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A theory of nonlinear surface acoustic waves in solid dielectrics containing paramagnetic 
impurities is constructed. Waves are considered that are formed under conditions where the 
effects of anharmonic lattice vibrations and dispersive and coherent interactions between the 
wave momentum and impurities are important. It is shown that, under the conditions in which 
the momentum envelope has an area O 4 1, nonlinear waves are formed in the shape of double 
solitons. The formation of a nonlinear acoustic wave as a result of anharmonism, dispersion, and 
attenuation is studied. The conditions for the experimental observation of the predicted nonlinear 
phenomena are discussed. 

1. INTRODUCTION 

Surface acoustic waves (SAW) can propagate along the 
interfaces of different media. At sufficiently low amplitudes 
of these waves, their properties can be described adequately 
within the framework of linear SAW theory, which has been 
developed in great detail.' With increase in amplitude, non- 
linear effects become important. These effects are especially 
pronounced for high-frequency SAW with w - 109-10'0 Hz. 
Among nonlinear phenomena, the greatest interest attaches 
to those which lead to the formation of solitons. Theoretical 
investigations of the properties of SAW solitons have been 
carried out, for example, in Refs. 2 and 3, while experimental 
observations are reported in Ref. 4. 

The investigations of the properties of nonlinear SAW 
in dielectrics follow two trends. In the first the solitons are 
formed under conditions of nonlinear coherent interaction 
of SAW with paramagnetic impurities contained in the me- 
dium, i.e., under the conditions of acoustic self-induced 
transparency (SIT). In the second the nonlinear waves are 
formed as a result of effects connected with anharmonic lat- 
tice vibration and dispersion. In the case of acoustic SIT, at 
sufficiently large values of the coefficient of resonant acous- 
tic absorption a, - G 2nok, the following condition is neces- 
sary for the observation of a soliton (or double soliton) : the 
area of the SAW pulse envelope must be O > n- or 0 4  1, 
where O- GTku, G being the constant of spin-phonon cou- 
pling, no the concentration of the parametric impurity, k the 
wave number, T the pulse length, and u the value of the 
strain vectore2 

From the inequalities given above, it is evident that for 
high-frequency SAW, in the case of typical values such as 
k-lo4-lo5 cm- ' ,  T-10-~-10-' s, and large values of 
G- 10'-lo3 cm- ' /unit strain (such values are realized, for 
example, for the impurities V3 + , Fe2 + and Ni2 + in the 
MgO crystal5s6 ), the conditions of formation of nonliner 
SAW are easily satisfied at rather low values of the strain 
vector. At small values of u, the anharmonic effects lattice 
vibrations are insignificant and can be neglected. In solids, 
however, the concentration of paramagnetic impurities and 
the constants of spin-phonon coupling change over quite 
wide  limit^.^ Moreover, in certain situations (see, for exam- 
ple, Ref. 7 ) ,  if the direction of propagation of the wave 
makes an angle if # O  with the external constant magnetic 
field, then the coefficient of resonant acoustic absorption is 

and the area of the momentum envelope is 

O -GTku cos 0.  

Therefore, in the general case, the quantity GTk cos 8 can 
turn out to be rather small, and for satisfaction of the in- 
equalities given above it is necessary to apply pulses for 
which u is no longer small. In this case, the anharmonic 
effects which, together with the dispersion, produce nonlin- 
ear SAW, become important. Consequently, we arrive at a 
physically interesting situation-two completely different 
mechanisms of formation of nonlinear SAW can be effective 
simultaneously. In this case, the picture of the nonlinear 
wave process becomes very complicated and there is not an- 
swer yet to the question as to what sort of laws govern the 
formation of nonlinear SAW. It is precisely this question 
that we shall consider in this paper. 

2. DERIVATION OF EQUATIONS 

It is known that SAW propagating along a free surface 
of a solid or along the boundary of a solid with other media 
have different forms and are distinguished from one another 
by boundary conditions characterizing the wave process on 
the boundaries in the media.' We shall consider the follow- 
ing case in detail: the propagation of a Rayleigh wave along a 
free plane boundary of a nonmetallic diamagnetic solid con- 
taining a small concentration of paramagnetic impurities 
with electron spins J and nuclear spins I. For simplicity, we 
shall assume that J = I = 1/2. We shall also assume that the 
solid medium occupies the half-space x ,  < 0. We consider 
the case in which a Rayleigh-wave pulse with duration 
T< T I , ,  , frequency w, , and wave vector k propagates with 
the positive x, direction along the surface of the half-space 
( TI,, are the longitudinal and transverse relaxation times). 
An external, constant magnetic field Ho is applied to this 
same direction. Upon satisfaction of the condition 
w, = w, + w,, the Rayleigh wave can induce resonance 
transitions in the electron-nuclear spin system (w, and w, 
are the Zeeman frequencies of the electron and nuclear 
 spin^).^ Using an expansion in the coherent states of the 
acoustic field, the components of the strain vector of the 
Rayleigh wave can be represented in the following form223s8 : 

