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A theory is derived for 2 0  diffractive focusing of x-rays upon Bragg reflection from an elastically 
curved perfect crystal. The general problem of the diffraction of a spherical wave emitted by a 
point source is analyzed in the geometry of asymmetric reflection with an arbitrary source-to- 
crystal distance. Equations are derived for the imaging of x-ray beams by means of a biaxially 
curved crystal, used as a diffractive lens. In the case of symmetric Bragg reflection, and for a 
certain relation between the radii of curvature, specifically, R, = R, sin2S(R, and R, are the 
radii of curvature in the sagittal and meridional planes, respectively, and 9 is the Bragg angle), a 
lens of this sort images homocentric x-ray beams without astigmatism in accordance with the 
formula Lo- ' + L, - ' = F -I, where F = ( 1/21 R, sin9is the focal length, L is the distance 
from the source to the crystal, and L, is the distance from the crystal to the image. Equations are 
derived for the spectral and spatial aberrations of an x-ray lens. The diffractive broadening of the 
focus is found, as is the blurring of the focus which results from the nonzero angular divergence 
and nonmonochromatic nature of the incident radiation. Theoretical estimates of the focus size in 
the case of 2 0  focusing of x rays upon Bragg back reflection agree in order of magnitude with an 
experimental value found by Kushnir and Suvorov [JETP Lett. 48,117 ( 1988) 1. 

Experiments with x rays ordinarily use radiation wave- 
lengths R - 1-100 A, and the spectral and angular resolution 
required can be varied over six orders of magnitude, from 
AR /A, AS- 1 0 '  for small-angle scattering and fluores- 
cence analysis to M /A - l o p 7  in x-ray spectroscopy and 
AS- lop7  in three-crystal diffractometry. In recent years, 
particularly because of the promising outlook for the wide- 
spread use of intense sources of synchrotron radiation,' 
there has been a rapid development of x-ray optics based on 
focusing monochromators-collimators, for producing 
beams with given spectral and angular characteristics. 
While for soft x radiation (A - 20-100 A )  there already exist 
focusing elements such as Fresnel zone plates and curved 
mirrors, which operate at grazing angles of incidence, and 
there are even x-ray microscopes with a resolution - 500 A 
(Ref. 2, for example), in the case of hard radiation, with 
R - 1 A, the development of similar x-ray-optics focusing 
devices remains an open question. 

There are various methods available for cylindrical 
( I D )  focusing of x rays, by means of plane and uniaxially 
curved diffracting crystals. In t h ~ s  case, the radiation is col- 
lected to a line oriented perpendicular to the plane of diffrac- 
tive scattering. A comprehensive bibliography of the theo- 
retical and experimental work on 1D focusing is given in the 
reviews by C h u k h ~ v s k i i ~ . ~  (see also Ref. 1 ) . Clearly, how- 
ever, the case of greatest interest is that of spherical ( 2 0 )  
focusing of x radiation, in which a point focus is formed. This 
possibility has been discussed in principle in theoretical pa- 
pers5-x on the basis of geometric-optics representations. It 
was shown by Berreman et al.,' for example, that a 2 0  focus- 
ing can be achieved in a generalized Johann-Hamos arrange- 
ment with the help of a biaxially curved crystal if the radii of 
curvature in the two mutually perpendicular planes satisfy a 
certain relation. Kushnir et a/.' proposed a method for fo- 
cusing by means of a biaxially curved crystal under condi- 
tions of three-ways diffraction, but they showed that this 
arrangement requires an angular collimation of the order of 
l o p 5  in two planes and therefore has a low luminosity. Le- 
vonyan and Balyan7 have pointed out the possibility of a 2 0  

focusing upon symmetric Laue diffraction by a perfect crys- 
tal curved around an axis passing through the points which 
are the positions of the source and the focus. GabrielyanX 
and Kushnir and Suvorov9 have recently reported a (plane 
wave)-to-point focusing a x radiation upon Bragg reflection 
from a biaxially curved crystal. Kushnir and Suvorov%x- 
perimentally achieved a 2 0  focusing in the backscattering of 
Co K a ,  radiation from a spherically curved Ge crystal (mir- 
ror). 

