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Bose-Einstein condensation (BEC) of a dilute nonequilibrium gas of finite-lifetime bosons (e.g., 
excitons in a semiconductor) generated by an incoherent external source and cooled in a phonon 
thermostat is investigated. Even at T = 0 ( Tis the thermostat temperature) BEC arises only if the 
gas density exceeds some threshold n > n, =: V ;  'rphon /T (where V ;  ' is the wave vector of the 
generation region, T is the boson lifetime and rphon the mean boson-phonon scattering time). In 
many cases the kinetic equation for T = 0 can be solved analytically. Some features of the phase 
transition with BEC in a nonequilibrium system are demonstrated in the case of simple exactly 
soluble models. It is shown that in the case of excitons or biexcitons the possibility of BEC is 
controlled by the slow relaxation of low-energy (subsonic) particles with rpho, =: 10-4-10-3 s 
and V ;  ' z (mS/fi)3 z 1015 ~ m - ~  ( m  is the exciton mass, S the velocity ofsound). For TZ s 
the threshold density should be very high-n, 2 10'' ~ r n - ~ ;  at such densities the distance between 
excitons is of the same order of magnitude as their radius. Thus it is impossible to obtain BEC of a 
dilute (bi)exciton gas only by phonon cooling provided the lifetime is not very long, T 2 lop3 s. 
This could explain why BEC has not been observed in a (bi)exciton system in the c a s e d  
incoherent excitation. 

INTRODUCTION 

Since the time of Einstein's prediction in 1924' of the 
Bose-Einstein condensation effect in an ideal Bose gas, no 
real physical system has been found in which this phenome- 
non is experimentally observed. Liquid 4He is a system with 
very strong interaction. Attempts to obtain Bose condensa- 
tion in dilute, very cold atomic hydrogen did not succeed.' 
Great hopes were placed on semiconducting electronic exci- 
tations of the Bose type-excitons (bound hydrogenlike 
states of electrons and  hole^),^,^ and also on biexcitons (ex- 
citonic molecules). A large number of experimental and 
theoretical studies (a  survey of which can be found in Refs. 
5,6) have been devoted to the problem of Bose condensation 
of (bi) excitons. In a number of semiconductors a (bi)exci- 
tonic gas with a Bose-Einstein (non-Maxwellian) distribu- 
tion has been successfully obtained7v8 (see also Ref. 6) and 
the degeneracy limit has even been approached; however, a 
Bose condensate with k = 0 has not been recorded-with 
the exception of experiments using two-photon ex~itation,~ 
in which coherent biexcitons are directly excited. 

Observation of Bose condensation in an excitonic sys- 
tem is favored by: small particle mass and, consequently, 
comparatively high transition temperatures; the possibility 
of easily varying the gas density by changing the level of 
optical excitation of the semiconductor; the presence of self- 
luminescence, the analysis of the spectrum of which permits 
observation of the particle energy distribution function and, 
therefore, allows one to fix the fact of Bose condensation. At 
the same time, luminescence is a consequence of the finite 
lifetime of (bi)excitons-a property of excitonic "material" 
which distinguishes it in a fundamental way from ordinary 
material and complicates Bose condensation. As far as we 
know, the effect of the finite exciton lifetime on Bose conden- 
sation has gone practically unstudied in the literature-in 
comparison, for example, with the role of many-body ef- 
fects. I' 

The finite lifetime is a consequence of the fact that exci- 

tons, like all electron and hole states in general, are semicon- 
ductor excitations. Experiments on them require a constant, 
or initial, excitation, and any state of an excitonic system, 
even a stationary or constant excitation, is fundamentally 
nonequilibrium. This very circumstance is essential to the 
possibility of quantum generation of an excitonic system. 

The goal of the present study is to analyze the possibil- 
ity of forming a Bose condensate in a system of nonequilibri- 
um particles with a finite lifetime. We study the simplest 
model of an ideal boson gas, having a finite lifetime, genera- 
ted by an incoherent external source, and thermalizing due 
to interaction with a phonon thermostat. It turns out that 
even for a T = 0 thermostat temperature, a Bose condensate 
is formed in such a system when the excitation exceeds some 
threshold value (that is, beginning with some critical value 
of the density of the boson gas, depending on the boson life- 
time and the cooling rate). Thus, if in the case of a dilute gas 
of stable particles the basic experimental difficulty in observ- 
ing Bose condensation is ultra-low cooling, in the case of a 
nonequilibrium system there also arises a requirement on the 
excitation intensity. 