a,- G2n,k cos 6 ,  where the function 
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takes into account the transverse structure of the field and is 
determined from physical considerations, namely the condi- 
tion of the stresses on the free surface of the medium and the 
Bose creation and annihilation operators a: and a, of the 
Rayleigh modes, while the quantities 

determining the rate of damping of the wave along the x ,  
axis; c, and c, are the velocities of the longitudinal and trans- 
verse acoustic waves, p: = W2pwkNoV, p is the density of 
the medium, No is the number of sites in the lattice, V is the 
volume of the medium. In what follows, we shall assume that 
ti= V = n o = l .  

The dispersion relation is given by the equation 

where c is the velocity of linear SAW and h is a quantity of 
the order of the lattice constant. 

The Hamiltonian of the investigated model has the 
form 

where 

corresponds to the Zeeman interaction with the magnetic 
field, 

is the Hamiltonian of the hyperfine interaction, 

is the Hamiltonian of the system of phonons, 

kk'k" 

is the Hamiltonian of phonon-phonon interaction, the vertex 
function of three-phonon interaction is 

jag:' ap:.) ap? 
Cijklmn --- 

axj axl ax, 
dr, 

ijh 

where the coefficients cgk,,,,, are known as the third-order 
elastic ~ons t an t ,~  A is the constant of hyperfine interaction, 

H.!='/,L (E+S-+E-S+) 

is the Hamiltonian of spin-phonon interaction in the rotat- 

I 
ing-wave approximation, where 

F,, is the component of the tensor of the SAW spin-phonon 
 interaction,^, is the Bohr magneton, E, = 4 ( E  + + E - ) is 
the component of the SAW strain tensor, and 
S+=J*  + I T .  

The equation of motion for the operator quantities a f ,  
and a,  are easily obtained by using the Hamiltonian (2):  

where the dot denotes differentiation with respect to time 
andA, = a k  +a,,?. 

Similarly, for the spin operators S +  and 
Sf = 4 (Jf - If) we have the equation 

where wo = w,  + w,.  It is assumed here that T , , ,  - oo. 
It should be noted that the obtained Eqs. (3)  and (4) 

remain valid, apart from notation, even in the case in which 
the SAW excites only electron spins of the paramagnetic 
impurities with J = 1 .  Generally speaking, Eqs. ( 3) and (4) 
are quantum-mechanical and, as a consequence, the dynami- 
cal laws following from them are very complicated. How- 
ever, the investigation of the corresponding classical equa- 
tions is sufficient for our purposes. The transition to them is 
carried out under the assumption that the quantum correla- 
tions between spins and phonons are negligible. In this ap- 
proximation, the mean of the products of operators is equal 
to the product of the means, i.e., (S * ,',E * ) z ( S  * *') ( E F  ), 
(the semiclassical approximation). Moreover, we take it 
into account the soliton (double soliton) SAW is a nonlinear 
wave, corresponding to the state in which a macroscopically 
large number of surface phonons is excited and, consequent- 
ly, the quantum fluctuations can be neglected. Using the 
well-known properties of coherent  state^^^^^^ : 
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is the area of the momentum envelope of the SAW. Here we 

and considering the remarks that have been made, we obtain 
from the set of equations (3) and (4) the following set of 
classical equations of motion for the acoustic field: 

andforthevariablesN= ( S f )  and B * = ( S F ) :  

where u  * = ( E  * ), 2, = a,  + a* ,, l ak)  is the vector of 
the coherent state of the kth mode of the surface phonons, 
the symbol {a,) denotes the set of all amplitudes a,. In 
what follows, we shall for simplicity use the notation x = x ,  
and z = x,. 

3. DOUBLE SOLITON SAW 

Using the method of slowly changing profile, we can 
materially simplify the set of equations ( 5 ) and (6). For this 
purpose, we represent the function U = f ( u  + + u  - ) in the 
form 

where 2, = exp [il(kz - w,t) 1, El are the slowly changing 
complex amplitudes of the acoustic wave, and I runs through 
the values + 1, & 2... . To guarantee the reality of the quan- 
tity U, we set E, = E 5 ,. We note that such a representation 
of the solution of a nonlinear wave equation has been widely 
used in the theory of nonlinear waves." 

