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The temperature dependences of the London penetration depthR and of the lower critical field 
H,, are calculated for superconducting superlattices. It is shown that the2 - 2  ( T) and H,, ( T) 
dependences are substantially nonlinear when the layer thickness d satisfies the condition 

< d < { ,,, ( T, ), where l(, is the coherence length and { ,,, ( T) are the correlation lengths of the 
layer materials. The nature of this linearity differs from the cause of the nonlinear temperature 
dependence of the upper critical field H,, in superlattices. Superlattices consisting of two 
different superconductors are considered, as well as superlattices in which superconducting and 
normal-metal layers alternate. The temperature dependences of the heat capacity are also 
calculated. 

INTRODUCTION 

Progress in vacuum deposition technology makes it 
possible at present to obtain highly perfected superlattices 
made up of alternating layers of different elements, with lay- 
er thicknesses constant to atomic accuracy. ' The properties 
of superconducting superlattices can differ radically from 
those of the bulk superconductors from which the layers are 
prepared. In fact, new types of superconductors can be con- 

an equilibrium order parameter of value specific for each 
layer is reached. The London penetration depth is essentially 
the same as in the corresponding bulk superconductor. The 
condition R ,,, ( T) $ d  means effective screening of the field 
only on many periods of the superlattice, and by carrying out 
the corresponding averaging in the London equationsa we 
find immediately that the London screening depth for the 
superlattice is given by 

strkcted by superlattice deposition. d2 

A complicated nonlinear dependence of the upper criti- +h2-2d,+d,. 

cal field H,, was recently observed experimentally in an Nb/ 
Nb, ,Ti,, superlattice.' Deviations from a linear H,, ( T) 
dependence were observed also in a number of other sublat- 
tices (see, e.g., Ref. 3 ) .  A theoretical treatment of H,, in 
superlattices is contained in Refs. 4-7. 

The temperature dependences of the London penetra- 
tion depth A (  T) and also of the lower critical field H,, have 
been much less investigated. The usual linear R -,( T) de- 
pendence was recorded in Ref. 8 for an Nb/Cu superlattice 
with layer thickness d = 54 A. At the same time, a positive 
curvature of the R -' ( T) plot was observed near the critical 
temperature for a V/Ag superlattice with vanadium layer 
thickness 240 A.9 

The analysis in the present article will show that sub- 
stantially nonlinear R -' ( T) and H,, ( T) dependences can 
appear in superconducting superlattices with a layer thick- 
ness d satisfying the condition &, < d < {,,, ( T, ), where 
{,,, ( T )  are the superconducting correlation lengths of the 
layer materials and T, is the critical temperature of the su- 
perlattices. (We assume also that the superlattice period is 
much smaller than A. For type-I1 superconductors this con- 
dition is not burdensome.) It is important to note that these 
anomalies can have an nature entirely different from that in 
the behavior of H,, ( T) . 

Let us clarify the cause of the nonlinear R -'(T) de- 
pendence, using as an example a superlattice consisting of 
two different type-I1 superconductors. At low temperatures, 
when the correlation lengths of the layer materials are small, 
1.e. 

where d l  and d,  are the layer thicknesses. We assume hence- 
forth for simplicity that d l  = d,  = d. The required general- 
izations to include the case d l  f d ,  are obvious. 

The situation changes in principle near the temperature 
T,, when the condition d < {,,, ( T )  is met. In this case a 
single value of the superconducting order parameter is estab- 
lished for the entire superlattice, and is not at all equal to the 
values of the order parameters in the bulk materials of the 
layers. The London penetration depth is in this no longer 
directly connected with A ,  and R2, and it is this which leads 
to theappearance of nonlinearity in theR -'( T) dependence. 

ZTEMPERATURE DEPENDENCES OF hh2, OFTHE LOWER 
CRITICAL FIELD, AND OFTHE HEAT CAPACITY OF THE 
SUPERLATTICE 

We consider in the context of the Ginzburg-Landau 
theory the question of the temperature dependences of A, 
H,, , and the heat capacity for a superlattice made up by 
layer-by-layer deposition of two different type-I1 supercon- 
ductors. To describe the superconductivity in each of the 
layers we employ the usual Ginzburg-Landau functional 
(see, e.g., Ref. 10): 

where A is the vector potential, and the subscript j = 1, 2 
labels the type of layer. We choose an order parameter $that 
is continuous on the layer boundaries, and formulate the 
boundary condition for the derivative in the form of continu- 
ity of m ,  I $ ' .  We note especially that the actual form of the 
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boundary conditions is immaterial to us. The coefficients in 
(2 )  are of the form a, = a, ( T - T, ), where T,, and T,, are 
the critical temperatures of the bulk superconductors from 
which layers 1 and 2 are made, respectively, and put for the 
sake of argument T,, > T,, . 