For example, for a dilute exciton gas2' at T = 0 the criti- 
cal density is of order 1015 T,,,,/T (cmP3), where r is the 
exciton lifetime, and rphon is the characteristic scattering 
time of a slow exciton on phonons; the exciton speed is less 
than that of sound. Since the latter is very high, 
rPhon =: 10-3-10-4 s, from which it follows that phonon re- 
laxation cannot ensure Bose condensation of a dilute exciton 
gas, unless the excitons have a very long lifetime-on the 
order of milliseconds and longer. [An excitonic gas can be 
considered dilute if its density is less than ( 10W2-lo-') a, 
5 1015 ~ m - ~ ,  where a ,  is the Bohr radius of the exciton. At 
higher densities it is impossible to neglect, as we have in the 
present study, exciton-exciton interaction and the composite 
nature of the exciton.] 

An earlier analogous problem (for a biophysical mod- 
el) was discussed by Frohlich13 and not long ago by Duf- 
field14-in the simplest approximation, in which the matrix 
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element for interaction with photons is taken to be indepen- 
dent of the transmitted momentum. In contrast to these 
studies, we limit ourselves to the T = 0 case, which allows a 
clear solution in a series of simple models of the kinetic equa- 
tion; this leaves the possibility open of taking into account 
the dependence of the matrix element on the transmitted 
momentum. As a result, in the exactly soluble models one 
can study the properties of a phase transition (at T = 0)  
with Bose condensate formation in a nonequilibrium system 
with relaxation, and also evaluate the threshold excitation 
intensity necessary to observe Bose condensation. Natural- 
ly, the values of threshold intensity obtained at T = 0 are 
lower bounds, since they grow as the temperature increases. 

The structure of this study is as follows. In Sec. 1 we 
introduce the familiar kinetic equation (at T = 0)  for a gas 
of bosons with a finite lifetime, generated by an incoherent 
external source, with cooling by phonon emission. The con- 
ditions for forming a Bose condensate are analyzed. In Sec. 2 
we discuss the simplest model with a boson-phonon interac- 
tion matrix element independent of the transmitted momen- 
tum (the Frohlich model). In this approximation we not 
only successfully obtain the Bose condensation conditions 
and calculate the stationary boson distribution function in 
the statistical limit, but also track how, in the limit of a tran- 
sition to an infinite volume, a phase transition arises upon 
Bose condensate formation. Besides this, the condensate for- 
mation time (which, as in a system of stable particles,15 di- 
verges in the statistical limit) is evaluated. In Sec. 3, a model 
with a power-law dependence of the matrix element on the 
transmitted momentum is considered; this is responsible for 
the relaxation of slow 3D-excitons due to an isotope-scatter- 
ing type process. In the Appendix, 7,,,, is evaluated for slow 
cxcitons. 

1. BOSE CONDENSATION OF A WEAKLY NONIDEAL BOSON 
GAS WITH A FINITE LIFETIME 

We will consider (at T = 0)  a weakly nonideal boson 
gas with a finite lifetime, generated by pulses from an exter- 
nal source distributed in space and thermalized by weak in- 
teraction with a phonon thermostat. This is the simplest 
nonequilibrium model in which we can expect Bose conden- 
sation. We will begin with a system in a finite volume V. Bose 
condensation will be studied in the statistical limit V, N) 1, 
n = N / V a  const. ( N  is the total number of particles in the 
system.) 