Taking it into account that the carrier frequency of the 
acoustic wave w, is at resonance with paramagnetic impuri- 
ties that have two energy levels in the considered simplest 
case, we can represent the mean value of the magnetization 
of the paramagnetic impurities in the form 

This expression, together with ( 7 ) ,  allows us to write down 
the set of equations ( 6 )  in terms of the slow variables 

where 

have used in approximation of a rotating wave, which con- 
sists in the discarding of terms that oscillate with the fre- 
quencies 2 a k ,  3&, ,... . 

In the interaction of an acoustic wave with a resonantly 
absorbing medium, the most significant effects are usually 
observed at exact resonance. Therefore, for simplicity, we 
consider Eq. ( 8 )  at exact resonance w, = w, and the sim- 
plest initial condition, when all the paramagnetic impurities 
are initially in the ground states, i.e., Ninit = - f. 

For the determination of the explicit form of the quanti- 
ty B + + B- , we expand the quantities a,, B1, and N a  per- 
turbation-theory series in the small nonlinearity parameter 

Substituting these expansions in the set of equations ( 8 ) ,  we 
obtain 

where 
t 

, '  - (1.2) 
p.. - , p::' = 8::' r 2 - l6,::) c., e::' 0::) dtr, 

A1=8t9-1-61,+1. 

Taking this expression into account, it is easy to transform 
Eq. (5)  into 

We multiply this equation by the quantity ikp, expy, ( 0 )  
and sum over k. As a result, we obtain the following expres- 
sion on the interface of the media at x = 0 :  

where 

The nonlinear equation ( 10) describes a nonlinear wave pro- 
cess in a bounded elastic medium containing paramagnetic 
impurities. Substituting ( 7 )  in ( l o ) ,  we obtain the following 
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equation for the quantities *Ia' (z,t) = @Ia' ( x  = O,z,t) : 
m 

where 

1 doklZ 1 dzokr' 
W I n ~ ~ 1 z - ~ 2 ~ ~ 2 ,  BI =-- , CI =-- 

k d l  2k2 dl2 ' 
2 

FI,l. = - 2 a 
L P1k,lrkj ~l'f:' i--Plk,l'k, 

L d l  

(2, 2 a F ,  ,. =-- Plk,l,k, 
L dl' 

For further analysis of this equation, we make use of the 
perturbative reduction method, developed in Ref. 11, ac- 
cording to which the quantity *ia'(z,t) can be represented 
in the form 

where 

Y, a exp [in (Qz-Qt) 1, G = E ~  (Qz-kt) , 
T=E~+l t  , k=Qv,, u,=dQ/dQ, 

the quantity q is subject to determination. Such a representa- 
tion allows us to separate from *la' the still more slowly 
changing quantity q, :;' ([,T). Consequently, it is assumed 
that the quantities R, Q and q, :;' satisfy the inequalities 

The "stretchable" variables [and r, and also the quan- 
tity q, are chosen such that between the nonlinear effects and 
the dispersion and absorption effects there can arise an inter- 
action of exactly the same order and unambiguously deter- 
mined by the solvable set of equations ( 1 1 ). In this case, with 
the help of the standard procedure of Refs. 11 and 12, we 
show that this condition is satisfied at q = 1. Substituting 
Eqs. ( 12) in Eq. ( 1 1 ), and calculating the derivatives Y ja', 
YI"', yja),  d\tja'/dz and d2~ia ' /dz2  we obtain the nonlin- 
ear wave equation 

a ' l ' n '  

%'i.,= [ - -2 lok~ ,Z+B~v~-3nQi~~~-C~n  (62+2Qv,) ] Q2, 
hi, ,= Wi-4n10kQ+nQBl-3n2Q2+Cln2Q2, 

XI:;:'= Fi,l,92n' (n-n') t +O ( ~ / k )  , 

n n ' n "  - m 

To determine the values of q, ::', we set equal to zero the 
terms corresponding to like powers of E. As a result, we ob- 
tain a chain of equations: in first order in E 

in second order in E 

l 'n' 

and in third order in E 

It follows from Eq. (1)  that in dispersive media 
W, = W ,  , = 0 and W, , ,  , , = 0. Consequently, according 
to Eq. ( 15), only the following terms of all the quantities 
q, ::' differ from zero: q, A,','p and q, :',, * , . Here, the 
connection between the quantities R and Q, at fixed values of 
I and n, is determined from the relations 

