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The correlation function of polymer-network chain-density fluctuations induced by fluctuations 
of the network topology (i.e., of defects of the network structure and topological restrictions) is 
calculated by the replica method. It is shown that such statistical (spatial) density fluctuations 
can be considerably greater than the thermodynamic (temporal) fluctuations usually taken into 
account. The characteristic sizeand amplitude of the spatial nonuniformities of the network are 
calculated. It is shown that, as the quality of the solvent decreases, fluctuations of the topology of 
swollen networks give rise to microsyneresis effects even before the spinodal is reached. The 
entropy and the correlation functions of the thermodynamic fluctuations of the network density 
are also calculated in mean-field theory with allowance for the effects of topological restrictions. 
Exact solutions are obtained for a model of a calibrated gel in which each chain has a fixed length 
and for a model of critically branched networks synthesized near the gel-formation threshold. 

1. INTRODUCTION 

Fluctuations of the density p ( x )  of polymer networks 
are commonly described by the correlation function' 

where the angular brackets denote the thermodynamic aver- 
age (time average). In reality, the correlation function ( 1 ) 
permits one to describe only ideal networks, topologically 
equivalent to a regular lattice. In real systems there are al- 
ways defects in the topological structure of the networks- 
elastically inactive rings, short rings, dangling ends,'.2 etc. 
Regions of enhanced concentration of chains can arise even 
in the synthesis of defect-free networks. Because the chains 
are mutually impenetrable, the knots and topological en- 
tanglements that are formed remain unchanged during ex- 
ploitation, and this also leads to irregularity of the topology 
bf the networks. 

Thus, real polymer networks are systems with frozen 
topological disorder. In this article we shall show that the 
density fluctuations dp(x)  associated with fluctuations of 
the network topology can be considerably greater than the 
usual thermodynamic fluctuations ( 1). When these statisti- 
cal fluctuations are taken into account, the density-density 
correlation function of the network is equal to 

The bar denotes the statistical average (spatial average). 
Henceforth we shall assume that the network was synthe- 
sized in conditions of equilibrium with respect to reactions 
involving the formation and breaking of chemical bonds. 
The parameters of this "initial" system determine the topo- 
logical structure (or graph-see Ref. 3 )  T of the network. 
After this has been fixed by rapid cooling the network can be 
placed in some low-molecular-weight solvent, in which it 
swells. We shall call this system the "final" system. Because 
of the presence of topological restrictions (impenetrability 
of the chains), the phase space of the system is broken down 
into a set of mutually nonintersecting regions T, in one of 
which the network is "trapped" at the moment of f r e e ~ i n g . ~ . ~  

Thus, the topology of the network in the final system is de- 
termined by the configuration T, {x, ), where the x, are the 
coordinates of the monomer chains of the network. 

Characteristics of the initial system will be labeled be- 
low by the superscript 0. The indices k = 1, ..., m assigned to 
characteristics of the final system can be omitted. The vol- 
umes Vk' and temperatures pk' of these systems, generally 
speaking, do not coincide. We shall denote by a = ( V/ 
v ' ) " ~  the extension coefficient of the network, and by 
a ,  = a ( T'O')/a ( T) the coefficient of thermal expansion of 
its chains in the non-cross-linked state, where a is their per- 
sistent length. 

The correlation function G of the statistical density 
fluctuations that appears in (2 )  is defined by the expression 

and owes its origin to the fluctuations of the topology r, of 
the network. It has no analogs among the well-studied chem- 
ical-equilibrium  system^,^ for which GFO. In this article we 
shall calculate it in mean-field theory. As is well known from 
this t h e ~ r y , ~  the Fourier components of the correlation func- 
tions of thermodynamic density fluctuations can be repre- 
sented in the form 

where the functions x ' ~ '  determine the purely entropic con- 
tribution and the C'k' are expressed in terms of the density- 
density correlation functions of the so-called broken-links 
(bl) system,3s6 in which chemical bonds are absent: 

