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The nonlinear dynamics of stimulated scattering of electromagnetic waves by dense relativistic 
electron beams is investigated. The mechanisms of nonlinear stabilization of the scattering 
processes are classified according to the electron beam's density and relativistic factor. It is shown 
that scattering by low-density relativistic beams evolves under novel conditions imposed by the 
energy phasing of the electrons. Analytic expressions are obtained in several cases for the 
amplitudes of the incident and scattered waves, and for the emission efficiency. 

1. It is known that the processes of stimulated scattering 
of electromagnetic waves on relativistic free electron beams 
provide wide possibilities for the creation of powerful emis- 
sion sources. The radiation of these processes is undoubt- 
edly important for understanding many phenomena occur- 
ring under normal conditions or in experiments in space. 
The fundamentals of the nonlinear theory of emitters on free 
electrons were expounded in Refs. 1-7. However, present 
theoretical results do not fully cover all possible regimes of 
stimulated scattering and mechanisms of their nonlinear sta- 
bilization. 

This paper presents an analysis of possible mechanisms 
of beam instabilities in the field of two electromagnetic 
waves, and a development of a nonlinear theory of induced 
scattering processes of electromagnetic waves on dense rela- 
tivistic electron beams. It is shown that in this case there is a 
new scattering mechanism due to energy grouping (phas- 
ing) of electrons. Moreover, we generalize the method8 of 
expansion in perturbation of the electron trajectories to in- 
clude the case of wave scattering on dense relativistic beams. 
Analytic expressions are obtained for the saturation ampli- 
tudes of interacting waves, the characteristic development 
times of processes, and the emission efficiencies. 

2. In the most general formulation of the problem of the 
temporal evolution of stimulated scattering processes we as- 
sume only the presence of a strong longitudinal (in relation 
to the beam) magnetic field impeding the transverse motion 
of electrons. In this case the equations of motion of the beam 
electrons in the fields of the incident and scattered waves can 
be written in the form 

Here Z and fi are the fast oscillating electron coordinates and 
velocities in the fields E,, and E,, , z' and u' describe the slow 
motion in the field of the combination wave, and u is the 
velocity of the unperturbed beam. We note that representa- 
tions ( 3 )  is correct if the following inequality is satisfied: 

where to is the characteristic time of wave amplitude change 
and Kt, is the plasma oscillation frequency of beam electrons 
in the co-moving system of coordinates.' 

When, in addition to Eq. (4) ,  the following inequality is 
satisfied 

the fast oscillations are linear and the amplitudes A ,,, are 
determined by the expression 

where 

Substituting Eqs. ( 3 )  and (6)  in thesystem ( 1 ) and carrying 
out the corresponding averaging over fast oscillations, we 
obtain equations of motion of beam electrons in the field of 
the combination wave for the slow components z' and u' :  

Here z is the coordinate of the electron in the direction of - v' , 
beam propagation, v, is its velocity, and Ez, and Ez2 are the d t  

electric fields of the incident and scattered waves, respective- d,r i e2 u 
ly. Making the standard assumption' that the electron mo- 7 = - - - 

4 m2 
tion in fields 

E,,=A,(t)exp(-io,t+ik,z) and Els=A,(t)exp(-io2t+ik,z) 
ko x -[A,A,' exp (ikoz'-iDt) + C.C. 1, 
520  

(7) 

is fast and in the field of the combination wave - 
E,,EZ2*=A,A2*exp(-io,t+ikoz) ( 2 )  whereD=w,-kou. 

The equations of motion (7)  describe the dynamics of 
is slow, where a 0  = 01 - a 2  and ko = k~ - k2, we represent beam electrons only in the regime of single-particle or 
the electron coordinate and velocity in the form Thomson ~ c a t t e r i n ~ . ~ . ~  This situation occurs in beams of 

z=ut+z'+z", smal! density. With the growth of beam electron density the 
(3)  instability shifts to the regime of collective or Raman scat- 

v,=u+v'+v". tering7*9 and becomes a three-wave process because beam 
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Langmuir waves are excited in addition to the elctromagne- 
tic waves. Taking into account the beam plasma or  Lang- 
muir oscillations the second equation in system ( 7 )  can be 
rewritten in the following form"': 

dv' = - -  
V J ) '  [$ e x p ( i k o z f )  - C.C. d t  2 1 

, ,' exp (ik0z1-iDt) + C.C. 1, x %[A A (8  

where 
Zn/h, 

ko 
p = - exp (-ik,zl) dzo 

iT 0 

is the amplitude of the beam Langmuir wave and z, E [0,2n-/ 
k,,] are the initial positions of electrons in the beam. We 
further assume that the electromagnetic wave with index 1 is 
a scattered or signal wave and that with index 2  is an incident 
or pump wave. Because the amplitudes of the electromagnet- 
ic waves change in the process of scattering, one must add to 
the equations of motion equations for amplitudes A, and A, 
(Ref. 7 ) :  