In the present paper we take up a dynamic theory of 2 0  
focusing of x radiation in the general case of an asymmetric 
Bragg-diffraction geometry, with an arbitrary distance from 
the source to the biaxially curved crystal. We work from the 
exact solution of the problem of the dynamic diffraction of x 
rays in the case of a uniaxially curved crystal,"' and we use 
the method of point-source functions'' to find the field dis- 
tribution of the diffracted wave in vacuum. We find the fo- 
cusing conditions, the geometric characteristics of the focus- 
ing, the dimensions of the diffractive broadening of a point 
focus, and the broadening of this focus due to the nonzero 
dimensions (linear or angular) of the radiation source. 

.I. DERIVATION OF BASIC RELATIONS 

A monochromatic packet of x radiation E,,(r, t )  
= E(r ,  w)exp(ik,,r - iwt) is incident on a biaxially curved 

crystal (Fig. 1 )  which is oriented in such a way that two- 
wave Bragg diffraction occurs in the initial state, with radii 
of curvature R,, R, - a. The wave field in the crystal is a 
coherent superposition of the transmitted and Bragg-reflect- 
ed waves: 

E ( r ,  t )  ={eoEo ( r ,  o )  exp(ik,r)  

+ehEh(r, o )  exp (ikhr) } .exp ( - i o t )  , ( 1  

where the wave vectors k, and k, are related by the Bragg 
relation k, = k, + h; e,,, e, are unit polarization vectors; 
and h is a reciprocal-lattice vector of the perfect crystal, mul- 
tiplied by 277. 

Substituting ( 1 ) into Maxwell's equation 
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2 4  solution of the equations of the anisotropic theory of elasti- 

FIG. 1. Geometry of the Bragg scattering of x radiation emitted by point 
source S, which lies at a distance L,, from a biaxially curved single-crystal 
plate. 

rot rot E (r, o )  =x2e (r, o) E (r, o )  , x=w/c, 

which describes the propagation of the wave field in a de- 
formed crystal with a dielectric constant 

wherex, are Fourier components of the polarizability of the 
perfect crystal, and u ( r )  is the vector elastic displacement of 
the atoms of the crystal lattice, we find the following system 
of equations, which relates the amplitudes Eo and E, (Ref. 
12, for example) : 

rot rot (eoEo) +2i (ko grad) (eoEo) 
exp (ihu) ehEh=O, ,?.\ 

rot rot(ehEh) +2i (kh grad) (ehEh) 
+ ~ ~ ~ o e h E h + ~ ~ ~ h  eXp(-ihu) eoE,=O. 

The derivation of (2 )  made use of the circumstance that 
under the conditions of this problem the transmitted wave 
and the diffracted wave can be assumed to be strictly trans- 
verse, i.e., e,k, = e, k, = 0. 

In the case of elastic curvature of a thin single-crystal 
plate with radii of curvature R, and R, (Fig. 2 ) ,  the general 

FIG. 2. Biaxial curvature of the crystalline plate. R, and R, are the radii 
ofcurvature in respectively the sagittal and meridional planes of the Bragg 
scattering. 

city leads to the following expression f i r  the displacement 
vectoru(r )  (Ref. 13): 

where the coefficients Aq are certain combinations of the 
components of the reciprocal of the elastic-modulus tensor 
a,, . and t is the thickness of the crystal plate. 

In the scattering geometry assumed here (Fig. I ) ,  the 
function describing the displacement of the reflecting 
planes, h*u(r) ,  in ( 2 )  takes the following form when we 
make use of ( 3 )  : 

Here we have introduced the simplified function 

~ u ( x ,  z) = X  (sin qh - sin q0) [- (z - 3) 

In writing ( 4 )  and (5 )  we omitted terms which are linear in 
the coordinates x,  y, z; such terms are known (Ref. 10, for 
example) to lead to only a renormalization of the exact 
Bragg angle. 