Since the characteristic length scale for particle interac- 
tions is small in comparison with the corresponding correla- 
tion lengths f k '  , it is possible to neglect the dependence of 
the right-hand side of (5 )  on q. The dependence of the pa- 
rameters C'k' on the form of the volume interactions has 
been well ~ t u d i e d . ~  

As shown in the Appendix, fluctuations of the topology 
of polymer networks give rise to random spatial fluctuations 
of the pressure: 
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where the quantity n- gives the pressure in dimensionless 
units. The corresponding density fluctuations in the network 
are equal to 

dp (x) = j dx'g (x, x') dn (x') rr ' j  dxlg (x-x') dn (x') . ( 7 ) 

Using (7)  to calculate the Fourier component of the func- 
tion G ( 3 ) ,  we find 
-- 

Gq-dpqdp-q=dnqdn-q~q2. (8)  

In deriving (7) we neglected the statistical fluctuations of 
the function g(  1) in comparison with the pressure fluctu- 
ations (6) .  The latter are substantially determined by the 
conditions of the preparation of the network. 

We denote the corresponding correlation functions of 
the statistical fluctuations of the pressure for the network 
obtained in the uncompressed initial system by 

@(~-x')=dn(x)dn(x')  Iunc0,, 
(9)  

(x-ax') =dn(x) dn(')(xl) 

In the Appendix it is shown that the correlation function of 
the statistical fluctuations of the pressure for a network syn- 
thesized in arbitrary initial conditions can be expressed in 
terms of the correlation functions (9): 

( 0 1  dn, dn-,=0,+g,, Oq2a3. (10) 

The second term, proportional tog"', in ( 10) gives the con- 
tribution of the fluctuations of the network topology that 
arise from fluctuations of the network density in the initial 
system. In regions with an enhanced density of links the 
chains are more strongly entangled and the probability that 
they will form cross links increases. As a result of the freez- 
ing, the fluctuations of the topology and structure of the 
networks give rise to a corresponding enhancement of the 
pressure fluctuations ( 10). 

Thus, the problem reduces to calculating the correla- 
tion functions (9) and the functions x and ~ " ' ( 4 ) .  As shown 
in the Appendix, for a = a, = 1 the following universal re- 
lation exists between these quantities: 

which permits us to restrict ourselves to finding the correla- 
tion functions (4)  of the thermodynamic fluctuations. For 
a ,  a, # 1 there is a relation analogous to ( 11 ) only for phan- 
tom networks in which the effects of topological restrictions 
can be neglected. As shown in Sec. 3, in this case the correla- 
tion functions ( 9 )  of interest to us are equal to 

0, (a, a,) =a7a,10, (I ,  I ) ,  0, (a,  a,) =aZa,20, ( I ,  I ) ,  

%,(a, G) =a5a,Zxq (I ,  1).  
(12) 

Their values for a = a, = 1 are related to each other by 
(1 1). The theory developed in Sec. 3 makes it possible to 
calculate these functions for a phantom network of arbitrary 
topological structure. 

The most difficult problem is to describe topological 
restrictions in networks, and we do this in Secs. 2, 4, and 5 
using the mean-field theory developed in Ref. 7. We shall 

discuss first some of its physical aspects, using the very sim- 
ple example of a structureless closed chain in which the num- 
ber of links N -  m. In a concentrated initial system 
[p'0'a3 Z 1 ] we can neglect the interaction of different seg- 
ments of this rather rigid chain. We denote the probability of 
formation of a knot in such a chain of length n byp(n).  Then 
the average number N Lo' of links between two effective en- 
tanglements (knots) along the chain will be determined by 
the obvious conditionp(N aO' )  ~ 1 .  Making use of numerical 
calculationss of the functionp(n ) for a random noninteract- 
ing chain we obtain N  Lo' 200, which is in good agreement 
with experiment. In a dilute initial system a chain can be 
regarded as a noninteracting string of droplets (blobs), the 
number n/g of which is proportional to the number n of links 
in the initial chain; g=: (p"'a3) )-514 is the number of links in a 
blob.' From this we find the following concentration depen- 
dence of the parameter N Lo', which agrees well with experi- 
ment: N Lo' --, 200g - (p"') -514. 