Taking into account that Fo,, =FA,',' =FA:; = 0, we get at 
I = 0 from ( 17) d ;<q, A,',' = 0. In what follows, we shall also 
be interested in solutions of (17) that vanishes at [+ a. 
Consequently, under the stated conditions, we obtain 
q, A,',' = 0. We consider below in detail the situation in which 
In = Ion, = - 1. In this case, we have 

Substituting the expressions ( 14) and ( 19), we easily see 
that the following relations hold: 

J,', .,=0, %,,, .,=*QQZ [u,2 (1+R2jQ3) -Clo] -i62;), 

h,l, .,=2& (ok-Qf RZ/2Q2) --2Qa, (20) 
u,=- (noBl,+2QCl,) /2a. 

From Eq. (16) we obtain the connection between q, 
and q, : 

( 2 )  72 ,T l  (1 )  

w*2 . ,z~*z ,+z=x*2 .*1  ( (~*i ,Fl)~.  (21) 

where 
Substituting Eqs. ( 18)-(2 1 ) in Eq. ( 17) we obtain after sim- 
ple transformations an equation for the quantities 
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where 

Thus, we have reduced the set of equations ( 15 )-( 17) 
to a single equation for the unknown function 6, (z,t). If we 
now go over in the latter equation to the variables 
y = z - v, t and t, the equation takes on the form 

This is the well known nonlinear Schrodinger equation 
(NSE)13,14. Under conditions when the quantities p and q 
are positive in the nonlinear equation (22) it is convenient to 
carry out the following change of variables: v = q1/26- , 
z = pl/'X + v,t. Then we obtain the NSE in the following 
form 

This equation has the soliton solution 

where K and v, are the amplitude and velocity of the soli- 
ton3,l3. 

Substituting the solution (25) in ( 12), we obtain for the 
quantity \I, - ,  

y-i = (q) ' " ~ ~ e c h { K [ ~  -($ + v,) t ] )  

The latter solution is a double soliton of the breather type. 
The appearance in Eq. (26) of the factor exp[i(Qz - Rt)]  
indicates the formation of periodic (slow in comparison with 
exp [i(kz - w, t )  ] ) beats in coordinates and time, with char- 
acteristic parameters Q and R, as a result of which the soli- 
ton solution (25) is transformed into the breather solution 
(26). It should be noted that for plane waves a solution of 
type (26) has been obtained in Ref. 12 for the sine-Gordon 
equation, and interpreted as a bound state of a soliton and an 
antisoliton. The solution (26) describes a quasimonochro- 
matic wave with wave number k, frequency a, ,  and slowly 
varying amplitude having the form of a breather. 

4. CONCLUSION 

A quasimonochromatic pulse is usually characterized 
by a central frequency w, (or a corresponding wave number 
k )  and a width w, - w (or a corresponding width in wave- 
number space k - k'). In the propagation of the pulse in a 
dispersive medium, its shape will not remain unchanged- 
the width of the pulse will increase during propagation if 
d 'GI, /dk '#O. This is due to the fact that waves of different 

length 2 rk -  propagate in a dispersive wave with different 
velocities. Along with the dispersion, the absorption pro- 
cesses also lead to broadening of the profile. In the NSE, 
both these effects are taken into account through the term 
pd :,,{ * , with terms proportional to the quantity A responsi- 
ble for the dispersion, while terms containing R are respon- 
sible for the absorption. It should be noted that the reso- 
nance absorption of sound by the spin system leads to 
dispersion of the acoustic wave.6 

On the other hand, the nonlinearity effects produced by 
the anharmonic lattice vibrations, and the nonlinear coher- 
ent interaction of the wave with the paramagnetic impuri- 
ties, lead to a progressive initial pulse profile deformation 
that increases with increase oft.  In the NSE, the nonlinear 
effects are taken into account by the term q l +  16, 1 2 ,  with 
the contribution of the anharmonic oscillatio~s taken into 
account by the term 2Y2/77 while the term R 2/R is respon- 
sible for the interaction of the pulse with the impurities. As a 
result of the competition between the nonlinearity, which 
increases the curvature of the profile of the pulse, and the 
dispersion and absorption that cause the profile to spread 
out, the shape of the nonlinear wave is stabilized-a breather 
state is formed. The conditions of balance between these ef- 
fects is the simplest case, when a pulse of rectangular shape 
of amplitude H and width A is introduced into the medium, 
i.e., 

can be represented by the following relations3: 

HA- (2p/q) '', 4HT (py/2)  -*I. 

