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A connection between the longitudinal susceptibility x and the experimentally measured 
temperature dependence of the order parameter is obtained for uniaxial nematic liquid crystal in 
the scope of the theory of Landau and de Gennes. The absolute values of the susceptibility x are 
obtained, with MBBA as the example, for the nematic phase from experimental data, and its 
critical behavior is investigated. It is shown that the Levanyuk-Ginzburg criterion is satisfied in 
the entire temperature range of the nematic phase, including the vicinity of the temperature T, of 
the nematic-isotropic liquid phase transition. A connection is established between the nature of 
this transition and the width of the nematic-phase temperature interval connected with the 
position of the tricritical point on the nematic-smectic phase-transition line A. 

1. INTRODUCTION 

The order parameter of a uniaxial uniformly ordered 
nematic is the tensor' 

where n,,,, are the components of the director n, S 
= (3 cos26 - 1)/2, 6 is the angle between the longitudinal 

molecular axis and n, and the angle brackets (...) denote 
averaging over the molecular ensemble. The response of a 
nematic to a field h thermodynamically conjugate to S is 
characterized by the longitudinal susceptibility2 

Information on the value and the temperature dependence of 
x in the nematic phase is necessary to select liquid-crystal 
materials with maximum response and to solve many phys- 
ical problems. Let us note some of them. 

1. Foremost are the description of the nematic-isotrop- 
ic (N-I) liquid phase transition and the determination of the 
region of applicability of the mean-field Landau-De Gennes 
theory,lv2 in the framework of which the thermodynamic- 
potential density of the nemaLic is a power function of 
the invariants Sp S a S and Sp S a S and can be repre- 
sented by the series 

Here A = a ( T - T * ) , and the remaining coefficients are 
assumed to be independent of temperature in the relatively 
narrow interval of existence of the nematic phase. A distinc- 
tive feature of real nematics is that in the scope of the given 
theory the values and the temperature dependences of differ- 
ent physical parameters on both sides of the N-I transition 
turns out to be possible with account taken of a large number 
of terms of the series (3),'-4 while the parameters B<O, 
C < 0, D > 0, and E >  0 must be strongly correlated with one 
another, and all the terms of the series, starting with CS4 
turn out to be of the same order in the region of the N-I 
transition. Further increase of the number of terms in (3)  
makes such an approach purely empirical. 

On the other hand, when describing one and the same 
set of experimental data the signs and the values of the coeffi- 

cients of the series (3)  depends substantially on the number 
the considered terms of this This leaves indeter- 
minate the expression o f x  in terms of the coefficients of the 
series (3)  when the following equation is used2 

where the equilibrium value ofS, is the solution of the equa- 
tion d@/dS = 0. The latter must include a limited number of 
terms of the series ( 3 ) ,  making indeterminate the estimate of 
the mean squared long-wave fluctuation ( (as) ' ) v  in the giv- 
en volume V of the sample, a fluctuation obtained in the 
Gaussian approximation from the equation (Ref. 2 )  

The number of terms of the series (3)  governs also the pa- 
rameter 

where V = 47~?/3 and r is the correlation radius of the spa- 
tial fluctuations of the modulus S. It is therefore impossible 
to establish through relations (3)-(6) the region in which 
the Levanyuk-Ginzburg criterion is satisfied2 

i.e., where the Landau-de Gennes theory is valid. 
2. The presence of a cubic invariant in (3)  upsets the 

universal connection between the temperature anomalies of 
the various physical quantities in the N-I transition region, 
and these anomalies are in the general case not described by 
simple laws. The universality, however, can be restored376 by 
choosing as the "scale" not of the reduced temperatures 
T, - T but of the susceptibility x or the relaxation time of 
the fluctuation of the modulus S 

The latter is valid if the kinetic coefficient v in the nematic 
phase does not have a unique singularity similar to that in 
the isotropic phase.' Determination of X (  T) in the nematic 
phase from experimental data and comparison with an inde- 
pendently measured T( T) would cast light on the universal 
properties of the N-I transition and of the v( T) dependence. 