Thus, in the initial system a chain appears as an aggre- 
gate of a large number N / N  jO' of interpenetrating loops. As 
the chemical bonds freeze in the final system, because of the 
presence of topological restrictions long-range order asso- 
ciated with the elasticity of this quasinetwork of entangle- 
ments appears. The corresponding order parameter is nonlo- 
cal and is the analog of the well known Edwards-Anderson 
parameter9 (see Sec. 6 ) .  To describe this ordering we shall 
make use of the standard procedure of introducing a nonlo- 
cal external field v, conjugate to the order parameter. This 
mean-field theory is applicable because large length scales 
(on the order of the size of a loop) 6, Z a N  d'2 >a are present 
over which effective averaging of the thermodynamic fluctu- 
ations of a large number of neighboring chains occurs. 

Upon deformation of the polymer there is a change in 
the phase volume of the region T in which the system is 
trapped at the time of freezing, and this gives rise to a corre- 
sponding change of the amplitude 6, of the fluctuations of 
the links of the chain. We shall describe this effect in the 
framework of mean-field theory in Sec. 2. Unfortunately, the 
physically intuitive approach of this section is not construc- 
tive for the description of the topological structure of poly- 
mer networks, and in Secs. 4 and 5 we shall use for this the 
more formal method of replicas."' In Sec. 4 we shall confine 
ourselves to calculating the zero Fourier components of the 
functions 8, 8, and x, since only they are reduced by the 
action of topological restrictions. The gradient terms of 
these functions also describe at the same time fluctuations on 
scales small in comparison with 5, (but large in comparison 
with a ) ,  on which the topological restrictions are unimpor- 
tant. Therefore, they are determined by expressions ob- 
tained for the phantom network (see, e.g., the estimate in 
Sec. 5).  

In Sec. 6 we discuss the physical meaning of the order 
parameter for polymer networks and certain physical conse- 
quences of the theory presented. 

2. FORMULATION OF THE PROBLEM: MEAN-FIELD THEORY 

We shall define first the probability measure with which 
the thermodynamic and statistical averages in ( 1)-(3) are 
calculated. The probability distribution of the coordinates of 
the monomeric links of a system of given topology r, can be 
represented in the form 
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where W, { x ,  ) is the contribution of the phantom network 
of the same topological structure and the topological restric- 
tions are described by a factor 6, that is equal to unity for the 
region T of the configuration space { x ,  ) of the system and 
equal to zero otherwise. The partition function Zrr ,  as usual, 
is determined from the condition that the probability ( 13) 
be normalized. 

Since a polymer network consists of macroscopic re- 
gions with all possible topologies I?, , the complete probabili- 
ty distribution of the coordinates { x ,  ) is found by statistical 
averaging of ( 13 ) over all these topologies: 

where the partition function Z ky of the initial system is de- 
termined from the normalization condition for the probabil- 
ity W F ,  which is defined by an expression analogous to 

( 1 3 ) .  
In mean-field theory the topological restrictions in an 

undeformed spatially uniform system are described by an 
effective field u,, ( r ,  - R, ), which limits the fluctuations of 
the nth link about its position R, at the time of freezing.' ' 
Correspondingly, in the relations ( 13) and ( 14) we must set 

where the normalization factor A is determined from the 
condition that the integral of ( 1 5 )  over all the R, be equal to 
unity [see the second equality ( 13 ) 1. 