A simple connection between the coefficients of the 
functional (2) ,  the density of the electronic states, and the 
electron-phonon interaction constant exists only for the 
BCS model. At the same time, allowance for the tight-bind- 
ing effects or, for example, the influence of magnetic impuri- 
ties, upsets this simple connection, and in real superlattice 
the corresponding coefficients are expected to vary in layers 
1 and 2 in a wide range. To keep inessential details out of our 
analysis, we assume that a ,  = a, = a. 

Near the temperature T,, under the condition 
{,,, ( Tc ) > d, the order parameter is practically constant in 
the entire superlattice, and in the absence of a magnetic field 
we can neglect the gradient terms in ( 1 ) and express the free 
energy in the form 

In this case the critical temperature is determined from the 
conditions that the coefficients of I$[ '  vanish, i.e., 

We assume hereafter that in the absence of a magnetic 
field the order parameter is real. At temperatures not much 
lower than T,, such that l,,, ( T )  > d, we obtain from ( 3 )  

9"- (a i+a2) l (b l+b2) ,  ( 5 )  

and the screening depth is given by 

At lower temperatures, when the condition l,,, ( T )  < d  is 
met, the screening depth is given by the expression 

TheA -'( T) dependences given by Eqs. ( 6 )  and ( 7 )  are 
different; it is this which illustrates the onset of the nonlinear 
temperature dependences of A " n d  of the lower critical 
field 

Hc,=(Qa/4nh7) In (LIE) 

(@,, is the flux quantum). The character of the A - '(T) de- 
pendence changes at the temperature at which the correla- 
tion length in the superlattice becomes of the order of the 
layer thickness. 

Equations (6 )  and (7 )  give the limiting cases of the 
A - 2  ( T) dependence. In the intermediate region this depend- 
ence can be determined by calculating the mean value ($'/ 
m )  with the aid of the Ginzburg-Landau equation for the 
order parameter. In the absence of a magnetic field the func- 
tional (2 )  leads, as usual, to the equations 

We introduce also the notation 

We shall omit the primes hereafter. We choose the origin at 
the center of layer 2. To  be specific, we consider the case 
T <  c,, i.e., t < 0. In the new notation, Eqs. ( 8 )  take the form 

(for layer 1 ) and 

(for layer 2 ) .  Using the first integrals of Eqs. (9 )  and (9 ') ,  
we easily write their solutions in quadratures, and in the case 
b > 1, t < t,, /( 1 - b ) we obtain the relations: 

where f, is the value of the order parameter at  the center of 
layer 1, f, at the center of layer 2, and f3 on the layer bound- 
ary (in our case f, > f, > f,). Inverting Eqs. (10) and ( lo ' ) ,  
we can express the ratios J3/f, and J,/fi in terms of Jacobi 
elliptic functions. " The boundary condition for the deriva- 
tive of the order parameter leads to the equation 

mt[ f , 2 - f32+ ' /2 ( f j l - j 14 )  ] -1- (be2-t) (f22-f32)+1/2bt(fZ'-j3') =0. 

( 1  1)  

Solving the system ( 101, ( lo ' ) ,  and ( 11) we obtain the 
rms order parameter 

and consequently the temperature dependence of A -l: 

where (f') , and (f'), are the rms values of the order param- 
eter in layers 1 and 2, respectively. 

If the factor In ( A  /l) that depends little on the tempera- 
ture is neglected, the H,, ( T )  dependence is similar. Note 
that when H,, is calculated it is necessary, generally speak- 
ing, to take into account the finite transparency (which we 
consider to be ideal) of the boundaries between the layers, 
and the anisotropy ofA. If, however the currents are parallel 

1 d2$ to the layers, finite-transparency effects can be disregarded. --- + bj$3+a,$=0, j=1, 2,  
4mj dx2 ( 8 )  The results of a numerical calculation of /Z ' (  T) /A , YO), 

meaning also Hc, (T)/H:{'(O), are shown in Figs. 1 and 2. 
if the x axis is chosen perpendicular to the layer. We change HereA , (0 )  and H :," (0) are respectively the London screen- 
in these equations to the dimensionless quantities ing depth and the lower critical field of the bulk materials of 
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FIG. 1. Temperature dependences of A -'( T ) / A  , ' ~ (O) ,  where 
A, (0)  = ( 8 ~ e ' a  T,, /mlc2b1 ) -I1', for a superlattice with the following 
parameters; rn = 1, t,., = 0.01 and b = 10, d = 10 (curve 1);  b = 10, 
d = 5, ( 2 ) ;  b = 20, d = 5 (3) ;  b = 40, d = 5 ( 4 ) .  