Under the assumption that on the crystal surface x = 0 
the linear dimensions x,, and ye, of the region of effective 
diffractive scattering are much smaller than the distance L,,, 
from the source to the crystal we find for the amplitude 
E ( r ,  w)  of the incident wave the following expression which 
holds within terms in the phase which are quadratic in the 
coordinates x ,  y, inclusively (this is the parabolic approxi- 
mation, z = 0 ) :  

Im In E (x, y, 0) 

where f,y, Y, are the coordinates of point source S (Fig. 1 ). 
The diffractive scattering of x-ray waves in crystal is 

generally described by the system of dynamic second-order 
partial differential equations (2 ) .  In the case at hand, these 
equations can be simplified since it is clear from physical 
considerations that the low strength of the interaction of the 
x rays with the crystal, characterized by the quantity 
l,yh 1 - lo-', will cause the characteristic distances for the 
variations in the amplitudes and E, of the wave field to be 
much larger than the wavelength of the radiation, A - 1 A. 
This circumstance means that we can ignore the second de- 
rivatives d */ax', d ' /dz2 in (2 )  in comparison with the first 
derivatives. We also assume 
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Writing the unknown amplitudes of the wave field in the 
form [see (4)-(6) ] 

) p [ i x ( ~ - ~ ~ ) 2 , ]  
Eo ( r )  =Zo ( x ,  z ex 

2Lo ' 
( 8 )  [ i 2  i x ( r o - r h ) ~ ~  ] 

Eh ( r )  =Zh (x ,  z )  exp - 
2R, 9 

we find from ( 2 )  the following system of first-order partial 
differential equations: 

These equations are to be used to determine the amplitudes 
W,,, W,, , where 4: is a polarization factor, which has the 
value Y;' = 1 for a-polarized radiation and V = cos 2i? for 
T-polarized radiation. 

When the explicit dependence of amplitudes (8 )  on the 
coordinatey is taken into account, condition ( 7 )  imposes the 
restriction 

~.trG Ixh%Ry I 

on the linear dimension of the diffraction region, for which 
we can carry out a systematic analysis on the basis of Eqs. 
( 9 ) .  

The problem of the Bragg scattering of x rays in a biax- 
ially curved crystal is thereby reduced to the problem of solv- 
ing equations (9 ) ,  which are dynamic equations of cylindri- 
cal x-ray optics with displacement-field function ( 5 ) .  An 
exact solution of the boundary-value problem of the Bragg 
diffraction of x rays in an elastically curved crystal leads to 
the following expression for the amplitude F?,, at the surface 
z = 0 of a semi-infinite crystal (Ref. l o ) :  

This expression for the amplitude is written in terms of the 
Green's function 

p o + i -  

where the Laplace transform Gh (p) is 

Gh(.)= ( $ ) ' D  -,-. [i(')Ih p ] / ~ - . [ i ( L ) ' "  p ] .  
4B 4B 

(11') 

Here we are using the notation 

(12) 
1 d 2  (hii ( x ,  z )  ) 

v=i 
x 2 @ 2 ~ o  I yh I XhX-h 

B = - 
16B sinP 26 ' 4 d (x-aoz) d (x-ahz) ' 

where D, ( t )  is the parabolic cylinder function. 
Substituting (6)  and ( 11) into ( l o ) ,  and using ( 8 ) ,  we 

find the following expression for the amplitude of the dif- 
fracted radiation at the front face of the crystal, after direct 
calculations: 

Here the eikonal function ,B (k,  x )  is 

where a,, = y,,'/L,, - y,,/R,. 
For simplicity we will restrict the discussion below to 

the case of only a slight curvature of the reflecting planes of 
the crystal, in which we have ~ 1 %  1 or, in expanded form, a 
dimensionless curvature parameter 

xA2 a. sin cpo-ah sin cph - 1  4n2 R, 

where the x-ray extinction length in the perfect crystal is 

In this case the Fourier component of the Green's function 
[see ( 11') ] takes the form of the corresponding expression 
for a perfect crystal: 