The field u,, is a macroscopic thermodynamic variable, 
conjugate to the order parameter (see Sec. 6 ) .  Therefore, it 
does not depend on microscopic variables such as the direc- 
tion of the chain.6 The characteristic length scale r ,  of the 
variation of the field u,  is large in comparison with the scale 
6, of the thermodynamic  fluctuation^.^ Therefore, it is suffi- 
cient to confine ourselves to the quadratic term of the expan- 
sion: 

Below, we shall show that on scales large in comparison 
with 6,  the network is deformed as a continuous medium 
(affinely ) : x"' = f (x"') , where f is a specified deformation 
function. Within mean-field theory such a deformation of 
the phase volume of a region T is described by the corre- 
sponding change of the vector R, and of the scale r ,  > { ,  of 
the field u, : 

It is more convenient to rewrite these relations in another 
form, introducing particle coordinates r ,  reduced to the un- 
deformed initial system [f  (r, ) = x!,"] : 

The right-hand side of ( 17) is defined in ( 1 5 ) .  The relation 
(17)  can be regarded as stating that the topological restric- 

tions do not change when a network region of macroscopic 
size is deformed. 

We now calculate the entropy of the system. The total 
self-consistent field acting on the nth link is equal to the sum 
of the contributions of the topological interactions ( 16) and 
the volume interactions: 

We shall denote by Z, { R ,  Iv, ) the partition function of a 
polymer system whose particles are in the external field ( 18) 
but do not interact with each other. Performing a Legendre 
transformation, we find the entropy of such a network with a 
specified mean density ( p ,  ( x ) )  of the nth link: 

It is not difficult to convince oneself that the density 
( p ,  ( x ) )  found from the second relation in ( 19) coincides 
with the expression obtained by direct averaging of 
6 ( x  - x, ) with the probability ( 13 ) , ( 15 ) . The free energy 
of the system under consideration with specified coordinates 
{ R ,  ) is equal to 

where E, { ( p ) )  is the energy of the volume interactions of 
the system of broken links. For a region of macroscopic (in 
comparison with 6 , )  size, both the average link density 
( p ( x )  ) = ( p ( x )  ) and the functional F are self-averaging 
quantities: 

where the statistical average ( 14) includes averaging over all 
topologically inequivalent regions ?for a given graph r [i.e., 
integration over the coordinates R, with weight ( 13 )-( 1 5 )  ] 
with subsequent averaging over the different topological 
structures I?. The functional dependence of u,  (x) on 
( p ( x )  ) is found from the condition for the maximum of the 

expression in the right-hand side of ( 2 0 )  for the entropy S 
with respect to u, [see the second relation in ( 19) 1. Mini- 
mizing the functional F{ (p)) given by ( 2 0 )  with respect to - 
(p) gives the self-consistency equation for the mean field of 

the volume interactions u,  ( x )  ( 18) : 

Henceforth in this section, in the discussion of effects involv- 
ing topological restrictions we shall set u,, = 0 .  Introduction 
of this field into the corresponding formulas does not require 
special discussion in view of the absence of distinctive fea- 
tures in comparison with the case of the liquid phase of poly- 
mer~ . " "~  

The effects of topological restrictions will be considered 
first for the simplest case of a linear chain with N -  w links. 
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This model was considered earlier in Ref. 7 using the replica 
method. In the continuum model of the chain4 the probabili- 
ty distribution ( 13) of the link coordinates x(n)  EX, of 
such a phantom noninteracting chain is equal to 

x' (s) 
W(k)(x(n))=wnstexp[- I d s (  y) 1. (21) 

0 

where, as usual, the prime denotes the derivative. It is ob- 
vious that the quantity C ( 16) does not depend on n. The 
probability ( 14) of interest is found by calculating the inte- 
graloverallpaths x(n)  oftheexpression (13), (21), (15): 

N N  
ds ds' R' (s) R' (s') 

a2 
0 0 

According to (22), the topological restrictions become im- 
portant only at large distances 1s - sfl 2 N6') along the 
chain, and do not make a contribution for 1s - sf I 9 N Lo'. 