Here w,' = 4.rre2n,/m, n, is the beam electron density, 8 ,,, 
are coefficients determined by the actual geometry of the 
system (see Refs. 5,7) and the factor ( 1 - 2 y ~ ~ u ' / ~ 2 ) 3 1 2  in 
the expression fo rb  stems from the resolution, in the right- 
hand sides of theexact equations for A ,  and A,, of the coordi- 
nate z into slow and fast components, and carrying out the 
average over I (Ref. 1 ) . 

The system of equations in dimensionless variables, de- 
scribing the nonlinear dynamics of stimulated scattering of 
two electromagnetic waves on free beam electrons, can be 
written in the 

dez -- d y  
- (SVE,? exp ( - i p , ~ ) ,  - = 

dt 
11, 

d.t 

where T = Rot, y = k,,z, 7  = k,ul/Rh, E , and E,  are dimen- 
sionless amplitudes of the electromagnetic waves, v  is a 
quantity inversely proportional to the beam electron den- 

sity, " and the frequency difference v,r  (ao - kOu)/ f l ,  is 
the resonance condition for three-wave interaction. The 
quantity 7,) takes the values t 1 ,  where 7 ,  = + 1 signifies 
synchronism of the combination wave with the fast beam 
Langmuir wave and 7 ,  = - 1 signifies synchronism with 
the slow beam Langmuir wave. The parameter a determines 
the type of three-wave process. When the slow beam wave 
(qo  = - 1 )  is at resonance and the parameter a = 1 ,  the 
system of equations ( 1 1  ) describes scattering with an in- 
crease of frequency. When the slow beam wave is excited and 
a = - 1 ,  an explosive instability of the three interacting 
waves occurs. 

The value 

is the characteristic beam relativistic factor and is an impor- 
tant parameter both for the further development here and 
for all theories of radiating electron beams. l o  F o r p  = 0, Eqs. 
1 1  coincide with those obtained in Ref. 7  for nonrelativistic 
beams. We note that in the fourth equation of system ( 1 1  ) 
the generation of high harmonics of the beam Langmuir 
wave is taken into account and the coefficients a, which are 
determined by the geometry of the actual system are given in 
some specific cases in Ref. 8. 

Finally, the efficiency of scattering on free electrons is 
expressed in terms of the amplitudes E ,  and E,, and is deter- 
mined by one of the following equations: 

21( 

where E , ,  and E,, are the initial amplitudes of the signal and 
pump waves, respectively. One can be easily convinced of the 
validity of Eq. ( 1 3 )  by writing first integrals of system ( 1 1 ). 

3. The system of nonlinear equations ( 1 1 )  is universal 
in the sense that its form does not depend on the actual ge- 
ometry of the beam system.' To  simplify the presentation we 
consider in what follows the case of undulator radiation for 
which the amplitude of the pump wave E,  can be considered 
constant, i.e., E , = E ~ ,  (Ref. 5 ) .  

Before considering mechanisms for the nonlinear stabi- 
lization of stimulated wave scattering, we carry out an analy- 
sis of linear regimes. In the case of undulator radiation, the 
dispersion relation for the growth rate S normalized to the 
frequency R,  can be written in the form 

We consider initially the nonrelativistic limit when the pa- 
rameter p < l. In the case of high-density beams with 

collective or  Raman scattering on density oscillations occurs 
and the instability growth rate is determined by the expres- 
sion' 

for a frequency difference q0 = - 1 ,  since conversion of ki- 
netic electron energy into radiation energy occurs only for 
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excitation of the slow beam Langmuir wave. 
For low density beams when v' $1 and correspondingly 

Im S$ 1, the scattering process is of the single particle type." 
In this case, when the inequality 

is satisfied, usual Thomson scattering of electromagnetic 
waves occurs with a growth ratey: 

-1+3'"i 
6s- 

2 
(v') ". 