layer 1, both extrapolated to T  = 0. Note that, depending on 
the values of the parameters, we get either a positive (Fig. 1 ) 
or, e.g., a weak negative (Fig. 2)  curvature of the A -2 ( T )  
and H,, ( T )  plots. These forms of A -' ( T) and H,, ( T) dif- 
fer from the temperature dependences of the parallel (Hc2il ) 

and perpendicular (H,,, ) upper critical fields. In particular, 
the H,, ( T )  and H,, ( T )  dependences in a superlattice can 
have in principle curvatures of equal sign. 

Similar anomalies are possible also in the temperature 
dependence of the thermodynamic field H,. Since the heat 
capacity per unit volume of the superlattice is equal to 
- Td ' ( H  f /8r) /dT2,  the unusual behavior of H, ( T )  

should cause also singularities in the temperature depend- 
ence of the heat capacity. Using the fact that the solution of 
Eqs. (8)  satisfies the condition SF/SJ1= 0, we can write the 
expression for the heat capacity of an inhomogeneous super- 
conducting system in the form 

f a  

where AC, = T,, a2/b, is the heat-capacity jump on going to 
the superconducting state at T  = T,, in the bulk material of 
layer 1 (just as before, we consider the case b> 1 ,  
t < t,, /( 1 - b ), in which f, <f, <f, ). The heat capacity is 
thus expressed in terms of the derivative of the rms order 
parameter with respect to temperature, and below T, the 
heat capacity should increase in the region where il -'( T )  is 
nonlinear. 

In the measurements known to of the temperature 
dependence ofil -' they used superlattices made up of alter- 
nating layers of a superconductor and a normal metal. We 
consider therefore a superlattice of this type, assuming for 
simplicity that the superconductor and normal-metal layers 
have equal thickness d. In the region where the Ginzburg- 
Landau approach is valid we can consider only sufficiently 
thick layers (whose thickness should be large compared 
with lo). Under these conditions the normal-metal layers 
exert a strong destructive action on the Cooper pairs, and it 
can be assumed that $ = 0  on the layer interface.I2 Retain- 
ing the previous notation and assuming that layer 1 is the 
superconducting one, we obtain from ( 10) the relation 

which can also be expressed in terms of a complete elliptic 
integral of the first kind K ( k )  : 

FIG. 2. Temperature dependences of /1 -' ( T ) / A  , * (0)  for an- 
other set of parameters: t,., = 0.01 and m = 15, b = 0.1, d = 5 
(curve 1); m = 10, b = 0.2, d = 5 ( 2 ) ;  m = 10, b = 0.2, d = 10 
(3) .  The dashed straight lines are tangent to curves 1-3 at 
T =  T, .  
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Just as above, we find the London screening depth '~t\ 
f t  

2 

2 
(16) 

[ E ( k )  is a complete elliptic integral of the second kind], and 
- I ,  I 

also the heat capacity 

C 
T d  {t  (I -+)+ f [2(C- I ) ] "  

FIG. 3. Dependences of A -'( T ) / A  , 2 ( 0 )  on the temperature for a super- 
= - -  
ACi Tci dt 2 

lattice with alternating normal and superconducting layers at d = 10 
( c u r v e l ) , d = 2 0 ( 2 ) , a n d d = 3 0 ( 3 ) .  

From ( 15 ) we can easily determine the superlattice critical 
temperature t, = (T, - T,, )/T,, which corresponds to 
f, -0: 

Expanding in (15) and (171, near t,, all the integrals with 
respect to the parameter f, (2 - f: ) - I 1 ' <  1, we get 

The temperature dependences of A -*, calculated from 
Eq. ( 16) for different d, are shown in Fig. 3. The A -2 (T)  
dependence has a positive curvature near T, , in accord with 
the experimental  result^.^ Note that under the experimental 
conditions of Ref. 9 the layer thicknesses were of order lo ,  
and therefore our analysis based on the Ginzburg-Landau 
equations is valid in this case only qualitatively. 