An analogous calculation of the partition function of 
the final system, subjected to specified extensions by factors 
of A, along the axes p = x ,  y, z,  gives 

N 
In Z{R (n) 1 v,) =const -z [- , 2N,, 

N N 

ds ds' R: (s) R; (s') + G I  J- 2Neu aL 

I s-s' I ( - 1 ,  LFN:" 'hw 

As follows from (23), the quantity Z depends only on the 
large-scale fluctuations R(s) ( 1s - sf I 2 N,, ) characterizing 
the topology T of the entangled chain. For a more detailed 
description of the chain we shall calculate the mean density 
( 19) of the nth link: 

where the quantity 6, = aN iF determines the amplitude of 
the thermodynamic fluctuations of the chain along the axisp 
about its mean position: 

The statistical distribution of these coordinates is fully de- 
scribed by the Gaussian correlation function 

(fi,(n) -R,(nl) )2='/2Edf(L>, I n-n' IlN,,), 

f (h2, x)=h2(x-1Se-')-I- '/2(L2-1) [ (1Sx) e-'-I]. 
(26) 

Here the average has been obtained by calculating the Gaus- 
sian integral over the coordinates R(s )  with weight (22). 

The expression (26) is in complete agreement with the 
physical quasinetwork model introduced in Ref. 7, with N,, 

links between two quasi-cross-links of the quasinetwork. By 
setting n - n' = N ,  in (26), we find for the mean distance 
between quasi-cross-links the usual expression for an ex- 
tended phantom network: R, z a N  :FA,. 

At large distances In - n'l S N ,  along the chain the 
correlation function (26) is approximately equal to 
a2A : In - n'l and does not depend on the parameter N, of 
the topological interactions. Thus, on large scales the poly- 
mer experiences affine deformation. Over small distances 

1 % -  n N it follows fro? (26) that 
IR(n) - R(nf)l-In - nfl.Therefore, Rcanberegardedas 
the coordinate of the primitive chain path obained by 
smoothing the thermodynamic fluctuations of the chain on 
the scale 6,. 

We note that the formula (26) ceases to be valid for 
large In - n'l on scales of the order of the system size. In 
reality, a chain returns repeatedly to the neighborhood of 
each point of the space that it occupies, and it is this which 
ensures the self-averaging of the total density (p ) .  

Substituting (23)-(25) into (20) and averaging with 
the probability (22), we find the entropy of the chain under 
consideration: 

An analogous expression was obtained earlier in Ref. 7 by 
the replica method. 

The concluding part of this section is devoted to "trans- 
lating" the basic relations of the theory presented above into 
the replica-method "language" (Refs. 7, 10) necessary for 
the description of the topological structure of polymer net- 
works.'* Calculations using the formulas (13)-(20) come 
up against a problem that is standard for systems with frozen 
topological disorder, namely, the averaging of the factor 
Z , '{R, I u, ) with the Gibbs measure ( 13 ) . To circumvent 
this difficulty, we shall write this factor in the form 
z m - I  , (m -0) and, in the intermediate calculations, assume 
m to be a positive integer. After substitution of the resulting 
formula ( 13) into ( 14) and integration over all the coordi- 
nates {R, ), the probability measure ( 14) of the final system 
( k  = 1 ) takes the form 

m 

n l t k  

Here P,,,, {X, ) is the probability measure of the distribution 
of the coordinates X, = (xjp', ..., xAm') of the particles in the 
replica space of dimensionality d = 3(1 + m )  (the coordi- 
nates xLk' of a particle in the k th replica are the projections of 
the vector X, onto the unit vectors of this replica): 

k-0 

where Z, is the normalization factor for the probability 
(28). The field v,, in (28) is determined by the expression 

m 
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Evaluating this integral with the aid of ( 16), we find 

c n  . (30) v  (X") = - ( - ) C. = - 
2a2 k,kV 

I +  m 

For k = 0 the expression (27) determines the probability 
measure of the initial system, and for k = 1, ..., m it deter- 
mines that of the k th replica of the final system. Thus, the 
distribution (28) contains complete statistical information 
about the polymer system. 