At T = 0 the kinetic equation for the boson occupation 
number f, has the form 

Hereg,, rP , and&, = E, + p2/2m are respectively the gener- 
ation rate, the lifetime and the frequency of the bosons; m is 
their mass; and W(q,p) is the frequency of transition of 
states q into p with phonon emi~sion.~'  

Equation ( 1.1 ) assumes that the phonon thermostat is 
in equilibrium at T = 0-that is, there are no phonons in the 
system. This equation is the limiting form (for T = 0)  of the 
equation studied by Frohlichl3 for the case of constant 5 ,  
rP = .r = const, and uniform g, inside a sphere of radius 

Pmax : 

wherep - lpl. In Ref. 13 it was assumed that 

W (p, q) =const. I exp ( E ~ / T )  -exp (ep/T) I. (1.3) 

Then the corresponding equation is greatly simplified, and 
the solution in the stationary case contains the Bose-Einstein 
factor: 

where the value ofp, analogous to the chemical potential for 
the equilibrium case (7 = co ) tends from below toward the 
energy of the fundamental mode as the pumping intensity 
grows: p - E ,  - 0. The population of this mode grows with- 
out bound. In the statistical limit, examined in Ref. 14, a true 
phase transition takes place at some critical excitation 
g = g, : p becomes equal to E, and forms a Bose condensate 
with p = 0. We note that all the results of Ref. 14 are also 
obtained for a very special form of the function W(p,q). 

In this study, as in Refs. 13 and 14, the boson lifetime 
will be taken as constant, and the generation as uniform in- 
side the region ( 1.2). In application to excitations in indirect 
semiconductors, the first condition is completely valid. The 
second condition, at first glance, seems inadequate. It is also 
not clear what the value of p,,, might be. However, if the 
charge carriers in the semiconductor are excited sufficiently 
highly in the conduction band, then excitons arise only as a 
result of electron and hole cooling, initially due to 'emission 
of a cascade of optical phonons (the characteristic time for 
this process is lo-'' s), then a cascade of acoustic phonons 
(here the characteristic time is 10- '~-10-~ s),  and finally 
due to binding into an exciton ( s) .  The cooling process 
of both current carriers and excitons is sharply slowed in the 
region of small momentap <p, = mS (where S is the speed 
of sound in the semiconductor). For T < mS =: 1 K (we are 
interested in just this low-temperature behavior), a "bott- 
leneck" arises in this region of small pulses which controls 
the exciton distribution near k = 0. Furthermore, in evalua- 
tion we will consider that the fast cooling process of elec- 
trons and holes and their binding in excitons causes this re- 
gion to be uniformly populated by excitons; that is, we will 
assume p,,, = p in Eq. ( 1.2). Uniformly of population is 
ensured not only by the presence of different, practically 
equally probable, cascade cooling processes, but also by the 
fact that in the initial stages of cooling the excitations have 
Fermi statistics and do not undergo exchange attraction to 
the strongly and nonuniformly populated region of mo- 
menta near k = Oe4' 

As regards the form of the function W, in actuality the 
matrix element for phonon interaction usually decreases as 
the phonon momentum decreases. Therefore W(p,q) does 
not have the form of Eq. ( 1.3), and the steady-state distribu- 
tion is not Bose-Einstein. However, for T = 0 and a power- 
law form of W(p,q), the steady-state equation ( 1.1 ) in the 
statistical limit turns out in many cases to be exactly soluble. 
The simplest example, when W(p,q) is just constant (the 
Frohlich model), is examined in Sec. 2. Another example 
(Sec. 3) corresponds to phonon cooling of 3 0  excitons in the 
regionp <p, due to isotope scattering. A dependence of the 
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form 

arises (see the Appendix), with w determined by (A8), and 
v = 3 .  

In the statistical limit, accounting for the possibility of 
forming a Bose condensate with density 

no = lim folV, 
V-tm 

Eq. ( 1.1 ) can be written in the form 

Here dq- (277) - ddq,dq2. . .dqd, and d is the spatial dimen- 
sionality of the system. 

Before going on to an analysis of specific models, we 
will make several observations. First, the solution ( 1.5), 
(1.6) satisfies the obvious law of conservation of particle 
number 

(aiat+ii~).= j dqg, (1.7) 
~<P<P",.%* 

where 

is the total boson concentration. 
Second, the right-hand part of Eq. (1.5) for the Bose 

condensate density is proportional to no. Therefore, the solu- 
tion of this equation with the initial condition no], = , = 0 is 
no(?) = 0. A Bose system also has this property for r = a. 
In conditions when Bose condensation is possible, this solu- 
tion is unstable. However, in order to evaluate the time for 
development of this instability, it is necessary to consider a 
finite system. It turns out that the time diverges for V-. W .  

This result is known for systems of stable bosons.15 In Sec. 
2B we will turn to a discussion of this result, using the exam- 
ple of the exactly soluble Frohlich model. 