Finally in the limit 

b 
one can see from dispersion equation ( 14) that the induced 
scattering occurs in a new regime with a growth rate 4' 

1 - 5 5  4 0 15 5.0 

6=i(3/l,y)"v'. 

In spite of the fact that expression (20) does not contain a . 
real addition to the frequency, the instability developed un- 
der conditions (19) is of the radiation type, but its mecha- 
nism, in contrast to the one considered previously, is com- 2n Y 
pletely different and is connected with the effect of energy 
phasing (see below). Thus, in the weakly relativistic limit, 
besides the two well known scattering mechanisms with 
growth rates ( 16) and ( 18), a new instability mechanism 
occurs. 

We proceed to a consideration of strongly relativistic 
beams when p $1. If the condition 

is satisfied, the previously considered regime of collective 
scattering is preserved, but the expression for the growth 
rate takes the following form: 

We emphasize that the instability with growth rate (22) de- 
velops in the Raman regime in large-density relativistic 
beams, but the beam relativistic factor is limited by in~quali-  
ty (21). In the strongly relativistic regime when inequality 
(21 ) is violated, namely for 

scattering of electromagnetic waves is due to energy phasing 
with growth rate (20).  

Because both in the limit ( 19) and in the limit (23) the 
growth rate of the scattering process S> 1, the energy phas- 
ing effect is a single-particle one. Moreover, in relativistic 
beams when 1, normal Thomson scattering of electro- 
magnetic waves does not occur. 

4. We consider mechanisms of nonlinear stabilization of 
induced scattering processes on electron beams in corre- 
spondence with the enumerated linear regimes. For nonrela- 
tivistic electrons when p = 0, Eqs. ( 11 ) (recall that in sys- 
tem ( I 1 ) it is necessary to exclude the second equation for E? 

because we are considering undulator radiation) depend on 
only onedensity parameter v because the amplitude I&,,,/ can 
be taken as 1 without limiting the generality. 

The time dependences of J E ,  / and lp, I are shown in Fig. 
l a  for v = 3 a n d p  = 0 (low density beam) and in Fig. l b  the 
electron phase space at specific times is presented. One can 

FIG. 1. a )  The amplitudes I & , /  ( 1 )  and Ip,l ( 2 )  as functions of time for 
v = 3 and /I = 0; b )  beam electron phase for various times T for v = 3 and 
/I = 0. 

see well that the saturation mechanism of single-particle 
scattering processes is the trapping of beam electrons by the 
combined electromagnetic wave',"7 in this case. We note 
that the chosen values of parameters v and p automatically 
satisfy inequality ( 17).  Taking into account the finite but 
small values of the relativisitic parameter ,LL does not signifi- 
cantly change the nonlinear dynamics of induced undulator 
emission, as shown by the results of numerical calculations. 
The radiation efficiency in this case is proportional to pv"" 
(Ref. 10).  

The same quantities are shown in Fig. 2a and b for a 
beam of intermediate density with v = 0.3 a n d p  = 0. In this 
case the instability passes to the regime of collective or Ra- 
man scattering and is stabilized by trapping of the beam elec- 
trons by a Langmuir wave with formation of multistream 
flow and subsequent beam t ~ r b u l e n c e . ~  The latter can be 
well seen on the phase plane. In agreement with the results of 
Ref. 5, the radiation efficiency for this case is of order pv.  

Finally, for the case of high-density beams,'' when the 
parameter Y <  1 and p = 0, the saturation is due to a nonlin- 
ear frequency shift.7." The effect of the nonlinear frequency 
shift for nonrelativistic emitters on free electrons is deter- 
mined by processes of beam deceleration and generation of 
high harmonics of the beam Langmuir and corre- 
sponds mathematically to taking into account only nonlin- 
ear terms of third order in the expansion of the particle equa- 
tions in powers of the wave amplitude." Because the 
resonance width for three-wave interaction is of the order of 
the growth rate, i.e., -v, for v <  1 the decrease in average 
velocity of beam electrons or the generation of high harmon- 
ics of the beam Langmuir wave leads to rapid violation of the 
resonance condition (w,, - k,u = - fl, ) until the ampli- 
tude of the first resonance harmonic of the beam Langmuir 
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FIG. 2. a )  Amplitudes / E ,  I ( 1 )  and p ,  ( 2 )  as functions of time for 
v = 0.3 and p = 0; b )  beam electron phase spaces for various times T for 
v =  0.3 a n d p  = 0. 

wave becomes large and strongly nonlinear processes set in. 
AS already stated, cubic nonlinearity plays the decisive role 
here. 

