" ( 2 ~ )  'tioh 
X[n~6(o-o~)+(l+n-~)6(w+o,)]. (4) 

Here w, = c / k / ,  c is the speed of light, n, are the photon 
occupation numbers, which are related to the spectral den- 
sity of the radiation intensity J(w,,  R )  (a  function of angle 
and frequency) by the relation 

In Eq. (5)  A is the wavelength, and R is the unit vector in the 
direction of propagation of the photon: S1= k / / k / .  In most 
papers on raditive transfer theory the kinetic equation for 
the photons is formulated in terms of the quantity J(w, , R ) ,  
i.e., it is assumed that the expression for D ; + (w,k) has the 
form (4) .  This restriction is lifted in Ref. 9. 

We write the Dyson equation for the function 
G 5 + (X ,,x2) in the following form (cf. Refs. 17 and 18): 

Here 2:;' is the mass operator which describes the interac- 
tion of the excited particles with the radiation and with the 
surrounding particles. Let us consider the interaction with 
the resonant photons in more detail. The explicit expression 
for the last term on the right side of Eq. ( 6 ) ,  which charac- 
terizes the part of the approach term (the collision integral) 
that is associated with the absorption of photons by atoms in 

state 1, has the form 

Here use has been made of the r e l a t i ~ n " ~ ' ~  G z G R ,  
which is valid in the case of low atomic density; di is the ith 
projection of the matrix element of the dipole moment oper- 
ator between the states 2 and 1, where summation over the 
indices i and j is assumed; G & is the retarded Green's func- 
tion for the excited atoms; and N, (x,xl) = - iG ,; + (x,xl) 
[cf. Eq. ( 2 ) ] .  The retarded Green's function satisfies the 
Dyson equation with the mass operation Z R  . To find Z R  one 
can use the relation 

The first term characterizes the level shift due to the interac- 
tion (in the given case-the Lamb shift), and the second 
term characterizes the width of the state, and we have 
Z f  - $Z -+ .  Thus, 

The finite width of the state is due to radiative damping and 
collisions. Calculating the Fourier component in time differ- 
ence r = t ,  - tl, we obtain 

Here $, ( r )  are the eigenfunctions of the Laplace operator, 
which describe the translational shift of the particles in the 
bounded volume V ;  E, are the corresponding eigenvalues. 
In unbounded space $(r )  are plane waves, E, = k '/2M. fip 
is the chemical potential (cf. Ref. 18 ), w2 is the renormalized 
frequency taking the shift into account. In the purely radia- 
tive regime y2 = A .  

For the function G fi + (w,, r, r ' )  we use the approxi- 
mate expression (cf. Ref. 18) 

which means that the ground state is not broadened; N, ( k )  
are the occupation numbers of the atoms in the state 1 with 
respect to the quantum numbers k. Changing over to the 
Fourier components in the time differences and the coordi- 
nates in Eq. ( 7 )  and taking account of the definition 

D,' (z3. ZI, q,, 11, a, Q) = j dr t  dt' d p L f  exp ( - i o r t  

(here r ' = t ,  - t,, t ' =  (t, - t2) /2) ,  ~ l = r , ~  - r Z I ,  
r = (r3 + r2)/2, and the index 1 denotes the direction per- 
pendicular to the z axis, we obtain for the half-space 

j d r  dp, erp (-iwpr+ix,p,) - st. 

D;' (z,, z; w,  Q; q,, I,) exp ( - i Q t )  
X 

E,+ Q/2f iy2/2 
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Here r = t , - t 2 ,  p = r -  A = E ~ - o + w ~  
+qlSvl ,  ~ ~ = w ~ - ~ ~ + E . k + p ,  u=fip/M, and 

v, = fix /M. In the derivation of Eq. ( 12) account was taken 
of the smallness of the photon wave vector in comparison 
with the wave vector of the particles, rapidly oscillating 
functions of the type exp [ip (z, + z,) ] were averaged over, 
etc. 