Finally, we will examine under what conditions a sta- 
tionary solution of the system of equations ( I S ) ,  (1.6), can 
contain a Bose condensate. It follows from Eq. (1.5) for 
no > 0 that the condition 

should be fulfilled; this has an obvious physical meaning: the 
departure of particles from the Bose condensate should, un- 
der steady-state conditions, be completely balanced by their 
arrival from other modes. The intensity of boson generation 
clearly does not enter into this condition of balance in the 
statistical limit, since 

lim gz/V=O, 
v-+m 

that is, the Bose condensate is not generated directly by the 
external source. 

Condition (1.8) and Eq. (1.6) allow determination of 
the asymptote of the stationary distribution function for 
p-0: 

- ( p $ )  dqf, a W ( p 7 q )  I I - ' ,  np0. 
a ~ p  p=o 

(1.9) 

If W has the form ( 1.4) and v > 0 holds, and the boson spec- 
trum is quadratic, then for no > 0 we have& a l/p2. There- 
fore, in the given dissipative system the Bogolyubov theorem 
on singularities of the l/q2 type16 is fulfilled. Since the func- 
tion& should be integrable for p -. 0, we can conclude that in 
one-dimensional and two-dimensional systems Bose con- 
densation in a system of particles with a finite lifetime is 
impossible also for T = 0. 

If v = 0, then f I,,, a const even for no > &so that 
Bose condensation at T = 0 is possible both in one-dimen- 
sional and two-dimensional systems. Analysis of equations 
( 1.1 ) for T # O  shows that at finite temperatures the Bose 
condensate is destroyed. 

The relation ( 1.9) allows us to analyze the question of 
the Bose condensate in a system with a finite lifetime and 
with other forms of the function W. For example, in the case 
W(p,q) = xlpE - qE I, 620, a Bose condensate is possible 
only for { < d. Therefore, for specific forms of interaction a 
Bose condensate is not always possible even in the three- 
dimensional case. An example of such a situation ({ = 1, 
d = I ) ,  when with growth of the excitation intensity the 
steady-state distribution becomes more and more narrow, 
but a Bose condensate, strictly speaking, does not arise, is 
presented in Ref. 17. 

2. THE FROHLICH MODEL 

Let W(p,q) = const. Since a similar approximation was 
considered by Frohlich in Ref. 13 [not for W, it is true, but 
for the value ( 1.3) 1, we call this the Frohlich model. We 
have already said above that it does not, apparently, have a 
direct relation to the real exciton systems in semiconductors. 
However, many of the rules for Bose condensation in a sys- 
tem of particles with a finite lifetime have become clear from 
this simplest model. 

We reduce Eqs. ( 1.5 ) and ( 1.6) to a more convenient 
form, transforming to dimensionless variables E = E, /E, , 
7 = E,, /E, and a dimensionless generation rate, condensate 
density and phonon relaxation time G = g ~ ,  No = n,V, and 
D = r,,,, /r. Here 

~,=p.'/2m, Vo='lzdI' ('lzd) (m~ . /2n ) -~"a  (X.) 

(l? is the gamma function, X, is the deBroglie wavelength of 
bosons with E ZE, ), and the value 

is the characteristic scattering time on phonons for E 5 E, 

[for a dependence W(p,q) of the form ( 1.4) 1. 
Having set v = 0, we will turn to the Frohlich model. 
A .  Stationary distribution. Let q, ( y ) = f ( y2'd ) and 
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In the stationary case the equations ( 1.5) and ( 1.6) take the 
form 

No[F(O) -D]=O, (2.3) 

F1[2F-G-D-XI-F-GD=O. (2.4) 

The condensate density No follows from Eq. (2.4) as a con- 
sequence of the conservation law ( 1.7), having, in the sta- 
tionary case and in dimensionless variables, the form 

No+F (0) =G. (2.5) 

The solution of (2.4) satisfying the obvious boundary condi- 
tion 

has the form 

Therefore, using (2.5), we find that 

and the critical value of excitation intensity is 

In the Frohlich model the threshold condition (2.9) is pre- 
served, if the excitation by an arbitrary form is inhomogen- 
eous in momentum space. It is satisfied for the average value 

