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A new exchange mechanism of inelastic scattering with spin flip for slow neutrons propagating 
through a spin-polarized medium is studied. The scattering is accompanied by emission or 
absorption of thermal fluctuations of the transverse magnetization of the medium; the weakly 
damped Larmor precession of nuclear spins in the external magnetic field plays the main role in 
these fluctuations. Under the conditions of "giant opalescence" the effect is enormous and the 
corresponding cross sections are significantly greater than the standard elastic scattering cross 
sections. Thus in the case of 29 Sir and 3 H e ~  under typical experimental conditions the cross 
sections of these inelastic processes are of the order of lo5-lo6 b. 

A new mechanism of transport processes in spin-polar- 
ized quantum gases which are accompanied by spin flip was 
proposed in Ref. 1. This mechanism is based on the emission 
or absorption of collective spin modes (oscillations of the 
macroscopic magnetization) by paramagnetic particles 
forming the gas, but unlike all previous theories it is of a 
purely exchange origin. The phenomenon under study sig- 
nificantly affects the kinetic properties of the system at quite 
low temperatures, when the characteristic momenta of the 
particles are small, pro <f i  (here r,, is the interaction range). 
The corresponding cross section of this inelastic process is 
comparable to and under certain conditions can be many 
orders of magnitude greater than the typical values of the 
gas-kinetic elastic scattering cross sections. 

In this paper the approach developed previously for the 
case of quantum gases is employed to describe the properties 
of a beam of slow neutrons which propagates through a me- 
dium with polarized nuclear spins. We will be interested in 
the change in the density and polarization of the beam as it 
passes through the target. In other words, our goal is to de- 
termine the mean free paths of slow neutrons in a medium 
with polarized nuclei. Neutrons are knocked out of the beam 
both by elastic scattering directly by the target nuclei and by 
interaction with collective thermal fluctuations of the nu- 
clear magnetization in the medium. The contribution of the 
last mechanism can be gigantic and is observable with mod- 
ern experimental techniques. 

1. The exchange interaction of a neutron and a nucleus 

we shall study a target consisting of nuclei with spin i = 1/2. 
In this case the elastic scattering cross sections in the case 
when the neutron spins are parallel to the nuclear spins as 
well as in the case when the total spin is zero are given by the 
obvious formulas 

It was pointed out in Ref. 1 that at low energies an inter- 
action of the spin with the fluctuating magnetic moment ex- 
ists in the exchange approximation and is very efficient. The 
exchange Hamiltonian for the interaction of the neutron 
with the fluctuations of the macroscopic nuclear magnetiza- 
tion can be derived completely analogously to the problem of 
the interaction of a neutron with the field of density fluctu- 
ations. The correction introduced by the quantum refraction 
of a neutron beam by the nuclei in the target to the character- 
istic energy of a slow neutron propagating in the medium is 
given by the expression 

yherep is the reduced mass of the neutron and nucleus and 
N, is the spinor operator of the density of the medium, which 
in the general case, in the presencepf spin polarization, is a 
linear function of the spin operator i. The density of nuclei N 
and the magnetic moment M per unit volume in the target 
are given by the relations 

(exchange in the sense that the total spin vector of both par- 
ticles is conserved) plays a very important role. The depend- whereb is the magnetic Foment of a nucleus. In the equilib- 

ence of the interaction on the total spin of the neutron and rium state the operator Ni is diagonal, as it should be, and 

the nucleus can be expressed guantitatively in terms of the has the following form: 

neutron scattering amplitudef,, in the following form2: Ri= '12N( l+2d%) ,  a= (N+-N- ) IN ,  N++N-=N. (5)  

Here i and 1 are the nuclear spin and neutron spin operators 
and f, are the values of the scattering amplitude with total 
spin equal to i 1/2. In the case of slow particles, when the 
de Broglie wavelength of the neutron 2?rfi/p is much larger 
than the characteristic size of ro of the nucleus, the quantities 
f, are, to a very high degree of accuracy, constants which 
are independent of the angle and the energy. For definiteness 

Here ?Dl is a unit vector in the direction of spin polarization 
and N* are the populations of the states with spins oriented 
parallel and antiparallel to a. In the general case the fo~mu- 
las (4)  make it possible to express the density operator Ni in 
terms of macroscopic variables 

Substituting ( 1 ) and (6)  into the relation ( 3  ) we find finally 

2nhe nh2 
A,(r,t) =-- aN (r, t )  - - b;jM (r, t )  . 