As follows from Eq. ( 12), the characteristic scale of the 
nonlocal behavior of the kernel is L-v/A. Far from the 
boundaries, at distances may times larger than L, it is possi- 
ble to extend the integral over z, to the entire axis from - cc 
to + co . I n  this case, changing over to the Fourier compo- 
nents D y + (z,,z), we obtain 

Making use of the same assumptions, it is possible in an anal- 
ogous way to simplify the second term on the right side of 
Eq. (6).  Combining it with Eq. ( 13), we obtain for the ap- 
proach term 

This approximation contains a description of retarda- 
tion effects. In contrast with the assertion in Ref. 16 that the 
process of coherent scattering is instantaneous, it follows 
from Eq. ( 14) that the rate of photoexcitation is determined 
by an integral which depends on the rate of variation of the 
photon Green's function, which in turn is a function of the 
total time t. Expanding the expression in brackets in the fre- 
quency R, we obtain 

2nididj do  d3k 
S t + p h  = =J - N, (p) 6 (8,-o+oo+kv) 

(an)' 

The ellipsis indicates the subsequent terms of the series in the 
time derivatives of the Green's function. Usually in trans- 
port theory the series is truncated at the first term, which 
means a slow variation of the time dependence of the intensi- 
ty in comparison with the characteristic time scale 

If we use for the function D 7 + its vacuum approximation 
(4), we can display the approach term in the form 

A h2 
St+~~=2nAo2(Ep)- j doh J(okr Q, r, t )  

4 Ao, 

X N, (v) 6 ( ~ ~ - o ~ + ~ ~ + k v ) .  ( 16) 

In Eq. ( 16) a,(&) is the Lorentzian line shape of the excited 
state: 

The probability of spontaneous emission A is expressed in 
terms of /dl2 in the well-known way.I9 In the case in which 
the states 1 and 2 are degenerate it is possible to obtain an 
expression of the type ( 16) with the substitution A -. (g,/ 
g,)A, where gi is the multiplicity of the degeneracy of the 
state i. Thus, the commonly used form of the approach term 
( 16), which is valid if nonlocality and retardation effects 
[which are taken into account in Eq. ( 12) ] are ignored, de- 
scribes the nonequilibrium character of the velocity-fre- 
quency distribution of the excited atoms during resonant 
photoabsorption from the ground state. 

With the same accuracy with which Eq. (16) was ob- 
tained it is possible to write the collision integral of the colli- 
sions with the photons [the first and third terms in Eq. ( 6 )  1,  
which characterizes the radiative decay of the excited states, 
Stp! . Not taking stimulated emission into account, we have 

To close the system of equations that describe the radia- 
tive transfer of excitations, we must write down the Dyson 
equation for the Green's function of the photons D T' (Refs. 
17 and 20). For a spatially bounded medium the polariza- 
tional properties of the function D F' are found by joining 
the solutions of the exterior and interior problems. 

In the present case we will limit the discussion to the 
consideration of problems of the decay of the excitations 
created in the volume, and for D g"' (o ,  k,r, t )  we will make 
use of the simpler equation3.7.9.14-'h'2': 

This approximation is valid if the transit time of the photon 
in the medium is small in comparison with the decay time of 
the excited particles. In addition, we have neglected correc- 
tions of the order of -Nil ' in comparison with unity. 

In the resonance approximation for the polarization op- 
erators figuring in Eq. ( 19) it is possible to obtain 

In Eqs. (20) and (21 ) as in the derivation of Eq. ( 16), we 
have neglected nonlocality and retardation effects. This sin- 
gle-loop approximation assumes that state 1 is not broad- 
ened as a result of collisions. As was noted above, use is 
commonly made in the theory of radiative transfer of the 
spectral intensity J(w, , a, r, t )  obtained from the function 
D ,, + by integrating over all positive frequencies o .  If we 
assume that the frequency dependence of the function D i- + 

(for w >O) is characterized by the ordinary dispersion 
-6(w - w, ) (cf. Eq. (4)  and Refs. 1-8, 14-16), it is possi- 
ble to go from Eq. (19) to the kinetic equation for the pho- 
tons, i.e., the equation of the spectral intensity. 

2. INFLUENCE OF COLLISIONS ON THE TRANSPORT OF 
RESONANCE RADIATION 

The collision integral in the equation for the spectral 
density of the excited atoms, taking broadening into ac- 
count, can be derived starting with Eq. (6) ,  taking for the 
mass operator Zp+ (see Fig. 1) the following expression, 
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FIG. 1 .  Feynman diagram of the mass operator 2,, ' , which describes 
the elastic collision of an electron with an excited atom. The thin lines are 
the Green's functions of the electrons, the wavy lines are the Fourier 
components of the interaction potential V,,, and the straight line is the 
Green's function of the atom G ;  + 

obtained in the Born approximation: 

Here V, is the Fourier transform of the potential of the inter- 
action of the excited electron with the other particles (e.g., 
electrons), characterized by occupation numbers n,, , ener- 
gy E:~, and chemical potential @, . This interaction leads to 
a broadening of the excited state. It is assumed that the 
"broadened" particles satisfy Fermi statistics. 