The threshold steady-state boson concentration 

corresponds to the threshold excitation intensity (2.9). The 
physical meaning of this relationship is obvious: the longer 
the boson lifetime, the faster they cool off on phonons and 
the higher the degree of "quantum nature" ( Vo cc k t ) ,  the 
lower the Bose condensation threshold. Equation (2.10) 
gives the correct (to within a numerical factor depending on 
the form of W) value of the threshold concentration for 
T = 0 also in the more general case than the Frohlich model 
examined (the problem of Sec. 3 can serve as an example). 
Thus it can be used to evaluate the minimum excitation in- 
tensity necessary for observation of a Bose condensate of 
excitons. In particular, for three-dimensional 
n, =: 1015-r,,,, /T (cmP3). Characteristic phonon times for 
E > E, are of the order of loP9 s; however, in the low-energy 
region phonon, processes are slowed by at least a factor of 
10' (see the Appendix). From this we can conclude that for 
r=: loP6 s (the characteristic lifetime for indirect excitons) 
we have n, 1017-1018 ~ m - ~  even at T = 0. The value of n, 
can be somewhat lower due to fast relaxation in the region 
E > E, (several values are obtained at the end of Sec. 2). But 
even when this is taken into account, large values are ob- 
tained, which means that Bose condensation of a dilute exci- 
ton (or biexciton) gas by a phonon cooling mechanism alone 
is, most often, not possible. 

Turning to the Frohlich model, we cite the form of the 

FIG. 1.  The distribution (2.11 ) for D = 1 and different G; at the right the 
N,(G) dependence is shown. 

continuous part of the steady-state distribution: 

This distribution is shown for various G and D = 1 in Fig. 1. 
To the side, the No(G) dependence of Eq. (2.8) is shown (in 
arbitrary units). At the Bose condensation threshold the 
continuous part of the distribution function has an integra- 
ble singularity at the point E = 0: 

The fact that, after formation of the condensed mode, the 
continuous part of the distribution function again becomes 
finite at E = 0 is a specific feature of the Frohlich model at 
T = 0 [see formula ( 1.9) and the subsequent discussion]. 

B. Steady-state distribution in ajinite volume. It is very 
interesting to analyze the properties of the Frohlich model 
up to the transition to the statistical limit-at T = 0 it is also 
exactly soluble. 

Having eliminated the quantity 

from the first of equations ( 1.1 ) and the conservation law 
(1.7), we obtain a quadratic equation for the quantity 
N o ( n )  =fen-', where = V/Vo:  

Therefore 

No(Q)='/2(G-D-!2-1+ [ (G-D-Q-l)'+4Q-'G (1+D)] '"I. 
(2.13) 

As should happen, in the statistical limit f l +  co the smooth 
function (2.13) changes to one with a kink [Eq. (2.8) 1, 
characteristic of a phase transition; the criterion for a macro- 
scopic system is that 

C. Transition processes. The question of the time neces- 
sary to establish a steady-state distribution in a system with 
Bose condensation has been analyzed in Ref. 15. Although a 
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system of stable bosons was studied there, the basic conclu- 
sions remain valid for bosons with a finite lifetime. That is, 
the closer a level is to zero (at which condensation takes 
place), the longer it takes to establish a stationary popula- 
tion. If at the initial time the system has no Bose condensate, 
then the steady-state value of its density is established, for- 
mally, at infinite time (that is, it diverges in the statistical 
limit). We will illustrate this with an example from the 
Frohlich model. To do this, it is simplest to solve the first of 
Eqs. ( 1.1 ) with the initial conditions 

Condition (2.14) guarantees the absence of a condensate 
initially, and conditions (2.15) allows 2; to be eliminated 
from Eqs. ( 1.1) for f, as in the derivation of (2.12). We 
assume that G is the stationary value of the total concentra- 
tion, established over a time T [see Eq. ( 1.7) ] which is small 
compared with the time to establish the steady-state value 
N,,. Therefore the use of (2.15) does not alter the depend- 
ence in question over times of interest to us. The temporal 
equation for No(fl) then has the form 

ax0(sz) 
T ----- = - No2 ( Q )  + (G-D-Q- ' )  No (52) +C: ( l + D )  8 - I ,  

3 t 

with 

If, in Eq. (2.16), we transform at once to the statistical limit 
+ co , we find that the only solution satisfying the bound- 

ary condition (2.17) is No = 0. For G < G, = D this solution 
is stable, and for G>  G,, unstable, in the sense that for a 
small change in the initial conditions, No departs from the 
zero solution and for t +  co goes to the stationary value 
(2.8). To estimate the time scale for the approach to station- 
ary value, it is necessary to solve Eq. (2.16) for finite a. This 
solution has the form 