In addition to the superlattice types considered above, it 
is also of interest to consider a superlattice with thin layers of 
a normal metal (of thickness less than l o ) .  In this case, to 
take into account the influence of the normal layer it is neces- 
sary to add to the superlattice free-energy functional the 
terms 

6 x - x  I ,  xn=nd+d12, 

where x, is the coordinate of the nth normal layer. The pa- 
rameter y is directly connected with the superlattice critical 
temperature t ,  (see below) and can therefore be determined 
from experiment. Just as above, we change to dimensionless 
quantities. The order parameter in the middle of the super- 
conducting layer will again be designated f,. We introduce 
also the notation A,= f(x,, ). The equation for the order pa- 
rameter is of the form 

where cd(xm) is the Jacobi elliptic function. The role of the 
S function in (21) reduces to the boundary condition 

which leads to the equation 

-~2fo+tfo~-'12tf~=tfl"-i12tfi='. (24) 

Determiningf;, andf, from (22) and (24) we easily get 

We show now the connection between the parameter y 
and the superlattice critical temperature. To determine the 
critical temperature in (21) it suffices to retain the terms 
linear in$ 

- y + t f + 2 7  z6 (2-x.) f=o. (25) 
n 

A solution of (25) for - d /2 < x  < d /2 and satisfying the 
condition f ' (0 )  = 0 is 

f c ~ c o s  (1t l"x).  (26) 

Taking the boundary condition (23) into account, we obtain 
a relation between y and the critical temperature: 

If the distance between the normal layers is large 
( d )  1 ) it is easy to obtain an approximate analytic solution 
near t, , by using It, I as a small parameter. At a temperature 
not much lower than t ,  the value off, is small and we obtain 
from (24) 

where 7 = y ( m  ,/crT,, ) I". Using its first integral, we arrive It can be assumed in first-order approximation that 
at the relation f, = 0. The problem reduces then to that of a superlattice 
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whose normal and superconducting layers are of equal 
thickness, a problem already considered above. Equations 
( 18) and ( 19) remain in force, but the heat-capacity jump at 
t ,  is now twice as large (see, e.g., Ref. 13): 

[cf. Eq. (20) 1. The reason is that now there are no massive 
normal interlayers that make no contribution (within the 
framework of our analysis) to the heat capacity. The value of 
R. -'( T) is also double that given by Eq. ( 16). 

3. TEMPERATURE DEPENDENCES OF UPPER CRITICAL 
FIELD 

Using the Ginzburg-Landau functional we can also cal- 
culate the upper critical fields Hc2, and HCzII .  The H,, (T) 
dependence was investigated earlier"' by more complicated 
methods, but we shall demonstrated that the main results of 
these references can be easily obtained by using the Ginz- 
burg-Landau approach. 

Consider a superlattice made up of the type-I1 super- 
conductors. We place the z axis in the layer plane. As before, 
the x axis is perpendicular to the layers, and the layers are 
assumed to have equal thickness. 

We consider first the case of a field parallel to the layers 
and directed along the z axis. Using the dimensionless vari- 
able (see Sec. 2) 

we write down the linearized Ginzburg-Landau equation 

We choose the vector potential in the form 
A = (O,Hgeflx,O). Choosing the order parameter in (30) in 
the form 

and introducing the new variables 

we obtain, as usual, an oscillatory equation forf: 

where 

We write the solution of Eq. (32) in the nth pair of layers in 
the form 

where A,, (p)  is a Weber function.I4.l5 Using the condition 
for f and f '  on the layer boundaries, as well as the fact that 
f-0 asp - f cc, , we can determine the coefficients A and B 
in (33), and also the temperature dependence of Hc2. The 
results of a numerical calculation of the field 
hc,ll = eHc211 /2m ,aT,, c are shown in Fig. 4. It can be seen 
from this figure that if the ratio m = m2/ml is not too close 

FIG. 4. Temperature dependences of the parallel upper critical field at 
t,, =O.Ol,d = 20,m = 0.5 (curve 1 ) ;  t , , = 4.10-4, d = 25, m = 0.1 (2 ) ;  
t,, = 0.01, d = 20 m = 0.1 ( 3 ) .  

to unity and the h,21, ( t )  curves have for sufficiently thick 
layers a kink corresponding to a transition of the supercon- 
ducting seed from a layer with a larger diffusion coefficient 
to a layer with a smaller diffusion coefficient and a stronger 
field Hc2. It should be noted that in all the cases considered 
the center of the orbit (p,) was localized at the middle of the 
layers and, as follows directly from the numerical computa- 
tions, the kink on the h,211 ( t )  curve corresponded to a dis- 
placement of the orbit center into the neighboring layer. In 
principle we cannot exclude a situation in which the most 
favorable is location of the orbit center near the layer bound- 
ary, in analogy with the surface-superconductivity situation 
(field H,, ). This is possible at a large mass ratio m ,/m2 and 
an appreciable difference between T,, and T,, . 