C1 - '  C1P 
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The first term in (7)  is the well-known Hamiltonian for the 
interaction of a slow neutron with density fluctuations, and 
the corresponding differential inelastic scattering cross sec- 
tion is expressed in terms of the dynamic structure factor of d3p' 

X [s=(q, 0 )  +iS,,(q, o) 1 - 
the m e d i ~ m . ~  The second term in the expression (7)  de- (27th) 

' (1 1) 

scribes the interaction of a neutron with the field of fluctu- Thus finding the angular and energy distributions of the 
ations of the magnetization. It is obvious that in this case the scattered neutrons reduces to calculating the magnetic 
interaction cross section will be determined by the magnetic structure factor of the medium. 
form factor of the medium, i.e., by the correlation function Expressing the form factor S,, (q,w) in terms of the gen- 
of the fluctuations of the magnetic moment. We note that eralized magnetic susceptibility x,, (q,w) (see Ref. 1) we 
even in the equilibrium case, neglecting the fluctuations of 
the quantities Nand M terms of the form (7)  give rise to obtain 

some interesting phenomena, such as quantum refraction, d3p' (12) 
rotation of the neutron spin in a polarized target, e t ~ . ~ ' ~  

As will be made evident below, the greatest effect is 
connected with the inelastic scattering of neutrons by fluctu- 
ations of the transverse magnetization, which to first order 
are not coupled with the density fluctuations. For this reason 
we retain in the Hamiltonian (7) only the purely magnetic 
term. The probability of a transition of the neutron from the 
state Is,,p > into the state <s',,pl( is determined by the well- 
known "golden rule" formula from quantum mechanics 

in which the transition frequency h is given by the relations 

where H is the external magnetic field and m is the neutron 
mass. It  is easy to see that only the matrix elements corre- 
sponding to spin flip are nonzro; this is connected with the 
structure of the Hamiltonian H, in (8). Indeed, the emission 
or absorption of a spin mode is accompanied by a change in 
the magnetization AM, = f 28, which is compensated by 
flipping of the neutron spin. The further calculations are 
analogous to those performed in Refs. 1 and 5. After substi- 
tuting the second term of the Hamiltonian (7)  into the for- 
mula (8) and averaging over the fluctuations of the magnet- 
ic moment, we get the correlation function 

where r = r, - r, and t = t, - t,, and its Fourier component 
Sik (k,o)-the dynamic magnetic form factor-appears in 
the final result. Normalizing the wave function of the neu- 
tron in the starting state to unit flux density and dividing the 
result obtained using the formula (8)  by the number of nu- 
clei in the target, we arrive at the differential scattering cross 
section per nucleus. Thus for the transition I - 1/2, p) - (1/2, p'( we obtain with the help of the indicated proce- 
dure 

where fiq = p - p' is the transferred momentum. The scat- 
tering cross section for the process ) 1/2, p) -+ ( - 1/2, p'J 
differs from Eq. ( 10) only by the sign of the second term 

Herex + = xxX + ixxy, and the function No is determined 
by the Bose-Einstein formula 

If the external magnetic field H is not too weak, so that 
the uniform Larmor precession of the nuclear spins in the 
target decays slowly, the susceptibility x + (q,w) can be rep- 
resented in the form 

where fl, = 28H /ii is the nuclear Larmor frequency and r 
is the relaxation time of the transverse magnetization. In an 
unbounded sample the value of r is determined by the dipole- 
dipole interaction and for this reason can be very large owing 
to the smallness of the nuclear magnetic moment. The relax- 
ation time T can also contain terms of the form ( - Dq2) - ' , 
where D is the nuclear spin diffusion coefficient. Analogous 
(quadratic in q) spin-wave corrections w, also exist in prin- 
ciple in the real part of the spectrum of transverse spin fluc- 
tuations w. These terms are of exchange origin and can play a 
very important role in systems with delocalized nuclei, for '- - 
example, in Fermi liquids like 3He, spin-polarized gaseous 
Ht ,  Dt ,  and 3 H e ~ ,  e t ~ . ~  In systems with localized nuclear 
spins, however, the spatial dispersion in o and r is usually 
small because the overlapping of the nuclear wave functions 
is small. The Larmor gap fl, in the spectrum of the spin 
mode is significantly greater than all nonlocal corrections 
and the inverse relaxation time satisfies R, %w,,T- I ,  at 
least in the typical experimental situation. It is this case, 
which is predicated on the validity of the formula ( 14), that 
we shall have in mind below. 