N o ( Q ,  t ) = N I N , { e x p  [ (N,-Nz)t l . t . l -411 
{ N ,  exp  [ ( N 1 - N , )  t / ~ ]  -Nil. (2.18) 

Here N, and N2 are solutions of Eq. (2.12 ); that is, the func- 
tion (2.13) and its counterpart with a minus sign in front of 
the quadratic bracket. for R$1 and G > D  we have 
N, = G - D, and N2 cc fl-I. From this we see that the char- 
acteristic time to reach the stationary solution (2.16) is 

Thus, in the transition to the statistical limit this value di- 
verges logarithmically. Logarithmic divergence is a specific 
feature of the Frohlich model. If, for instance, W has the 
form ( 1.8) with Y > 0, then to diverges according to a power 
law. This protraction of the transition to a steady-state popu- 
lation of the fundamental level is connected with the fact 
that the Bose condensate density in the initial state was zero. 
In the opposite case the characteristic transition time for the 
process is T. 

From the results obtained here it follows that for pulsed 
excitation, Bose condensation of particles with a finite life- 

time formally does not, in general, take place, no matter how 
high the excitation intensity. In a real experimental situa- 
tion, it is necessary to choose the length and amplitude of the 
excitation pulse according to the spectral resolution attaina- 
ble in studying the distribution function in order to observe 
Bose condensation. 

D. Modified Frohlich model. Let the boson generation 
intensity be constant in the region p <p,,, = (5) dps, X > 1, 
and the matrix element for phonon interaction depend on 
the first argument in a stepwise fashion; thus the scattering 
time in the regionp <p, significantly exceeds the scattering 
time for p >ps : 

where w, 4 w, (that is, T~,,,,,,, , % T~,,~,,,, or Dl  ) D2). Such a 
model permits evaluation of the effect of Bose condensation 
of the region of momentum space with fast relaxation 
(which has been neglected in this work). Obviously this ef- 
fect is maximum in the steady-state case, since the fast relax- 
ation region is quickly depleted through pulsed uniform ex- 
citation-earlier than population inhomogeneity can grow 
in the slow relaxation region. 

If we introduce the function F(x) ,  0 < x  <X (in the 
form (2.2), but integrated to X), it is not difficult to obtain 
equations replacing (2.3 ) , (2.4) and easily integrable. For 
example, for 1 < x  <X the equation for F(x)  coincides with 
(2.4) (in which D must be replaced by D, and the inhomo- 
geneous term by GD,/X), and the boundary condition has 
the form F ( X )  = 0. Therefore for 1 < x < X we have 

As before, when the critical excitation intensity is 
reached Bose condensation occurs in the system. For G> G, , 
the relation 

holds in the place of (2.3 ) . For GGG, we have 

The value of G, is found from the condition that at G = G, 
both these relations are satisfied; using (2.21) to calculate 
F(1) ,  we have 

[where Q = (D, - D2)2 - X(DL - D2 - 2D1D2)]. It is 
easy to see that the existence of a fast relaxation region leads 
to substantial reduction of the Bose condensation threshold. 
For example, ifX, D, ,1$ D2 holds, then in place of (2. lo) ,  
we find 

for the threshold exciton concentration. Since, however, the 
excitons do not arise immediately, but in the final stages of 
the fast relaxation process, the correct value must lie in the 
interval between the values of (2.10) and (2.25). 

3. BOSE CONDENSATION OF THREE-DIMENSIONAL 
EXCITONS COOLED BY ISOTOPE SCATTERING 

We now examine a case which is more complicated than 
the Frohlich model-a function W of the form ( 1.4) with 
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FIG. 4. The A(G) dependence for D = 3/2. 

D 

FIG. 2. The normalized distribution function for D = 3/2 and different G. 