The character of the temperature dependence of X(  T )  
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in the nematic phase is important also for ascertaining the 
causes of the large discrepancy between the observed width 
(A, = 10W2 - lop3, Ref. 3) and the nematic-phase and 
corresponding to the position of the tricritical point on the 
nematic-smectic A(N-A) phase-transition line. Here Tc 
and T,, are the N-I and N-A transition temperature 
widths A = 1 - TNA/Tc predicted in the molecular-static 
theory (A, = 0.13, Ref. 8) 

So far, however, there are no measured values ofx in the 
nematic phase. Direct determination o f x  in a nematic from 
the change of the birefringence An -Sin a magnetic or elec- 
tric field is impossible, since the change S (An ) in a field H 11  n 
by suppression of the transverse thermal fluctuations of the 
local direction of the director n(r)  depends on H (or I E I ) 

and to determinex we must know the change 
S(An) a H z .  In relatively weak fields the linear effect is 
stronger than the quadratic by two orders.12 

We propose here a new approach to the determination 
of the longitudinal susceptibility x of a nematic, in which the 
susceptibility can be expressed in terms of the temperature 
dependence of the modulus S. In Sec. 2 of the article we 
describe the formal aspect of the approach. Section 3 in- 
cludes an analysis of the temperature dependence ofx  in the 
nematic MBBA phase, a comparison with the measurements 
of other parameters having singularities near T,, and the 
answers to the questions raised above. 

2. LONGITUDINAL SUSCEPTIBILITY OF A NEMATIC AND THE 
TEMPERATURE DEPENDENCE OF THE ORDER PARAMETER 

An important role will be played below by the character 
of the temperature dependence of the coefficient A in (3) ,  a 
coefficient equal to the inverse susceptibility (A = X, ) of the 
isotropic phase. Its temperature dependence can be obtained 
from experiments on the critical behavior of various physical 
characteristics.'.' All the known data show that the relation 
A a ( T - T * ) holds for nematics having neither real nor vir- 
tual (manifested in mixtures) low-temperature smectic 
phases, in a wide temperature interval T >  T,, except for a 
narrow pretransition region of the order of fractions of a 
degree. We therefore write the density of thermodynamic 
potential of a uniaxial nematic in a field h conjugate to the 
modulus S i n  the form 

where the number of the remaining terms of the expansion, 
with temperature-independent coefficients, is inessential for 
the sequel. 

Since the equation of state 

is the functional connection between the variables x = S, 
y = h, and z = T, the use of the known identities13 

yields 

In the limit as h-0 the value of S goes over here into the 
corresponding equilibrium values S,, which satisfies Eq. 

( 10) at h = 0 and describes the experimental S( T) depen- 
dence when account is taken of a sufficient number of terms 
of the series (3).  Indeed, for a large number of real nema- 
tiCs4, 14. 15  the experimental S (T)  dependence can be de- 

scribed on the basis of the model (3)  in the entire mesophase 
interval, and account must be taken of the corresponding 
number of terms for each object. 

Changing to the variable t = 1 - T/To, where To is the 
limiting superheating temperature of the nematic we obtain 
ultimately from ( 12) an expression for x in terms of the 
measurable quantities: 

where the parameter a is obtained from the relation for the 
transition heat AH = a S  f Tc/2, Sc = S( Tc ) . Since the deri- 
vation of ( 13) does not depend on the form and number of 
the remaining terms of the series (9),  it can be used for a 
large group of systems whose thermodynamic potential in a 
field h conjugate to the order parameter S is of the form (9)  
and meets the requirements noted above. For theory var- 
iants that take into account a finite number terms of the 
series (3),  substitution of the S ( t )  dependences obtained 
from the equation a@/aS = 0 in ( 13) leads to known results 
obtained forx( t )  (Refs. 1-3, 16) by using (4).  

In particular, confining ourselves in (3)  to terms of sec- 
ond, third, and fourth power in the modulus S, the S ( t )  
dependence takes the form 

where So = S(TO), S = 1 - T*/TO. The effective suscepti- 
bility power-law exponential y' defined approximately by 
X - t  Y' depends on the temperature and is obtained from 
(13) and (14) in the form 

For T = T, we obtain the know result y '  = 1/2 (Ref. 16). In 
addition, y ' < 1 for all T< Tc. By taking into account in (3)  
the gradient term g(VS)*/2 it is possible to obtain in the 
usual manner2 an expression for the correlation radius 
r = g ( x )  of the fluctuations of the modulus S in the ne- 
matic phase. The effective exponent v'  = y1/2 defined by 
the relation r-t- "' depends on temperature and varies in 
the interval 1/4<v1 < 1/2. 