Similarly it is possible to write an expression for 
Z + + ( p ) :  

X 6 (opt-ep,'+pe) 6 ( ~ ~ , - o ~ - - ~ , - ~ + p ~ ) .  (23 
- 

The corresponding right side of the Dyson equation (16) 
has, according to Refs. 17 and 18, the following form: 

Ste=2-+(p)G2z+-(p) -Z+-(p)Gzz-+ ( p )  (24) 

(here the transition to the Fourier components in the time 
difference and the coordinates of type (2)  has already been 
made). 

Let us consider the case of thermodynamic equilibrium, 
i.e., let us find the equilibrium form of the Green's function 
of the excited particles from the equation St, = 0. We seek 
the solution in the form (cf. Ref. 18) 

Gzz+-(p)=(GzzR-GzzA) [ I - N  (P) I ,  
(25) 

G22-+ ( p )  =- (GzzR-GzzA)N(p). 

Taking into account the relation 

where E, = wp - w2 - Ep + ,u and a,(&, ) is defined by Eq. 
( 17), we obtain 

Thus, the equilibrium spectral density of the excited 
particles has the form 

If the line width fiy, is small in comparison with the tem- 
perature, fiy, < T, then the quantity E, in the argument of the 
exponent can be neglected, and, taking into account that the 
particles are not degenerate, we obtain from Eq. (28) 

In this limit carrying out the integral over the momenta in 

gives the relation 

N (a) =2na2(ep)  N ,  

where N is the equilibrium concentration of the excited 
atoms [cf. Eq. ( 1 ) 1. For an arbitrary relationship between 
the line width and the temperature relation ( 1) is not ful- 
filled and one must use e:cpression (28). 

Under conditions of equilibrium of radiation with mat- 
ter it is possible to find the equilibrium form of the function 
D ,; + (w,k) from the condition St, = 0 [see Eq. ( 19) 1. Us- 
ing the relation'' 

and substituting Eqs. (25) and (26) in the expression for the 
polarization operators ( 2  1 ) and (20), we obtain 

The retarded Green's function is defined by the expressionz2 

Note that if we use a relation of the form ( 1) in place of 
Eq. (28) we obtain in Eq. (29) instead of the Planck formula 
for the occupation numbe:r an expression in which the run- 
ning frequency w is replaced by a,. Note that transport theo- 
ry gives in the equilibriurr~ limit for the occupation numbers 
of the photons the value [exp(h, /T)  - I ] - ' ,  i.e., for a 
broad line the difference from the Planck formula can be 
substantial (compare the discussion on this matter in Refs. 
23-25). In this case in the present transfer theory in the CFR 
limit on the basis of wha.t has been said it follows that it is 
necessary to redefine the expresions for the spontaneous 
source term: 

and the absorption coefficient 

kW+aw{Ni-N2 exp [ - - A ( o - o , ) / T ] } .  

Since what interests us here is first of all a description of 
the transport of resonance radiation in the PFR limit, line 
broadening due to collisions is assumed to be small in com- 
parison with the temperature of the gas. In this case the 
expression for the collision integral (24) can be simplified by 
limiting it to the T-approximation: 

[N (o ,  v )  -2nN ( v ) a 2  ( E , )  ]/zCl. (31) 
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Here N ( v )  is the velocity distribution function of the excited 
particles, re, is the time between elastic collisions, and 1/ 
re/ = ye,. In an analogous way it is possible to take into ac- 
count the collisions of the excited particles, which cause the 
relaxation of their velocity distribution to the equilibrium 
Maxwell function f, ( v )  after a characteristic time 
T~ ( Y ,  = l / ~ ,  ) . The corresponding collision integral has 
the form 