Y = 3, d = 3. It is shown in the Appendix that such a de- 
pendence arises when isotope fluctuations of the exciton- 
phonon interaction constant are taken into account. For this 
form of W, the steady-state distribution has not been ob- 
tained in a precise analytical form; however, it can easily be 
found numerically. 

As in Sec. 2, we will transform to dimensionless vari- 
ables E,V. We introduce the function 

1 

Then Eq. (2.3) preserves its form, but in place of (2.4) we 
get the fourth-order linear differential equation 

where 

@ ( E )  =A+EB+'I~E~C-E~G-( " / i 0 5 )  &"', 

with boundary conditions: 

F ( l )  = F f ( l )  = F f ' ( l )  = F 1 " ( l )  = 0 ,  (3.3) 
F  ( 0 )  =D+A, F' (0) =B, 

F " ( 0 )  =C, F"' ( 0 )  =B ( N o - G ) .  (3.4) 

The boundary conditions come directly from the definition 
o f F ( ~ )  and Eq. ( 1.6). To obtain the last condition in (3.4) it 
is necessary to use the conservation law ( 1.7), which in this 
case takes the form 

No- ' / ,FU'(0)  =G.  (3.5) 

FIG. 3. The N,(G) dependence for D = 3/2. 

So, the nonlinear differential equation ( 1.6) reduces, 
for Y = 3 and in the steady-state case, to a linear differential 
equation. Nonlinearity is retained in the dependence of the 
coefficients of this equation on the boundary conditions on 
F, F', F" at E = 0. Incidentally, a similar transformation can 
be performed for any d and for odd Y (the order of the differ- 
ential equation and the form of the function Q, is changed) ." 
For even Y the analogous procedure gives a clearly nonlinear 
equation (we saw the example v = 0, the Frohlich model, in 
Sec. 2). 

Before going to the results, we will briefly describe the 
numerical calculation procedure. It consists of solving the 
system (3.4) of four equations in four unknowns A, B, C, and 
No (for given G and D). The nonlinear functional depend- 
ence of F, F' ,  F ", and F" at E = 0 on A, B, C, and No is given 
by the solution of Eq. (3.2) with the initial conditions (3.3). 

From Eq. (2.3) and the first of the conditions (3.4) it 
follows that the value ofA is similar to the chemical potential 
for an equilibrium Bose gas up to the onset of Bose condensa- 
tion we have A < 0; after Bose condensate formation we have 
A = 0. 

We now note some of the numerical results. In Fig. 2, 
the dependence of the normalized distribution function 
3 f,&/G on the dimensionless momentum x = &'I2 is shown 
for D = 3/2. At G = G, z 17, a phase transition with Bose 
condensate formation takes place. In Fig. 2 this is manifested 
in the fact that the asymptote of the function plotted changes 
as x - 0: up to the phase transition we havex2f(x) a x2, while 
after it we have x2f(x) a const. In Fig. 3, the corresponding 
dependence of the Bose condensate density on pump intensi- 
ty is shown, and in Fig. 4, we show the dependence of the 
quantity A, which plays the role of a chemical potential. In 
this model, the critical pumping density in a wide range of 

FIG. 5. The G, ( D )  dependence. 
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values of D satisfies a relationship like Eq. (2.9) to within a 
numerical factor: 

[an example of the G, (D) dependence is shown in Fig. 51. 
The author is indebted to N. A. Gippius, A. L. Ivanov, 

L. V. Keldysh, and D. A. Kirzhits, and also to the partici- 
pants in the seminars of V. L. Ginzburg, L. V. Keldysh and 
A. A. Rukhadze for useful comments and discussions. 

APPENDIX 

RELAXATION OF SLOW EXCITONS 

Phonon emission by slow excitons (with 
p <ps = .mS/f i )  is presented by the requirement that themo- 
mentum and energy conservation laws both hold simulta- 
neously, and phonon relaxation is sharply slowed. However, 
the energy conservation law is exactly satisfied with regard 
to the total width of levels participating in excitation scatter- 
ing. It is also not satisfied if we account for the occasional 
variation of the exciton-phonon interaction constant in the 
crystal-for example, due to variation of the isotropic com- 
position, i.e., processes such as isotope scattering. We will 
evaluate the corresponding contributions to exciton relaxa- 
tion in the region p <ps . 