2. DIFFRACTED WAVE IN VACUUM 

To find the distribution of the diffracted radiation 
which escapes through the upper face of the crystal into 
vacuum, we would generally have to apply a direct Fourier 
transformation to (13) and then, taking into account the 
joining of each plane-wave harmonic, take the inverse trans- 
formation, working from the standard condition of the con- 
tinuity of the tangential components of the wave vectors. A 
simpler procedure, which leads to the same result, is to use 
the Huygens-Fresnel principle from optics, according to 
which the diffracted wave in vacuum at  the point rp is writ- 
ten as the convolution of the diffracted wave of the surface of 
the crystal, (13),  with a point-source function (Green's 
function) in vacuum' I: 

where 

Go ( r )  = (4nr) -' exp ( ixr)  

As was shown above for the case of an incident spherical 
wave [see ( 6 ) ] ,  the phase of the Green's function 
Go( Irp - r 1 ) in ( 17) can be expanded in powers of x2/ 
L , 2 , y 7 / L  2 < 1. Correspondingly, restricting the analysis to 

the parabolic approximation, we have 

Im ln Go(lrp-rl) 

=?c[Lh-x sin (ph+ (EP+xyh) '/2Lh+ ( y P - ~ ) ~ / 2 L h ] .  ( 18) 

Substituting ( 13), ( 14), and ( 18) into ( 17), and carry- 
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ing out some simple calculations (which we will not repro- 
duce here), we find the following expression for the diffract- 
ed wave in vacuum (which holds within an inconsequential 
phase factor) : 

where the eikonal function .7,,,, (k,  y )  is 

The parameters a,, and a ,  determine the geometry of the 
diffractive reflection. Specifically, a,, is related to the radius 
of curvature R,  and to the distance L ,  by (cf. a,,) 

A case of practical interest is that of an incident plane 
wave, in which we would have L,, $ y,,l R,  I .  Taking the limit 
Lo- m in (20),  we easily find that in the Bragg reflection of 
a monochromatic plane wave from a biaxially curved crystal 
the diffracted wave is described by [see ( 19) ] 

where the eikonal function .%,, (k,  y)  is [cf. (20 ) ]  

where Ap<. and Ap, give the angular deviations of the inci- 
dent plane wave from the exact Bragg direction in respec- 
tively the sagittal and meridional planes. 

Expressions ( 19)-(23) can be used to calculate the spa- 
tial distribution of the diffracted radiation in vacuum under 
very general assumptions regarding the geometry of the 
Bragg reflection, for arbitrary radii of curvature of the crys- 
tal. From the physical standpoint, the Bragg-reflection ar- 
rangements of greatest interest are those in which the curved 
diffracting crystal operates as a spherical x-ray lens which 
focuses x-ray beams "point-to-point" or "point-to-(parallel 
beam) ." 

3. JOHANN-HAMOS FOCUSING SPECTROMETER 

Before we analyze the arrangements listed above, we 
wish to discuss Johann-Hamos focusing, in which a point 
source of radiation is in the sagittal plane (y = 0 )  on the 
Rowland circle, whose diameter is equal to the crystal radius 
of curvature R, (a,, = 0 ) ;  this corresponds to the following 
distance from the source of the crystal (Fig. 3)  ''.I5: 

FIG. 3. Diagram used in the discussion of a focusing Johann-Hamos 
spectrometer. Ray paths in the sagittal plane. 