St,=-&[A'(@, V )  - N ( o ) f M ( v )  1 1 ~ ~ .  (32  

In the collision integral it is also possible to take ac- 
count of the decrease of the number of excited particles due 
to collisions taking place with frequency v,., and also their 
formation with rate q ( w , v ) ,  also due to collisions. It is as- 
sumed that the structure of the corresponding source term 
has the form 

q(m,  V ,  r ,  t )  =2nq(r ,  t ) a 2 ( e p ) f ~ ( v ) .  (33  

3. SYSTEM OF EQUATIONS OF RESONANCE RADIATION 
TRANSFER 

Within the framework of the above-formulated ap- 
proximations we can write the basic equations that describe 
the transport of resonance radiation under nonstationary 
conditions. The equations for the spectral density of the ex- 
cited atoms now take the form [cf. Eqs. ( 16) ,  ( 1 8 ) ,  (31 )- 
(3311 

d a 
-N(o ,v , r , t )+v-N(o ,v , r , t )  
at ar 

=-yel[N(w,v,r,t)-2nN(~,r,t)a~(o) I 
-~~tN(o,v,r,t)-N(~.r,t)f~(~) 1 

2nAh2 
- N ( o , v ,  r ,  t )  ( v T + A ) + q ( o r v , r , t )  +- 

4 

x J d 9  d o .  J ( o k ' R 7 r ' t )  N . ( v ) 6  ( a - o k + w . + k v )  ( 3 4 )  
%oh 

(here and below in place of the quantity E, we use the nota- 
tion w ,  where w  is reckoned from the transition frequency 
w, , ) .  We write the equation for the spectral intensity J,  ( w ,  
0, r, t )  in the form [cf. Eqs. ( 4 ) ,  ( 5 ) ,  ( 1 9 ) - ( 2 1 ) ]  

Aiiok do' 
( n v ) ~ = - k . ~ + -  j - - d v ~ ( o ~ , v , r . t )  

4n 231 
X 8 ( o f - o k + o o + k v ) .  ( 3 5 )  

Here k, is the absorption coefficient, which, neglecting the 
corrections for stimulated emission, is given by the expres- 
sion 

k,='lih2AN,cp ( a ) .  ( 3 6 )  

The quantity p ( w )  is expressed in terms of the initial line 
shape a, ( w  ) by the equation 

As was already noted in the discussion of expression (21 ), 
the generalization to the case of degenerate levels consists in 
multiplying A in Eq. ( 3 6 )  by the ratio of the statistical 
weights g,/g,. The line width y, is defined in the following 
way: 

y2=Af  Y,I+ v,+ V T .  ( 3 8 )  

As follows from Eq. ( 3 5 ) ,  the spontaneous photon source is 
determined by Nsp ( A ,  R, r ,  t ) :  

Here A  = a, - w,  is the detuning of the photon frequency 
from resonance. An equation for N,, can be obtained by 
multiplying Eq. ( 3 4 )  by the corresponding S-function and 
integrating over frequencies and velocities as in Eq. ( 3 9 ) .  As 
a result we have 

In Eq. ( 4 0 )  there arise two new moments M and P, defined 
in the following way: 

M ( A ,  R ,  r ,  t )  = j do'dvN ( v ,  r ,  t ) a 2 ( o f )  6 ( a 1 - A + k v ) ,  (41 ) 

The flux of excited atoms j s p  has the form 

The redistribution function over frequency R ,, (a ; ,  w ,  ), 
which describes the coherent scattering of the photon k - k' 
in the laboratory frame is defined by the expression (cf. Ref. 
3  

R,, (a,', oh) = j d v f .  ( v ) a 2 ( o k - m a - k v )  6  ( o h - o l - k v + k ' v ) .  
( 4 4 )  

As follows from the structure of the collision terms 
( 3 1 )  and ( 3 2 ) ,  the quantities N ( r , t ) ,  N ( v ,  r, t ) ,  and N ( w ,  r, 
t )  are the corresponding moments of the spectral density 
N ( o ,  v ,  r ,  t ) .  The equations for the moments M (41 ) and P 
( 4 2 )  figuring in Eq. ( 4 0 )  have the form 

dP 
- + div jP=-ye, [P-Nrp ( A )  1 -P ( V T ~  A )  +!I ( r ,  t )  0 ( A )  

dt  

a N ( r ,  t )  .- + div j= -N(vT+A)  + q  ( r ,  t )  
at  

In Eqs. ( 4 5 ) - ( 4 7 )  three new fluxes arise: 

jM=pg! vN ( v ,  r ,  t )  a,  (a')  8 ( a ' - A +  k v ) ,  
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d o ' d v  
j. = J r v N ( o ' ,  r ,  t ) f ,  ( v ) 6  ( o f - A + k v ) .  