If we neglect the spread of exciton and phonon levels 
and assume that the exciton-phonon interaction constant 
does not depend on position in the crystal, then, as is well 
known, 

Herep is the crystal density, and D is the deformation poten- 
tial constant for excitons. The presence of the S-function in 
( A l )  causes W to be exactly equal to zero in thep <ps re- 
gion. 

Forp,q Zp, we have, in order of magnitude, 

(This value gives the characteristic time for exciton-phonon 
processes for p Zp, : rph,, z W& z 10 - s. ) 

Line broadening may be crudely accounted for by sub- 
stituting for the S-function in (A1 ) the expression 

where y  is the total level width. To evaluate this we can 
consider that the basic contribution is from broadening of 
exciton levels connected with the finite exciton lifetime 
( y  =: r- I ) . The phonons participating in scattering are long- 
wavelength and long-lived and do not contribute to y. In 
order of magnitude, we find that for q,p 5p,  

Thus, due to the finite level width relaxation takes place in 
the regionp <p,, but is slowed by a factor of ~ , / y z  10'-lo6 
(for y z  10'-lo6 s-I). 

We turn now to the contribution due to isotope scatter- 
ing. This can be evaluated more exactly; in fact, an exact 
expression for the function W(p,q) can be obtained. 

If the deformation potential constant changes random- 
ly in space, we must use in place of (A1 ) the expression 

Here K(k)  is the Fourier transform of the deformation po- 
tential function: 

K(k) = j d3reikrK (r), 

K (r) =D (0) D (r) -D2. (A51 

For the simplest estimates we can assume that 

where ro is the correlation radius of the deformation poten- 
tial. In addition, we can use the approximation kro< 1 (since 
we are interested in small momentum transfers) in calculat- 
ing (A5), and reduce (A4) to the form 

where 

In order of magnitude, 

The quantity A/D can be evaluated from the following con- 
siderations. As is known, the exciton-phonon interaction 
constant contains M ' I 2  in the denominator, where M is the 
mass of the nucleus. If follows that 
AID z (AM /M)*z holds (here AM is the amplitude 
of variation of M due to variation in the isotopic composi- 
tion). Since we have p, ro 4 1, relaxation in the p <ps region 
is slowed by at least a factor of lo6 due to isotopic scattering. 
We see that this contribution to the relaxation is weaker than 
that from the level spread. But, when the exciton lifetime is 
sufficiently large, r z  10-3-10-4 s, it can be dominant. 

"At low temperatures the interaction between nonequilibrium current 
carriers causes a large variety of aggregate states in excitonic material- 
in the phase diagram, exciton and biexciton gases border on a Fermi 
electron-hole liquid and a plasma (a  discussion of a different phase dia- 
grams can be found in Ref. 10). For experimentally accessible tempera- 
tures the transition of the exciton gas to a metallic liquid can occur 
earlier (for lower densities) than quantum degeneracy. Therefore it is 
not at all simple to select the conditions for observing Bose condensation 
of excitons or biexcitons. Besides, upon density increase the fact that 
excitons are bound states of two fermions begins to be expressed-as a 
result, the properties of the Bosecondensate change substantially. ' I  Inci- 
dentally, as a rule there is an attraction between excitons, and only con- 
densation of biexcitons is possible (excitons in Cu,O, for instance, are an 
exception7). It is necessary to take special measures to observe Bose 
condensation of excitons-for example, spin orientation by a magnetic 
field.' 

''In this work no distinctions are made between excitons and biexcitons, 
since we are considering only their interaction with phonons. Since the 
interaction of excitons with photons (polariton effects) has not been 
accounted for, the results obtained can be applied directly only to indi- 
rect excitons. Phonon cooling of direct excitons, taking account of polar- 
iton effects, was considered in Ref. 12, but without accounting for the 
possibility of Bose condensation, in the approximation of small occupa- 
tion number. 

3'Here, except in the Appendix, the system of units with f i  = k, = 1 is 
used. 

4'If excitons were formed immediately, the exchange attraction in the fast 
cooling process would substantially lower the Bose condensation thresh- 
old. At theend of Section 2, several values obtained in the framework of a 
somewhat modified Frohlich approximation are presented. 
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"For example, for v = 1 an equation of form (3.2) is found to be second- 
order and can be solved exactly. 
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