In other words, these equations reflect the connection 
between the effects of dispersion, anharmonism, and coher- 
ent interaction of the field with a nonlinear absorbing medi- 
um. 

It should be noted that our results and their interpreta- 
tion are applicable to pulses with sufficiently smooth enve- 
lopes under the condition that the size of the pulse is large in 
comparison with the wavelength, i.e., A k )  1. Moreover, the 
length of the breather should be significantly greater than 
the characteristic length of change of the periodic "beats:" 
AQ> 1. As already mentioned, the quantity A determines 
the contribution from the dispersion effects. It should be 
noted in this connection that the scheme considered in the 
preceding sections has a rather general character and the 
results obtained there for Rayleigh waves propagating along 
the free surface of a medium are easily transferred to the case 
in which a thin layer of another substance is placed on the 
surface of the medium. In this system, SAW can also propa- 
gate as, for example, Sezawa waves and Love waves.' In this 
case, the dispersion relation can be formally represented in 
the same form as for the Rayleigh waves with the only differ- 
ence being that now, in the relation ( 1 ), the meaning of h 
becomes that of a quantity which is determined by the thick- 
ness of the film.3315 Thus, we can distinguish between two 
situations, "internal dispersion," i.e., governed by the dis- 
crete structure of the medium, and "external" i.e., deter- 
mined by the presence of a film on the surface of the sub- 
strate-"geometric" dispersion. 

We consider the quantity 2p/q under the conditions 
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R ')R3A and R -i2c2k 'A. Then we get from (23) 

It is seen from this relation that the quantity 2p/q is always 
positive if q > 0. In the limiting case when the inequality 
2 f l Y 2 4 R  2q is satisfied, effects associated with the anhar- 
monic lattice vibrations become unimportant and the prob- 
lem reduces to the case considered in Ref. 2 of an acoustic 
SIT for SAW. In the other limiting case, under the inequal- 
ities 2 n Y 2 )  R 2q and n3A) R ', effects associated with the 
interaction of the pulse with the paramagnetic impurities 
become small. In this case, the problem reduces to that con- 
sidered in Ref. 3. In the intermediate case 2flY2-R 2q, the 
breather SAW is formed under conditions in which the ef- 
fects of anharmonism, dispersion, and nonlinear coherent 
interaction of the wave with the paramagnetic impurities 
exist simultaneously. 

The solution of Eq. (22) in the case of "external" dis- 
persion is of interest when the inequality 2 n Y 2  ) R 'q holds. 
This condition is satisfied in the case of "resonance" between 
the dispersion and linear absorption: 3c2k 2flA 2 R 2, i.e., 
when q is a relatively small positive quantity. In this case, the 
wave is formed from effects of anharmonism, dispersion, 
and linear absorption, due to the interaction of the acoustic 
wave with paramagnetic impurities. It should be noted that 
this result differs in principle from acoustic SIT (both in the 
case O > n- and for O ( 1 ), under the conditions of which the 
interaction of the wave with the paramagnetic impurities is 
essentially nonlinear. The difference between our present re- 
sult and the formation of a nonlinear wave via anharmonism 
and dispersion is quite evident here. 

For numerical estimates we choose typical values of the 
parameters of the acoustic field and the medium. If it is as- 
sumed that w, - 10" Hz, n- lo8 Hz, A 5 1 cm, T- lop6- 
lo-' s, H-10'-lo2, no-10'8 ~ m - ~ ,  Cijklmn - 10''-1012 dyn/cm2, and h < cm, all the conditions 
given above are satisfied. This circumstance gives grounds 
for hoping that the considered phenomena can be observed 
experimentally. 

Thus, it has been shown that nonlinear waves can devel- 
op in the form of double solitons in solid dielectrics contain- 
ing paramagnetic impurities when a wave propagates under 
conditions in which the effects of anharmonism, dispersion, 
and coherent interaction of the wave with the paramagnetic 
impurities are significant. The explicit form of these waves at 
x = 0 is given by the relation (26), while the quantity 
/3 2) (x) expresses the transverse structure. The dispersion 
law and the connection between the quantities and Q are 
determined by the expressions ( 1 1 ) and ( 19), respectively. 

In conclusion, we note that the results for SAW at x = 0 
given in the present paper can easily be transferred to the 
case of plane volume waves. For this purpose, it suffices to 
introduce corresponding changes of notation in the formulas 
given above. 
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