In the limit a,, - O the function 

(i/2nxao) '" exp (-ik2/2xao) 

in the integrand in (19) reduces to a 6-function, and the 
integral in ( 19) can be evaluated immediately. As a result we 
find 

In other words, the amplitude of the diffracted wave in vacu- 
um is directly proportional to the Fourier component of the 
Green's function, G, (q,, + x(s/R, ) .  It can also be seen 
from (25) that E, (r, ) becomes infinite at a point whose 
coordinate L,, is determined by the condition a, = 0. The 
explicit expression for this coordinate is 

Clearly, however, the divergence of E, (r, ) as a,  -0 is 
nonphysical; it is a consequence of the approximations used 
in deriving (25),  in particular, expansions (6)  and ( 18). 
Actually, we need to take into account the circumstance that 
the diffracted radiation is collected from a finite length of 
diffractive reflection along the surface of the crystal, x,,, 
which is limited in turn by the distance at which the geomet- 
ric aberration of the reflected x-ray beams starts to be impor- 
tant." 

I t  is not difficult to show that when the finite diffrac- 
tive-reflection length x,, is taken into account direct calcu- 
lations based on Eqs. ( 13), ( 17), (24),  and (26) lead to the 
following expression for the intensity distribution of the dif- 
fracted radiation near the point L [cf. expression ( 17) in 
Ref. 11 ] : 

(27) 
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It follows from (27) that under the relation 

Rg=Rxyo 1 yhl (28) 

between the radii of curvature of the crystal the diffracted 
beam is focused at the point rA*', with the Cartesian coordi- 
nates 

Relation (28) is a generalization of the Hamos condition for 
vertical focusing to the case of an asymmetric Bragg reflec- 
tion of x rays from a biaxially curved crystal. 

Intensity distribution (27) in the focal plane, 
lp y, ,which is oriented perpendicular to the propagation di- 
rection of the diffracted wave in Fig. 3 (OF), has an absolute 
maximum at point (29),  whose linear dimensions are, re- 
spectively, 

It also follows from (27) that from a spherical wave incident 
on a crystal under the condition < yORx 6, where 6 = A / 
aAyo is the angular width of the Bragg reflection from a 
perfect crystal [see ( 16) 1,  the part of the radiation in the 
solid angle 6p,6pY -x,,y,,/y,,Rx ' is collected at the focus- 
ing point, (29). 

We now wish to determine the linear dispersion dl,, /dA 
and the associated spectral resolution dA /A of a Johann-Ha- 
mos focusing spectrometer. Since a change in the wave- 
length of the radiation leads to a change in the Bragg angle, 
dif = (dA /A)tg 9 ,  we find from simple geometric consider- 
ations that the dispersion is 

Using the first of equalities (30),  we find an estimate of the 
spectral resolution: 

The total range of wavelengths reflected by a diffracting 
crystal is AA = AScotS. For the asymmetric 444 reflection of 
Mo Ka radiation (A = 0.7 A )  from a Si single crystal 
(if = 26.9") with R, = 10 m,  x,, = 1 cm, and ye, = 0.1 cm, 
for example, estimates based on (30) and ( 3  1)  yield the fol- 
lowing values for the dimensions of the focus: A<,, -lo-' 
pm,  Ay, -lo-'  pm.  The theoretical limit on the spectral 
resolution is dA /A - lo-'. 

Strictly speaking, the results derived above apply to the 
case in which the size of the x-ray source, on the Rowland 
circle, satisfies the condition Ag, < y,,R,6. In the opposite 
case A[, > yOR, 6, allowance for the nonzero dimensions of 
the source leads to the following expressions for the linear 
dispersion and the spectral resolution": 

The total range of radiation wavelengths reflected from the 
crystal is M (A[, /y,,R, )ctg 9. 

4. POINT-TO-POINT FOCUSING; GENERAL CASE 

In the general case, for an arbitrary distance from the 
source to the crystal, the Bragg reflection of a homocentric 
beam of x rays can be analyzed on the basis of Eqs. ( 19) and 

(20) by the stationary-phase method. The equations 

d~~~~ ( k ,  Y )  /ak=O, ~ F s P ~  ( k r  Y )  (32) 

determine the spatial fan of rectilinear ray trajectories which 
emerge from the front face of the crystal and which depend 
on the two parameters k and y. In turn, the relationship 
between the parameter k and the x coordinate of the point on 
the crystal surface ( z  = 0 )  at  which the ray emerges is deter- 
mined by the stationary-phase equation of the integrand in 
(13):  