The hCzll ( t )  acquires near t, a small positive curvature 
corresponding to a change of the sublattice from two-dimen- 
sional in strong fields to three-dimensional in weak ones. In 
strong fields the order parameter is in the main different 
from zero in one layer, whereas in weak field the supercon- 
ducting seed covers simultaneously many layers. As the field 
is decreased, the hc21, ( t )  changes from an approximately 
square-root dependence into an approximately linear one, 
and this causes the appearance of the positive curvature. 
This character of the temperature dependence of a parallel 
upper critical field (the existence of a kink and of a positive 
curvature near t, ) agrees qualitatively with the experimen- 
tal results.* 

If the magnetic field is perpendicular to the layers, the 
case of greatest interest ism < 1. We take the vector potential 
in the gauge A = (O,O,H{,ny). Separating the variables in 
(30) and choosing the solution corresponding to the stron- 
gest field, we find for the nth pair of layers at 
t< t*=mt , , / (m-  1 )  

P i  cos[klEeff ( x -d (2n+l )  ) 1 in layer 1 ,  

B z  ch[lc,B.,f (5-2dn)  I in layer 2 
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eH 
1 ( x ,  Y) = exP(- - C a . i l ~ 2 )  

p t  ch [ k , E . t , ( ~ - d ( 2 n + l ) )  ] in layer I, 
P z  cos [ k,Eeff (x-2dn)  ] in layer 2. 

(35) 

Joining the solutions in the different layers with the aid of 
the boundary conditions, we obtain an equation for 
hc21 =eHc21/2mlaTclcat t * < t < t , :  

andat t < t ' :  

The calculation results are shown in Fig. 5. The tem- 
perature dependence of hc2, has a characteristic anomaly: 
the hc2, ( t )  curves for different d but equal t,, and m < 1 
intersect at apoint ( t  *, h *) where h * = - t *. Thiswas tobe 
expected, since both equations (30) for j  = 1 and 2 coincide 
at t = t *. In this case the order parameter is independent ofx 
and the superlattice is a homogeneous superconductor 
whose upper critical field coincides with the field Hc2 of each 
of the separate layers (see also Ref. 6).  

4. CONCLUSION 

As shown above, nonlinear temperature dependences of 
A -' and ofthe lower critical field can occur in superconduct- 

FIG. 5. Temperature dependences of the perpendicular upper critical 
field for the following parameter values: t,? = 0.01 m = 0.1 and d = 200 
(curve I ) ,  d = 100 ( 2 ) ,  d = 50 (3) ,  d = 20 (4). 

ing superlattices under the conditions go < d < {,,, ( T, ) and 
d <A. It should be noted that such temperature dependences 
can hold in a region wider than that of the applicability of the 
Ginzburg-Landau approach used by us. Similar anomalies 
are possible also in the temperature dependence of the ther- 
modynamic field Hc . Nonlinear dependences ofA - 2  ( T) and 
H,, (T )  are possible not only for superlattices produced by 
layer-by-layer deposition of two different superconductors, 
but also for superlattices made up of alternating supercon- 
ductor and normal-metal layers. 

The positive curvature predicted in Sec. 2 for the 
A -2 ( T) plot for a superlattice consisting of superconductor 
and normal-metal layers agrees with experimental data.9 In 
Ref. 9 they used a V/Ag superlattice with vanadium-layer 
thickness 240 A, which is approximately double the correla- 
tion length lo of bulk vanadium. At the same time, the ab- 
sence of a curvature in the experiments of Ref. 8 can also be 
explained: The layer thickness (54 A )  in the Nb/Cu superla- 
tice investigated there is much less than the superconducting 
correlation length of niobium, and the superlattice param- 
eters prevent observation of a nonlinear A - 2 (  T) depend- 
ence. 

The unusual behavior o f1  ( T) and Hc, ( T) is also the 
cause of the anomalies in the temperature dependence of the 
heat capacity of a superlattice. 

We emphasize in conclusion that the cause of the anom- 
alous dependences ofA - 2  ( T )  and of the lower critical field is 
entirely different from the cause of the onset of nonlinear 
dependences of the upper critical field. The considered 
mechanism of the onset of nonlinear A -'( T) dependences 
and of the lower critical field is typical not only of superlat- 
tices but also of layered superconductors having at least two 
nonequivalent layers per unit cell. An example is a high- 
temperature superconductor such as T1-Ba-Ca-Cu-0 
(Ref. 16). 
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