It follows that for v g  1 Eq. (1  1)  can be expanded in 
powers of the wave amplitude with an accuracy to cubic 
terms. This approach was used in Ref. 7 for an analytic con- 
sideration of the nonlinear dynamics of scattering on nonrel- 
ativistic beams. However, only one of two possible mecha- 
nisms, deceleration of the electron beam, was taken into 
account in this work. A more general approach, the method 
of expansion in trajectory perturbations, in which genera- 
tion of high harmonics of the beam Langmuir wave is taken 
into account in addition to deceleration, was proposed in 
Refs. 8, 12. The methods and results of Refs. 7, 8, 12 for 
p = 0 can be used without change for the undulator radi- 
ation considered here. Thus, we will not consider them sepa- 
rately here because they are particular cases of a somewhat 
more general result which will be examined below. Namely, 
for finite (even large) values of p ,  when only the strong in- 
equality (21) is satisfied, the instability is stabilized as be- 
fore by a nonlinear frequency shift in which, together with 
deceleration and the generation of high harmonics, relativis- 
tic effects provide a substantial contribution. The corre- 
sponding analytic treatment will be given somewhat later. 

If, however, inequality (21 ) ceases to be strong (inter- 
mediate-density beam), the instability develops as before in 
the collective regime, but it is no longer stabilized by a non- 
linear frequency shift. The stabilization mechanism is trap- 
ping of electrons in the field of the beam Langmuir wave. 
The results of numerical calculations in this case do not dif- 
fer qualitatively from those given above (see Figs. 2a, b )  and 
thus will not be discussed in detail here (see also Ref. 5 ) .  

In conditions when inequality ( 19) or  (23) is fulfilled, 
the results of numerical calculations differ qualitatively 
from the preceding ones. As an example, the results of the 
calculation wi thp = 0.8 and Y = 1 are given in Figs. 3 a, b. It 
can be seen that an exceptionally sharp growth of IbI occurs 
against the background of a rather smooth growth of ampli- 
tude of the signal wave I E ,  / and of the amplitude of the first 
harmonic of the beam Langmuir wave lp, 1 .  The quantity /PI 
characterizes the electron-beam energy modulation while 
lp, I describes spatial modulation. This behavior of lp, / and 

is connected with the above-noted effect of energy phas- 
ing which we proceed to examine now. We note that for 
p = 0.8 and Y = 1 inequalities (19) and (23) only begin to 
be satisfied. Energy phasing will become even more domi- 
nant when these inequalities become stronger. 

5. We introduce for convenience a definition of electron 
"momentum" 

and transform Eq. ( 11 ) for the considered case of undulator 
radiation to the form 

FIG. 3. a )  Amplitudes E , /  ( I ) ,  Ip,l ( 2 ) ,  and b1 ( 3 )  as functions oftime 
for v = 1 and p = 0.8; b )  beam electron phase spaces at various times T 
f o r v =  1 a n d p = 0 . 8 .  
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It can be seen from the third equation of system (25) that for 
p $ l  we have y-yo, i.e., the beam spatial modulation is 
small. At the same time the electron momentum p changes 
very rapidly within wide limits. In fact, in strongly relativis- 
tic beams a small velocity change produces a small change of 
electron position and-a significant change of momentum, as 
confirmed by the behavior of Ip, and 16 I in Fig. 3a. It is just 
this sharp change of momentum which causes the energy 
phasing. We note that under conditions (23),  owing to the 
significant decrease of momentum p in the first and second 
equations of system (25),  definite difficulties arise in the 
numerical integration of this system. 