To calculate the entropy ( 19) we represent the average 
of the logarithm of the partition function in the form 

By making use of ( 3  1 ) and the relation (30) between C,, and 
C L, we write the following chain of equalities, the first of 
which follows from (20) : 

where (p, ( X ) )  is the average density of the nth particle in 
the replica space: 

and the A in (33) denote the extension coefficients of the 
k th replica in the direction of the p axis [so that in (30) 

( A )  = x;,h)/~ 2'1 
r~ 

The average density of links in the k th replica is deter- 
mined by the expression 

The physical meaning of the order parameter (35b) is dis- 
cussed in Sec. 6. We note that for m = 0 the quantity 
S'O'( ) = SO(A lo') is equal to the entropy of the initial 
system. With neglect of end effects we shall assume below 
that C, = Cis independent of n. 

We now make use of the replica formalism (27)-(35) 
to describe polymer networks. We start from the simplest 
case. 

3.THEORY OF PHANTOM NETWORKS 

The Gibbs probability measure of a noninteracting 
phantom network is established from its graph r (Ref. 3):  

where we associate with each bond (edge of the graph r )  
between links i and j a factor g(xi - x, ). The probability 
measure of the initial system contains an extra factor zN/N!, 
where z is the activity of the particles that are forming cross 
links and N is their number in the configuration I?. Substitut- 
ing (36) into (28), after making the change of variables 
x ( ~ '  + x ( ~ )  / a T ( k  = 1 ,  ..., m )  we find the following expres- 
sion for the probability measure in the replica space: 

In the new variables the extepsion coefficie~ts of the k th 
replica become equal to A F' = A F', A hk' = a,A F', 
( k  = 1, ..., m).  

We note that the probability measure (37) of the phan- 
tom networks is isotropic in the replica space. In the solid 
phase, as in the case of a ferromagnet at T < T, , the introduc- 
tion of a bare field v, +O (16) gives rise to spontaneous 
breaking of this symmetry, i.e., to identification of a direc- 
tion n in which the network extends in the replica space (see 
the discussion in Sec. 6). Following Ref. 13, we introduce 
coordinates that are longitudinal [indicated below by the 
superscript (0)  ] and transverse to this direction: 

where we choose the directions of the unit vectors of the 
transverse coordinates in the 3m-dimensional replica sub- 
space using the condition that the quadratic form u, (X) be 
diagonalized: 

where the eigenvalues Atk' are the roots of the algebraic 
equation 

m 

The field v, (39) and, consequently, the order param- 
eter (p (X))  (35b) induced by it do not depend on the longi- 
tudinal coordinates R'O). In addition, because of the normali- 
zation condition (35a), the function (p (X))  should fall off 
rapidly as the transverse coordinates lR F) / ( k  = 1, ..., m) in- 
crease [the long-range order localizes the particles near their 
mean positions (24) 1. 

An analogous coordinates dependence is also possessed 
by the density functional 

1nZm{vn)=  - 3 d X f m ( X ( v n 1 .  (41) 

Going over in (41 ) to integration over the coordinates R p' 
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(38), we find the entropy S,,, (33) of the phantom networks 
in the replica space: 

m 

Here the bar indicates parameters of the undeformed 
network, Nc is the number of chains in the network, 8 i s  the 
average number of links in one chain, and v is found from the 
condition for the maximum of the right-hand side of (42), as 
follows from the relations (34) and (35). For m = 0, from 
(43) weobtainf,(v) = f,(Olu). Substituting (42) into (32), 
we find the entropy of the phantom network in the initial and 
the final system: 

L 
P 

The relations (44) express the number Wff of effective 
chains in a phantom network of arbitrary structure in terms 
of its thermodynamic characteristics in the conditions of its 
preparation. For defect-free networks the quantity nPff was 
found earlier in Ref. 5. 