Note that contributions from flux terms in problems con- 
nected with the decay of excitations are usually small. For 
example, under the conditions of the experiment in Ref. 7 the 
ratios of the second term to the first on the left side of Eqs. 
(40), (45)-(47) are of the order of u,/Rfl< 1, where u,  is 
the characteristic thermal velocity of the particles ( - lo4 
cm/sec), R is the radius of the cylindrical volume ( - 1 cm) 
andflis the effective decay rate (fl> 10"ec-' ) . In addition, 
in the theory of radiative transfer in optically dense media 
one typically uses quantities which are averaged over the 
photon directions (cf. Ref. 3) 

N ( A ,  r ,  t )=<N ( A ,  9, r ,  t )  )a. 

After analogously averaging Eqs. (40),  (45), and (46),  we 
can neglect the contribution of the flux terms. 

The redistribution functions over frequency 

which describes incoherent scattering in the center-of-mass 
system,' and 

where 

figure in the right sides of Eqs. (45) and (46). The function 
R ,, describes photon scattering under conditions in which 
many collisions that involve a change in the velocity of the 
atom but do not lead to a change in the phase of the oscillator 
take place between the act of absorption and the act of emis- 
sion. 

Averaging the functions N,, , M, and P over the photon 
directions, we obtain equations of the type (40) ,  (45),  and 
(461, but without the flux terms. The angle-averaged redis- 
tribution functions R ,, and R ,,, (an analogous approxima- 
tion was made in Ref. 3) figure on the right sides of these 
equations. 

The resulting system of equations (35), (40),  (45)- 
(47) describes the time-dependent transport of resonance 
radiation under PFR conditions. In the stationary case it is 
possible to obtain a closed equation for N,, (A)  after elimi- 
nating the quantities M, P, and N from Eas. (45)-(47). As a 
result we have 

~ N s p  (A )=qcp (A)  

where v = vT + A is the total rate of decay of the excited 
particles, and the total redistribution function R ,, (w;, w ,  ) 
is expressed in terms of the angle-averaged functions R ,, , 
R ,,, , andR ,, in the following way (cf. Refs. 22,26, and 27): 

V N  +- ~ , ~ ( o ' .  o ) +  -R1 , , (w ' .  Y e t  w ) +  R I I ( o f .  }. (52) 
ye1  +V V+VM 

The complete frequency redistribution regime corresponds 
to the limit y,, > v, %A, v. In this limit we have 

and Eq. (5  1 ) gives [cf. Eq. ( 1) ] 

N s p ( A ) = N ~ ( A ) .  

The redistribution function obtained in Ref. 26 follows from 
Eq. (52) by setting v, = 0. Note that in the equations for 
N s ,  ( A) used in the literature (see Ref. 3 ) , the factor v/A on 
the right side of equations of type (5  1 ) is commonly omitted. 

In nonstationary problems the system of equations 
(40),  (45)-(49) does not reduce to one equation with a re- 
distribution function of the type R ,, ( a ' ,  w). However, in 
Ref. 7 use was made of the equation 

?bZ v - ~ , - - l d Q d ~ , '  J(o''P) R . ( o . ' , o ) .  (53) = 4 9 +  4 A no; 

to describe nonstationary regimes of resonance rad ition 
transfer under PFR conditions. The spectral intensity cen- 
tering on the right side of Eq. (53) is expressed in Ref. 7 
proceeding from Eq. (35) in terms of the corresponding 
spontaneous source term: 

dr ' 
, exp (-kur 1 r-r' 1 ) Nsp ( A ' ,  r ' )  A 

4 ~ 1 ~ - - ~  1 

= A  ) d r ' ~ , .  ( r - r ' )  N , ,  ( A ' r ' ) ,  (54) 
v 

Expression (52) with v, set to zero was used as the redis- 
tribution function in Ref. 7. In addition, for the function 
R ,,, ( a ' ,  W )  there is the widely used approximation (cf. Ref. 
3 

and the factor v/A in Eq. (53) is set equal to unity in Ref. 7. 
The equations used in Ref. 7 (53) and (54) were subjected to 
criticism in Ref. 16 because they were not, strictly speaking, 
derived, but written down heuristically. To derive an equa- 
tion that describes nonstationary radiative transfer, use was 
made in Ref. 16 of the relation (see Refs. 28 and 29) 