Combining (32) and (33) ,  and going through some 
simple transformations, we find explicit equations for the 
ray trajectories: 

As the radiation propagates through vacuum, different 
ray trajectories intersect, at generally different points whose 
positions are determined by the equations 

These equations are none other than the equations of the 
imaging of a homocentric beam by a curved diffracting crys- 
tal. Explicitly, these equations are 

in the sagittal plane and 

in the meridional plane. 
In the general case of the Bragg reflection of a homocen- 

tric beam by a biaxially curved crystal, the diffracted radi- 
ation is therefore an astigmatic beam with two focal lines. 
The distance between these lines depends on all of the fol- 
lowing: the asymmetry of the diffraction geometry, the rela- 
tion between the radii of curvature of the crystal, and the 
distance from the source of the crystal (Fig. 4) .  

There is, however, an imaging case of practical impor- 
tance in which the homocentricity of beams is preserved in 
the course of Bragg reflection from a biaxially curved crys- 
tal. In the case of symmetric diffraction, with 
yo = I y,, 1 = sin if, and also when the relation 

FIG. 4. Diagram used in analyzing point-to-point focusing accompanied 
by the formation of an astigmatic beam of diffracted radiation. 
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holds between the radii of curvature, Eqs. (36) and (37) are 
the same, so the focal lines degenerate to a point (point-to- 
point focusing). Relation (38) and the condition that the 
diffraction geometry be symmetric constitute thus necessary 
and sufficient conditions; when these conditions are satisfied 
simultaneously, the imaging of x-ray beams occurs in a pro- 
cess in which homocentricity is preserved. The positions of 
the point source and of the image in the coordinates L,,, L, 
are related by an equation which has the same form as the 
well-known thin-lens formula from ordinary optics: 

where the principal focal length F is 

F='/,R,/sin 6='/,R, sin 6. (40) 

We now calculate the intensity distribution of the dif- 
fracted radiation near the imaging point. Substituting ( 16) 
into (19), and using (39), we find 

where the diffraction dimensions of the image in the plane 
perpendicular to the direction in which the diffracted wave is 
propagating are 

J, ( t )  is the Bessel function of real argument of index one, 
and 8 ( t )  is the unit step function. 

In the case in which we are interested here, of the imag- 
ing of homocentric x-ray beams, the lateral and longitudinal 
(in differential form) image magnifications are, respective- 
ly, 

FIG. 5. Intensity distribution of the diffracted radiation 
in the plane of the image in the case of the imaging of 
homocentric beams (symmetric 444 reflection of Mo Ka 
radiation from a Si single crystal). The extinction length 
is A = 34 pm,  the radius of curvature is R ,  = 1 rn, the 
focal length is F = 0.225 m, and L,, = 0.3 m, and yL,, = 1 
mm. 

Figure 5 illustrates the situation with the intensity dis- 
tribution I,, (x , ,  y, ) of diffracted Mo Ka radiation for the 
symmetric 444 reflection from a biaxially curved silicon 
crystal, used as a spherical lens, with a focal length 
F = 0.225 m, with L,, = 0.3 m, and with diffraction dimen- 
sions Ax, -7 pm,  Ay, - lo-' ,um of the image. Figure 6 
shows the lateral magnification K as a function of Lo, the 
distance from the source to the crystal, for various values of 
the radius of curvature R,  . 

We have been discussing monochromatic homocentric 
x-ray beams. We will now show that a nonzero wavelength 
spread of the primary beam does not lead to a blurring of the 
image; i.e., the image in the diffracted rays is achromatic. At 
a fixed position of the point source S, a change in the radi- 
ation wavelength, A -A + 6A, is equivalent to a rotation of 
direction OS in Fig. 1 through an angle 6p = (SA /A)  tan if 
from the exact Bragg position. The associated effective dis- 
placements of the position of the point of the source and of 
the point of the image are 66, = - LoSp, Sc,, = L,, Sp. As a 
result, the shift of the maximum of intensity distribution 
(41 ) in the approximation linear in /Sp / < 1 vanishes, since 
we have 

In other words, under conditions of symmetric Bragg 
diffraction a biaxially curved crystal with radii of curvature 
related by R, = R, sin29 is an achromatic diffraction lens 
which performs a point-to-point focusing of x-ray beams. 