The expressions ( 12-14) determine the differential 
cross section for scattering of a slow neutron by thermal 
fluctuations of the transverse nuclear magnetization 

Integrating ( 15 1, using the relation 

6 
lim - = n6 (x) , 
a-o ~ ~ + 6 ~  
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we obtain the final expression for the total cross section (per 
target nucleus) : 

where M is the mass of the nucleus. The cross section a, 
given by Eq. ( 17) characterizes the exchange process of 
emission of collective spin modes in the medium by a slow 
neutron moving straight through it. Such fluctuations of the 
nuclear magnetization are basically the uniform Larmor 
procession in an external magnetic field. To avoid misunder- 
standings, however, we stress that it would be wrong to re- 
gard expression ( 17) as the cross section for the emission of 
only a quantum of uniform precession by the neutron. The 
cross section ( 17) corresponds to the emission of an entire 
spectrum of spin modes with all possible wave vectors q [in 
Eq. ( 15) the integration was performed over all scattering 
angles]. In talking about the emission of primarily a quan- 
tum of uniform precession we have in mind only that the 
spatial dispersion is small compared with the contribution of 
the Larmor gap a, in the spectrum of transverse spin fluc- 
tuations. In this sense the momentum +iq transferred to the 
spin mode in the inelastic scattering process is assumed to be 
small, though it can be comparable to the neutron momen- 
tum, which should also be small by virtue of the criterion 
that the particles are slow, pro) fi. For this reason the quan- 
tity (17) should be regarded as the leading term in the ex- 
pansion of the neutron scattering cross section in powers of 
the small momentump (and hence q also). Analogously for 
elastic scattering of slow particles asp + 0 the cross section of 
the reaction approaches a finite and constant limit-the so- 
called s-scattering.' 

In the case of inelastic neutron scattering, accompanied 
by absorption of a spin mode, we have with the help of ( 11 ) 

Substituting the expression ( 14) in Eq. ( 18) for ( - do,), 
we recover expression (15) in which only the sign of the 
term fin, in the exponent must be changed, i.e., 

As a result we immediately obtain for the total cross section 
0 2  

In the thermodynamically equilibrium situation, the 
target nuclei are polarized with the help of an external mag- 
netic field H, the degree of magnetization a can be expressed 
with good accuracy as 

For this reason at high temperatures pH< Tin the leading- 

order approximation the cross sections a, and a, are equal to 
one another 

and are of the same order of magnitude as the usual elastic 
scattering cross sections a + and a- given by the formulas 
(2). This means that even under typical experimental condi- 
tions the mechanism under study makes the same contribu- 
tion to the scattering and depolarization of the neutron beam 
in the target as do the traditional elastic processes, and this 
effect cannot be neglected. At low temperatures T<DH the 
probability of absorption of spin fluctuations a, is exponen- 
tially small, while the cross section a, is two times larger 
than the value given by the formula (22) in the limit pH< T. 

The efficiency of the new scattering mechanism is sig- 
nificantly higher under quasiequilibrium conditions when 
the degree of polarization a of the system is fixed and the 
external magnetic field is significantly weaker than its ther- 
modynamically equilibrium value (2 1 ) calculated for fixed 
a. Such long-lived spin-polarized states can be realized ov& 
times 7, & t<  r,, where r, is the exchange time over which 
equilibrium over the energies (or momenta)is established 
and rs is the relativistic relaxation time of the longitudinal 
magnetization. In systems with polarized nuclear spins and 
not too high concentration of nuclei the quantity of rs can 
reach values of several hours or even days (see below). In 
such states with moderate values of a but in weak magnetic 
fields the conditions for the existence of the so-called giant 
opalescence effect are satisfied; this effect can occur even 
when the relativistic interaction between a paramagnetic 
particle and the spin fluctuations is weak.' In the present 
case the exchange nature of the starting Hamiltonian en- 
hances this effect by many orders of magnitude. In the high- 
temperature limit T%DH with a = const we obtain from 
(17)and(20) 

which under the foregoing conditions is much greater than 
the elastic cross sections a + and a - . 

We also call attention to an analogy between the ap- 
proach developed in this paper and the theory of photon 
emission by particles. In the present case the quanta of col- 
lective spin waves in the medium play the role of photons. 
Thus, for example, the cross sections (17) and (20) satisfy 
the Einstein relations for the probabilities of emission and 
absorption of quanta of uniform precession (neglecting spa- 
tial dispersion ). 