Changing to some other temperature scale, i.e., intro- 
ducing i = 1 - T/T,,  where TI > To, we can approximate 
quite accurately in a certain temperature interval T <  Tp, 
the real ~ ( t )  dependence by the formula X(i) - 2  ' . This 
corresponds to Haller's known empirical of 
approximating the experimental S( T) dependence in nema- 
tics and cholesterics by the formula 

where TI > T, and explains the value v '  = 1/2 obtained in 
Ref. 18 on NMR relaxation when TI > To is chosen. Com- 
parison of the results of various experiments on the critical 
change of the physical parameters in the nematic phase is 
possible only if identical values of the difference To - T, are 
chosen. 
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3. LONGITUDINALSUSCEPTIBILITY OFTHE NEMATIC 
PHASE OF MBBA 

Comparison of (5 )  with ( 13) establishes a connection 
between the equilibrium fluctuations of the modulus S and 
its temperature dependence. If experimental values of S are 
used in ( 13 ), the obtained value ofx  contains a contribution 
from transverse thermal fluctuations of the locnl direction of 
the director n(r)  by virtue of the principle of the conserva- 
tion of the modulus of a nematic in a degenerate 
Since the relative change S(An)/An due to the suppression 
of the director f luc t~a t ions l~~- '~  is negligibly small, the main 
contribution to x is made by the temperature dependence of 
the local orientational ordering of the molecules. 

When x is calculated by Eq. (13) it is important to 
choose the physical quantity from whose value one can de- 
termine the modulus S. The real retardation of the molecule 
rotation about their longitudinal axes and the biaxial charac- 
ter of the second-rank molecular tensors y causes the macro- 
scopic anisotropy 

of the corresponding physical quantity to be determined not 
only by the component S,,, but also by the biaxiality 
G = Sxx - S,, of the microscopic tensor of the orientational 
ordering of the molecules. Here 

Sti=(3 COS' 0rn-1>/2 ( i=x ,  y, z ) ,  (17) 

where Bin is the angle between the ith axis of the molecular 
system of coordinates and the director n. We use in ( 16) the 
notation 

The temperature dependence of G is the reciprocal of the 
temperature dependence of S: as T- T, the parameter Gin- 
creases, reaching a maximum value GzO. 15s at S ~ 0 . 4 ,  and 
de:rea?es with further increase of T.2' Therefore at a ratio 
Ayf/Ay that is not small as in the case of diamagnetic suscep- 
t ib i l i t~ ,~ '  the temperature dependences of AM and Snear T, 
can differ n~ticeably.'~ The determination of S from the an- 
istropy of the diamagnetic susceptibility AM (Ref. 1 ) can 
therefore yield a distorted temperature dependence o fx  cal- 
culated from ( 13 ). 

For the determination of S it is preferable in this res- 
pect to use in place of AM the anisotropy AE of the dielec- 
tric function in the optical band [formally defined by the 
same eq~ation ( 16) 1, since the biaxiality of the molecular 
tensors S (17) of the polarizability (8 )  is manifested 
here to a much lesser degree.22923 Allowance for the anisot- 
ropy of the local field of the light wave is of no principal 
importance in this case (cf. Refs. 1 and 3) ,  since it leads to 
multiplication of the right-hand side of ( 16) by the quantity 
( 1 + uo + a, ) - I ,  where a, is independent of temperature 
and a, -S, but even for nematics with large local-field ani- 
sotropy we h a v e ~ ~ z 0 . 2  and 2 andal /aOzO.l  (Ref. 23). By 
choosing the refractive indices of the nematic in the proper 
spectral region one can reduce th! s u y  no + a, to zero and 
simultaneously lower the ratio Ayl/Ay (Ref. 23). To take 
into account the temperature dependence of the nematic it is 
necessary to use in place of the anisotropy AE = ni - n: the 
quantity 

FIG. 1 .  Temperature dependence of the product xaT,, ( 13) for the nerna- 
tic phase of MBBA, calculated from Eqs. 19 and (20) at t = 1 - T/T,,, 
T,, = T,. + 0.1" (Ref. 29), and T,. = 318.46 K (Refs. 17 and 24). 

where .Z = (ni  + 2n: )/3, nl , ,  are the refractive indices of 
the nematic. 

In the present study we investigated an MBBA nematic 
independently researched by independent methods. Preci- 
sion measurements have yielded for it the refractive indices 
rill,, ( A  = 589 nm),24 which are well approximated in the 
temperature interval 0 .06"~  T, - T S  30" by the equations24 

where T = 1 - T/T,, T, = 318.46 K.'7,24 The anisotropy of 
the local field in the MBBA is small2' and introduces no 
noticeable change whatever in the temperature dependence 
of S ( 19). This explains the equality of the normalized S( T) 
temperature dependences obtained by independent meth- 
o d ~ . ~ ~ . ~ ~  It is known from precision measurements of the 
heat capacities of MBBA28229 that TO exceeds by 0.1" the 
lower limit TI. - ' of the real two-phase region assumed for 
T, in refractometric experiments for single-domain nematic 
samples. 