We introduce the new variables 

Since the spatial modulation in strongly relativistic beams is 
small, we havep, GO, v o ~ O ,  and Eqs. (25) can be written in 
the form 

ZIL 

d ~  1 1  -=-- 
dl-' 

pr - [ e  exp( i yo )  + C.C. ] 
4 p3 

Further, assuming E = dS/drl (the function S can be 
taken as real without limiting the generality), we integrate 
the equation for the momentum p: 

p= ( I + 2 p f S  cos yo)'". (28) 

In this case the first equation of system (27) can be rewritten 

The growth rate (20) follows from Eq. (29) in the linear 
approximation. Using the new variables q = 2p'S and 
{ = (3/2p1) "'7' and the definition ( 13) of radiation effi- 
ciency, we obtain 

Z I I  

d2q 4 j 00s Y O   YO 
-=-- 

d$,"3n , ( l + q  cos yo)"' 

To estimate the maximum radiation efficiency we inte- 
grate the first equation of (30) with an adiabatic initial con- 
dition 

2 n  

Since it can be seen from the right-hand side of Eq. (30) that 
q,,, = 1, we have 

2s 

The result (32) is rigorous for z / c L ' / ~ $  1 a n d p  $1. However, 
numerical calculations show that it is actually reached al- 
ready a t p  5 l .  Thus the value of Wobtained from the calcu- 
lated results (Fig. 3) is 0.22 which is sufficiently close to Eq. 
(32). It follows from an analysis of the linear dispersion 

equation that for v'p3I2 1 and p 4 1 the stimulated scatter- 
ing is also due to energy grouping. However, for weakly rela- 
tivistic beams ( p  4 1 ) one can see from the second and third 
equations of the system (25) that the effective energy group- 
ing competes with spatial grouping. 

We note that the presence of a pump wave is very im- 
portant for the effect of energy phasing. In simpler systems, 
when beam emission occurs without a pump (e.g., a beam in 
a plasma or in a retarding system) multipliers oftypep-"re 
absent in the right-hand side of Eq. (25 ) and the effect con- 
sidered does not arise.I3 Hence, the nonlinear dynamics of 
stimulated wave scattering on strongly relativistic beams of 
free electrons differs qualitatively from the dynamics of usu- 
al beam instability. 

6. We consider the nonlinear dynamics of stimulated 
wave scattering on relativistic beams for conditions when 
inequality (2  1 ) is satisfied. 

We represent the electron coordinate and momentum 
in the form 

m 

1  
Y =YO+ W (l-) + --; 1 b. (l-) exp ( i syo )  + LC. 1, 

1 
p=(p>+  [ a .  ( r ) e x p ( i s y o )  + C.E. 1.  

Here W(T) is the average displacement of the electron beam, 
(p) is the average electron momentum, and b, (T)  and a, (7) 

are the oscillation amplitudes of the corresponding coordi- 
nate and momentum in the field of the combination wave. As 
noted above, under conditions ( 2 1 ) the instability is elimin- 
ated by nonlinearities of cubic type. This assertion was cor- 
roborated in detail in Ref. 8 for nonrelativistic beams, when 
only the first expression of (33) is used. Substituting Eq. 
(33 ) into system (25 ) and discarding nonlinearities of high- 
er than third order, we obtain the following system of equa- 
tions: 

de1 - = - v ~ ~ ~ p l e x ~ ( i ~ ~ l - ) ,  
dl- 

1  + - v p e . ~ ~ ~ *  exp (iW-irlo.t), 
2 

h 2  P -- i - - [ -a2bz  + - ( a 2 - 1 )  b:],  
dl- 2 2 

db* 1  3 - = - [2ai  + p ( 1 e l  1 2 -  l e i .  1 ') a,-3oI0a2+3a1 1 a.  I '1 , 
d ~  F 

dW 1  
-8--  

31.1 
( ~ ~ I ~ 2 - ~ ~ I o ~ z ) - ~  Iai12, 

dl- 4 

We note that since T = /ab It, the coefficient a , = l .  
Further considering that 
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a,=& ( T )  e x p  [ i  ( a + W )  1, aZ=a", ( a )  e x p  [ 2 i ( z + W )  1, 

(35) 

b,=&, (t) e x p  [ i ( T + W )  1 ,  b2=& ( ~ ) e x p  [ 2 i  ( a +  W ) ]  , 

where ii,, ii2, b I  and b2 are slowly varying functions of time, 
and the frequency difference vo = - 1, we rewrite the sys- 
tem (34) in the simpler form: 