2. We shall study the problem of the passage of a beam 
of slow neutrons through a polarized target on the basis of a 
very rough approximation to the mean-free path, i.e., we 
shall neglect the real structure of the collision integral. We 
shall assume that every scattered neutron is knocked out of 
the beam. The neutron beam can initially be polarized to 
some degree of polarization y, which is determined by the 
concentrations of the neutrons with "up" spins n ,  and 
"down" spins n ,  with the help of the usual relations 

For definiteness we shall assume that the polarization vector 
of the target is oriented parallel to that of the beam (and to 
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the externalmagnetic field). Since the beam density is usual- 
ly low, n ( N ,  the change in the spin states of the target nu- 
clei, i.e., the change in the numbers N ,  and N ,  as the neu- 
trons pass by, can be neglected (strictly speaking, this 
requires that the conditions n ,  < N ,  ,n , < N, be satisfied). 
Then on the basis of the assumptions made above the propa- 
gation of the neutrons in the target is described by the follow- 
ing simple system of linear equations: 

The solution of Eqs. (25) is trivial and leads to the following 
dependence of the density and degree of polarization of the 
beam on the distance x :  

where the effective cross sections a:2 ' are given by the rela- 
tions 

At distances which are small compared with the effective 
mean free path, Eqs. (26)-(27) give 

Under the conditions of giant opalescence with T)DH, 
when a, =:a,) a + , a - , the density of the neutron beam de- 
cays according to the law 

n (x) = noe-N"t", (29) 

and the degree of polarization in the leading-order approxi- 
mation is constant y(x) z yo = const. 

We shall study the quantitative scale of the effect for the 
example of typical systems with polarized nuclei in the situa- 
tion when manifestation of giant opalescence can be expect- 
ed. Vlasenko et al. studied the photonuclear magnetism of 
the magnetically dilute spin system of 29 Si in silicon single 
crystals.' The concentration of 29 Si was equal to only 4.7%, 
which corresponds to the nuclear-spin density 
N = 6.53. loZo ~ m - ~ .  This gave long spin relaxations times 
7, z 30-60 inin which are convenient for performing the ex- 
periment. The nuclear spins were polarized with unpolar- 
ized light from two incandescent lamps at the temperature of 
liquid nitrogen ( T = 77 K) .  Then the polarized sample was 
placed in liquid helium ( T = 4.2 K )  . Under these conditions 
the temperature of the nuclear spin system was equal to 
t 9 ~  K. According to the experimental data on NMR 
the condition n,r) 1 already holds very well in such a sys- 
tem in magnetic fields of order H 2 10 G. For this reason the 
cross sections for inelastic scattering of neutrons by such an 
object, given by Eqs. (7), (20), and (23), are equal to one 
another: 

i.e., they have giant values. The neutron mean free path in 
this case is given by the expression (29) and is equal to 
1z l o 2 - 1 0 '  cm. It is interesting that only 4.7% ofall tar- 
get nuclei (29 Si nuclei which are responsible for this specific 
scattering) determine the neutron opacity of such thin layers 
of matter. If the temperature T does not significantly affect 
the quantity 8, i.e., the degree of nuclear magnetization, then 
it is even more advantageous to perform the experiment at 
higher temperatures. 

Another typical example is spin-polarized 'He?. In this 
case absorption of neutrons by nuclei can also play a very 
important role for the singlet state of the pair of colliding 
particles. The respective terms ( - n  , N ,  a,,, ) and 
( - n ,  N ,  ua, ), where o,, =: 5.4. lo4 b is the capture cross 
section, must be added to the right side of the kinetic equa- 
tions (25) for n ,  and n ,  . The solutions of Eqs. (25) can be 
represented as before in the form (26), except that the addi- 
tional terms SuL$ ' = ua, ( 1  f a )  must be introduced into 
the definition of the effective cross sections (27). As an illus- 
tration we shall consider gaseous 'He?, which is polarized by 
optical p ~ m p i n g . ~  By specially coating the walls of the ex- 
perimental chamber the spin relaxation time r ,  can be in- 
creased up to two and more days.'' The necessary condition 
R,T) 1 in this case is equivalent to the inequality f l ,  $ Dq2. 
Cutting off the wave vector at the inverse mean free path of 
atoms in the gas we obtain the lower limit of the magnetic 
field strength: fl,< %Y,  where Y -  Na2u, is the gas-kinetic 
collision frequency (a is the characteristic particle size and 
u, is the thermal velocity). Substituting the typical values of 
the parameters for gaseous 3He?, namely, N- 1016 cm - ' , 
T- 1 K, and a = 0.5, we obtain an estimate of the minimum 
possible magnetic field H 2 1-10 G, for which the giant opal- 
escence effect will be strongest. Calculations using the for- 
mula (23) for H = 10 G gives a, = 0,- lo5-loh, which is 
much greater than even the capture cross section a,, . The 
neutron mean free path in the gas in this case is determined 
by the inelastic cross sections u, = u2 and is equal to only 
1- lo2-10' cm (in a very low-density system). In stronger 
magnetic fields an analogous effect can be observed at room 
temperature. 
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