We note that this relation follows from system (40), (45)- 
(47) if one sets v = 0, uses the approximation ( 55), and, 
extracting Eq. (45) from Eq. (40), neglects the time deriva- 
tive a(Ns, --aM)/at in comparison with the quantity 
(ye, + Y )  (NsP - M ) .  In addition, by virtue of Eq. (55) it 
follows that one should use the relation M ( A )  z N p ( A ) .  If 
now we differentiate relation (56) with respect to time, mak- 
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ing use of the equation for the total concentration of excited 
atoms (47), and we take into account the time derivative of 
the spectral intensity, which figures in Eq. (56), expressing 
it by virtue of relation (54) in terms of the derivative 
N,, ( A ) ,  we then obtain the basic equation of Ref. 16. It 
differs from Eq. (53) by an aditional term containing the 
derivative N,, ( A )  under the integral sign in Eq. (54).  As 
follows from the above derivation, taking the additional 
term into account in Eq. (53),  as was proposed in Ref. 16, 
amounts to an excess of accuracy. The authors of Ref. 16 
criticize Ref. 7 for not taking account of the fundamentally 
instantaneous character of the process of coherent scatter- 
ing. As was discussed above, in making the transition from 
Eq. ( 14) to Eq. ( 16) it is valid to treat the process as instan- 
taneous if the characteristic time T of variation of the intensi- 
ty is large in comparison with the time r,, which depends on 
the frequency of the scattered radiation. Since in optically 
thick systems the characteristic decay times of the excita- 
tions are large in comparison with the spontaneous time T, , 
the corrections which the authors of Ref. 16 propose to take 
into account are small in comparison with the terms con- 
tained in Eq. ( 53 ). 

4. COMPARISON WITH EXPERIMENT 

In order to compare the results obtained from the sys- 
tem of equations (35),  (40),  (45)-(47) with experiment, 
we developed a technique of numerical solution of these 
equations for plane and cylindrical geometries. The initial 
conditions consisted of a small concentration of excited par- 
ticles ( -5 x 10"' cm-') in the layer near the axis with a 
radius of 3 mm. A study was made of the radial distribution 
of the excited particles and the spectrum of the radiation 
emerging from a cylinder of radius R = 1.1 cm. From the 
time dependence of the spectrally integrated radiation inten- 
sity at the resonance line of argon 'PI-'SO ( A  = 1048 A )  we 
constructed the dependence of the effective decay rate of the 
excitations fl [sec--'I on the argon pressure. The elastic 
width y,, corresponding to resonant excitation exchange in 
accordance with Ref. 7 was taken to be of the form y,,/ 
A = 1.74P, where P is the argon pressure in Torr and 
A = 5.5 x 10Xsec- I. The ratio of the statistical weights k g 2 /  
g, = 3 in this case. The transient time of the Maxwell distri- 
bution was estimated from the gas-kinetic cross section 
u=.5 x 1 0 "  cm2. 

Figure 2 shows the time dependence of the intensity of 

I ,  arb. units 

'"" i- 

FIG. 2. Time dependence of the intensity of the radiation emerging from 
the cylinder at the argon line 'P,-'S,, (A = 1048 A )  at pressure P = 0.021 
Torr. 

FIG. 3. Radial distribution of the excited particle concentration at various 
instants of time, normalized to the value of the concentration at the point 
on thecylindrical axis (pressure P = 0.042 Torr): a)  calculation based on 
the complete system of equations (the PFR approximation), b )  calcula- 
tion in the CFR approximation; 1 ) Opsec, 2 )  3 psec, 3 )  5 psec, and 4 )  8 
psec. 