The case of resonance excitation of the second harmonic of 
the beam Langmuir wave for a, = 4 is excluded from consi- 
deration in Eqs. (36) and requires a separate examination.14 
Using the two first integrals it is easy to reduce the system of 
equations (36) to one equation for X = Ib, *, whose solution 
can be expressed in the standard way with elliptic functions: 

The characteristic instability development time is deter- 
mined by the expression 

and the maximum efficiency of electromagnetic radiation in 
the considered system has the form: 

In the case of an adiabatic application of the field, when 
= 0, the solution of Eq. (36) can be written in the form: 

x = ---------- 
1  - e x p  ( ~ Y E ~ ~  ( 2 4 )  ' a )  

h 1 + c x p  ( 2 v e z o ( 2 q ) ' " z )  

The radiation efficiency is determined as before by expres- 
sion (39).  We note that Eqs. (37) and (40) correspond as 
, u+O to the results obtained in Ref. 15. 

7. We noted above that when inequalities (19) or (23) 
are satisfied, numerical integration of Eqs. ( 11 ) or (25) en- 
counters definite difficulties. This circumstance is due to the 
approximations in which these systems of equations were 
obtained. It is necessary in the more general case to start 
from electron equations of motion written in terms of the 
momentum p, : 

Using for the coordinate and momentum an expansion anal- 
ogous to Eq. (3 )  (p, = p' + jj and z = z' + 5) and averaging 
the equations of motion and the wave amplitude equations 
over the variables z and p, , we finally obtain the following 
system of relativistic equations: 

211 

,. 1 
p = ; 1 yo-3 ( 1 + P p 2 ) - "  e x p ( - i y )  dy.. 

0 

Herep = k, pl/mQb and Q = Qb /k0c. 
Integration of Eq. (41) on a computer does not entail 

difficulties because the denominator (1  + Q2p2)3'2 on the 
right-hand sides of Eq. (42) cannot become less than unity. 
Numerical solutions of Eq. (42) for large Q and yo (it is easy 
to see that p = 2yO2Q) confirm the presence of the energy 
phasing effect in a beam and are not given here because their 
form is analogous to Fig. 3a. 

It is easy to see that the dimensionless electron momen- 
tump is connected with the slow oscillation of the velocity v' 
in the following way: 

When the inequality 

is satisfied, after substitution of Eq. (44) in Eq. (43) and 
carrying out corresponding expansions, Eqs. (42) reduce 
completely to Eqs. ( 11) and (25).  

We note that when high-frequency radiation instabili- 
ties of electron beams evolve (including the various pro- 
cesses of wave scattering), the inequality (44) is satisfied 
with a wide margin. An exception is emission due to the 
energy phasing effect in relativistic beams, when separate 
electrons are retarded so strongly that condition (44) begins 
to be violated. 

8. The basic results of the work on nonlinear dynamics 
of stimulated undulator radiation are given in Table I. The 
results of the numerical integration of the general nonlinear 
equations (25) and the asymptotic forms of analytic equa- 
tions (39) for large and small values of ,u were used in con- 
structing the table. We note that for weakly relativistic elec- 
tron beams, together with classical mechanisms of Thomson 
and Raman scattering, there is a new radiation mechanism 
due to electron energy phasing. However, there are only two 
instability mechanisms for scattering of electromagnetic 
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TABLE I. 

Conditions On Instability increment 
p and 1/ 

Type of 
process Stabilization mechanism 

11 Collective 
or Raman 
scattering 

Single-particle 
or Thomson 
scattering 

I Energy phasing 

Collective 
or Raman 
scattering 

Trapping by the beam 
Langmuir wave for 
for v, 5 1; nonlinear 
frequency shift 
for v'< 1 

Trapping by the 
combination wave 

I Total momentum 
modulation of 
the beam 
Trapping by the beam 
Langmuir wave for 
V',LL'/~ 5 1; nonlinear 
frequency shift 
for v'p112< 1 

I Total momentum 
modulation of 
the beam 

waves on strongly relativistic beams: collective Raman scat- 
tering and the energy phasing effect. Single-particle Thom- 
son scattering on the beams does not occur in this case. 

"The choice of dimensionless variables is the same here as in Ref. 7. 
"In Ref. 8 the actual inequality determining the distinction between inter- 

mediate and high-density beam cases was determined on the basis of 
numerical calculations and turned out to be v 5 0.1. 
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