The figure shows the temperature dependence of the 
product aT, calculated from ( 13), ( 19), and (20) using 
To = T, + 0.1". In the entire temperature interval 
0. lo( T, - T 5  20" the variation o fx  is described by the rela- 
tion x- t - with a constant value y' = 0.68. On the other 
hand, in the same temperature interval, according to acous- 
tic measurements in MBBA3*6 the ratio Y = a/z = 1/2 of 
the effective heat-capacity exponents (a) and of the relaxa- 
tion times (z) of the fluctuations of the modulus S remain 
constant. Using the effective values a = 0.32-0.3528s29 
which are constant in this temperature interval, we obtain 
z = 0.64-0.70. This agrees with the value given above for 
and shows that for the nematic phase of MBBA the kinetic 
coefficient y '  does not have in relation (8)  an independent 
singularity near T,. Note that in the isotropic phase of 
MBBA the anomalous change of v, which differs from the 
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Y = Y,, exp(B/T) dependence,' is much less pronounced 
near T, than for the nematic BMOAB.' Thus, the results of 
the independent investigations of the ~ ( t )  and ~ ( t )  depen- 
dences in the MBBA nematic phase agree well within the 
framework relation (8) .  

The pre-transition increase of y '  at T, - T <  0. lo  can be 
due both to natural violation of the dependences (20) near 
T, and to the growth of the fluctuations of the modulus S in 
this region. The latter can be ascertained by estimating the 
parameter ?t [see (6 )  ] using the values, shown in the figure 
ofx,  of the temperature dependence of the correlation radius 
r = and also the values of the parameter r, = 6 A 
(Ref. 3) and the value a = 0.093 J/cm3.K obtained from 
independent data on induced electric and magnetic birefrin- 
gence in the isotropic phase.30 As a result we obtain for 
T = T, - 0.05" and S = 0.32 (Refs. 26 and 30) in the corre- 
lation volume of the sample x = 0.056, i.e., the Levanyuk- 
Ginzburg criterion ( 7 ) ,  which is well satisfied at the N-I 
transition point itself. This makes the Landau-de Gennes 
theory applicable to the description of the N-I transition in 
the given specific compound. This probably holds also for a 
larger group of objects, if it is recognized that the parameters 
S, r,,, Y', and a used here are typical also of other known 
 compound^.^ 

As seen from the figure, at the value To - T, -0. lo  typi- 
cal of nematics the value of x decreases compared with 
X(  TZ T, by one order already at T, - T=: 3-4", and b two 
orders only at AT = 40-50". This is due to the nature of the 
N-I transition and to the inequality y ' <  1. As a result, the 
principal change takes place in a narrow temperature region 
t 5 T,. This explains the narrowness of the interval of the 
nematic phase A, = 1 - T,, /T, , which corresponds to the 
position of the tricritical point on the line of the N-A phase 
transitions. In fact, a tricritical point is the result of the van- 
ishing of the coefficient' 

P=Po-'Izh2x (21) 

in the invariant l $ I 4  in the expansion of the density of the 
thermodynamic potential of the smectic A in the modulus of 
the smectic order parameter. The renormalization resulting 
from the interaction of the parameters of the nematic and 
smectic orders is determined by the longitudinal susceptibil- 
ity X, which is appreciable in real nematics only in a narrow 
vicinity of T,. It is this which leads to the smallness of A,. 

On the other hand, within the framework of the Maier- 
Saupe theory, on which the MacMillan theory is based,' T, 
values=: 300 K correspond to the interval T,, - T, =: 3.5" and 
a decrease o f x  by an order compared with X(  T=: T,) takes 
place at AT-30-40", corresponding exactly to the value 
A, = 0.13 (Ref. 8) .  Thus, the smallness of the real values 
A, = 10 2-10 "Ref. 3) is connected with thevery nature 
of the N-I phase transition and the aforementioned singular- 
ities of the behavior of ~ ( t )  An additional factor that de- 
creases the interaction constant /Z in (21) and correspond- 
ingly the value of AT is the orientational melting of the end 
fragments of the flexible molecule chains in the N-A transi- 
t i ~ n . ~ ~  

We note in conclusion that it becomes possible in prac- 
tice to obtain quantitative information on the susceptibility 
X. It is an additional property of liquid-crystal materials 
along with the usually considered quantities such anisotropy 

of the static dielectric constant AE, the birefringence An, the 
ratio of the elastic moduli K3,/K, ,, and the order parameter 
S.  The response X, = K,x of a nematic to any physical ac- 
tion that leads to a change of the modulussand to which one 
can set in correspondence in the thermodynamic potential 
(9 ) the term K, hS can be expressed in terms of x ( 13). The 
role of the external perturbation can be played also by reso- 
nant actions on the intramolecular degrees of freedom which 
leads to a change of the internal state of the molecules, of the 
intermolecular interaction, and of the modulus S i n  the sam- 
ple. 
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