the radiation emerging from the cylinder for argon pressure 
P = 0.021 Torr. As in Fig. 5 of Ref. 7, this dependence is 
exponential and is characterized by a decay rate constant fl 
(Bth,, = 3 . 7 ~  105 sec- ',flex, = 3 . 8 ~  105 s e c - ' ) .  Figure 3 
depicts the radial distributions of the concentration of excit- 
ed particles at various times, normalized to the value of the 
concentration at the point on the axis of the cylinder. Figure 
3a presents the results of a calculation for the complete sys- 
tem of equations for P = 0.042 Torr, and Fig. 3b shows the 
results obtained for the same conditions in the CFR approxi- 
mation. Note that at this pressure the quantity 8, obtained 
from the complete system of equations, is -3 x 10" sec-I, 
while experiment giveso=. 3.1 x 10' sec- '. This is the point 
at which the difference in the results of the PFR approxima- 
tion and the CFR theory is greatest. The value offi obtained 
from the theory's2 at this pressure is 9.83 x 10" sec- I .  For 
this case we carried out a study of the effects of various ap- 
proximations on the value of 8. If instead of the complete 
system of equations we use the approximate equation (53),  
we obtain the same valuefl-3 X 10'sec- ' with an accuracy 
of - 1%. The effect of the transient time of the Maxwell 
distribution within the framework of system (40),  (45)- 
(47) on the value of 8 is insignificant: for v, = 0 we have 
8 = 3.006X 105 secp ', and for v, = ao we obtain 
8 = 3 . 0 4 ~  10' secp'. 

The authors of Ref. 14 carried out a comparison of the 
results of the diffusion approximation of Eq. (53) with ex- 
periment' (according to the formulas of Ref. 14 
8-4.4 >< 10' sec- ' for P = 0.042 Torr) .  The numerical so- 
lution of the complete system of equations in the diffusion 
approximation that they obtained came within 3% of the 
exact solution. Figure 4 displays the spectra of the outgoing 
radiation for a number of pressures as a function of the di- 
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I ,  arb. units 

FIG. 4. Spectrum of the outgoing radiation for various values of the pres- 
sure P; x = (w - o,,)/w,, . The solid curves correspond to the calculation 
based on the complete program (the PFR approximation): 1 )  0.0015 
Torr, 2 )  0.042 Torr, 3 )  9.35 Torr; the dashed line corresponds to the CFR 
approximation, P = 0.042 Torr. 

mensionless detuning from the resonance x = (w  - w,,)/ 
w, ,  where w, is the Doppler width. Figure 5 displays the 
dependence of the decay rate 0 on the argon pressure. 

To estimate the accuracy of the implemented approxi- 
mation of the effective lifetime of the excited particles (see 
Refs. 1-3) we also calculated the probability 8 of emission of 
a photon, obtained from Eqs. (40 ) ,  (45) - (47)  in the limit 
Y ,  -+ c~ . In this approximation we have p =  AB. In station- 
ary problems we obtain for the quantity 0 

Here B(w, r )  is given by the expression 

The function R , (w1,w) is defined by Eq. (50 ) .  Expression 
(58 )  gives the probability of emission of a photon from the 
point r; the point r ,  is located on the surface bounding the 
volume. The integration in Eq. (58 )  is carried out over all 
solid angles subtending the surface from the point r .  In non- 
stationary problems it is possible to obtain an equation for 
B ( r ) :  

Cn 

a 2 ( o ) 0 ( o ,  r ) d o  a2 ( o ) d o  
B(r)=A - J m y.,+AB(w, r ) -B( r )  yei+AO(w, r)--@(r) 

(59 )  

where B(w, r )  is given by Eq. (58 ) .  The difference between 
expressions (57 )  and (59 )  can be discerned only at very low 
pressures P=0.0015 Torr under experimental conditions. 
At larger pressures both expressions coincide. Figure 5 pre- 
sents the results of estimates of the decay rate p ,  obtained 
using Eqs. (57 )  and (58 ) .  

The comparison just carried out shows that the system 
of equations ( 3 5 ) ,  (40 ) ,  (45) - (47) ,  obtained for problems 
of resonance radiation transfer in the PFR limit, describes 
the experiment well under nonstationary conditions. Note 
also the completely satisfactory accuracy of the heuristic 

FIG. 5. Dependence of the decay rate of the excited statesfion the argon 
pressure. The solid curve corresponds to the calculation for the stationary 
problem according to formula (57). the dashed curve-to the calculation 
in the diffusion aproximation," 0-experiment,' @-calculated using 
the complete program (the PFR approximation), A--calculated in the 
CFR approximation. 

equation (53 )  for the description of the decay of the excited 
system in optically thick media. The criticism of this equa- 
tion in Ref. 16 does not stand. The effective-lifetime approxi- 
mation gives too low an estimate for the decay rate; however, 
it qualitatively reproduces the characteristic minimum in 
the pressure dependence ofp .  The complete frequency redis- 
tribution approximation gives a monotonic trend in this de- 
pendence and substantially exceeds the true value of the de- 
cay rate in the pressure region P ~ 0 . 0 4  Torr. 
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