FIG. 6. Calculated values of the lateral magnification K of a spherical x- 
ray lens versus the distance L,, for various radii of curvature R ,  (in me- 
ters): 1-0.6; 2-4.8; 3-1.0; 4-1.2; 5-1.4 (symmetric 444 reflection of 
Mo Ka radiation from single-crystal Si plate). 
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5. (PLANE WAVE)-TO-POINT FOCUSING 

In the limiting case of the Bragg reflection of a plane- 
parallel beam, Eqs. (36) and (37) take the simple form 

It follows immediately that a transition from an astigmatic 
diffracted beam to a homocentric beam is possible if the radii 
of curvature are related by 

In this case the focal plane lies at a distance 

from the crystal. In the case of a symmetric Bragg-diffrac- 
tion geometry, Eqs. (46) and (47) become the correspond- 
ing expressions derived in Ref. 8 for (plane wave)-to-point 
focusing. 

Calculations similar to the derivation of (41) lead to 
the following expression for the intensity distribution of the 
diffracted radiation in the focal plane: 

where the linear dimensions of the diffractive broadening of 
the focus, A{,, , Ay, , are 

It can be seen from (48) that, depending on the angular 
deviations of the incident wave from the exact Bragg direc- 
tion, the shift of the focusing point is given by 

Allowance for the wavelength spread of the radiation leads 
to the replacement of Sp,- by Sp,- + ( 1  - 1 y, l/yO) 
x (SA /A)tan 9 in the first of expressions (50), as is easily 
shown. 

It is appropriate to note here that this analysis of the 2 0  
focusing of x rays has been carried out for the case of a slight 
curvature of the reflecting planes of the crystal. The reflec- 
tion capability of such a crystal is described very accurately 
in terms of the small parameter, Ivl - I  < 1 [see ( 15) 1,  by the 
Fourier component of the Green's function of a perfect crys- 
tal, (16).  On the other hand, all of the expressions which 
have been derived for the imaging of x-ray beams apply to a 
crystal of arbitrary curvature, used as a spherical lens, pro- 
vided that the propagation of the diffracted radiation is de- 
scribed by eikonal function (20). 

A (plane wave)-to-point focusing has recently been ob- 

served by Kushnir and Suvorovy in the case of diffractive 
backscattering of x-ray beams: 9zn- /2 .  Under the experi- 
mental conditions of Ref. 9, the focus lay at a distance 
F =  R,/2 = 22.5 cm from the crystal (Co Ka radiation, 
A = 1.79 A, 620 reflection from Ge) ;  the diffractive broad- 
ening was A l p  -4A lxLy:',"I - ' I 2 =  120A; and the width of the 
Co Ka line was SA /A = 3.5- lop4.  

According to the DuMond diagram method, ' the angu- 
lar divergence of the Co Ka radiation incident on a spheri- 
cally curved Ge crystal is determined by the dispersions of 
the Si( 11 1 )  monochromator crystal and of the Ge (620) 
mirror, and is given by 

where the spectral width of the mirror is (SA/ 
A)'Ge) = Ix;y:)I = 1.4. lo-'. Substituting these values into 
(50), we find 

This result is about an order of magnitude smaller than the 
focus width found in Ref. 9, =; 10 p m ,  which was set by ex- 
perimental errors, primarily irregularities at the surface of 
the S i ( l l 1 )  monochromator crystal and the Ge(620) 
spherical mirror. 

The theoretical description of the focusing of x-ray 
beams by biaxially curved crystals proposed here can be used 
directly to solve other problems of interest in the field of x- 
ray optics, e.g., to analyze the properties of diffracted beams 
in the case of Bragg reflection from spatially modulated 
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