To calculate the correlation functions we rewrite (43) 
by setting 

and expand the functional S,,, in the density fluctuations 

up to terms quadratic in . The correlation functions of 
interest to us are found by inverting the corresponding ma- 
trix G ;  ' of the quadratic form A@, = I;AE'k) - TAS, 
(see the Appendix). As a result, we obtain the expressions 
(8 )  and ( 12), where the correlation functions 8 and 8 of the 
statistical pressure fluctuations for q = 0 are determined by 
the expressions ( 12). Their values for a = a,. = 1 can be 
expressed directly in terms of thermodynamic characteris- 
tics of the initial system: 

xo~O~=-l/fo"(o), xo(1, I) =-fo(0)/3[fo(0)12, 
e0 (I, I) =e0(I, I) =xo (I, I) -xO(O). (46) 

The spatial scale of the functions x and 8 is equal to the 
amplitude &, of the fluctuations of the cross links of the 
network. Since for phantom networks the quantity 
{, -aN ' I2 does not depend on a (Refs. 14, 15), the relations 
(12) remain valid for nonzero wave vectors q as well. A 
method for calculating the function f,(u) for networks of 
arbitrary topological structure is described in Ref. 3. There- 
fore, here we shall give only the results for networks ob- 
tained by equilibrium polycondensation of 2- and f-func- 
tional monomers in a melt: 

where N is the average number of links in a chain of the 
network between two f-functional monomers, and p, P'") , 
 and^'^' are the conversions (the probabilities of formation 
of bonds between these monomers) of the initial system, the 
washed-out sol molecules, and the gel network, respectively: 

The number Wff of effective chains in such a network is 
equal to the number of independent rings in the network. 

We now discuss the physical meaning of our results 
(46) and (47). The pressure fluctuations ( 6 )  in the network 
are determined both by fluctuations of the topology of its 
graph r and by fluctuations of the chain lengths in the 
network, i.e., of the edges of this graph. With neglect of the 
latter, i.e., in the model of a calibrated gel in which every 
chain has a fixed length m, forp = 1 it is not difficult to show 
that 

In the model (47) fluctuations of the lengths of the chains 
give rise to an extra term A8 = fQ 2/12p'0'Nin (48).  We now 
consider networks obtained near the gel-formation thresh- 
old [r=p/p% -- 1, < 1 pc = ( f - I ) - ' ] .  Their elastically 
active chains consist of a large number -7-  ' 1 of series- 
linked shorter chains of average length N. Therefore, the 
fluctuations of these lengths are effectively averaged 
[ A8-781, and the correlation function 8, is determined en- 
tirely by the fluctuations of the topology of the network 
graph: 

4. TOPOLOGICAL RESTRICTIONS IN NETWORKS 

When topological restrictions are taken into account 
the functional 2, (31) also depends on the field u, (40), 
acting only on the links of the network skeleton (see Ref. 1 ). 
Below, we attach a subscript b to parameters pertaining to 
the links of the skeleton. The network skeleton is obtained by 
cutting off the chains attached to it by only one ring. We 
determine the functional dependence of the entropy S, (33) 
on the parameters A:) and the external fields u, = BvLk' 
and u, = ZuLk' acting, respectively, on all the links of the 
network and only on the links of its skeleton. According to 
( 37) and (40), in the coordinates ( 38) the probability mea- 
sure (28) factors and is a product of contributions with dif- 
ferent values of ,LA = x ,  y, z and k = 0, ..., m. Therefore, the 
partition function of the canonical ensemble for an arbitrary 
graph r also factors. We represent it in the form 

where the Z kk' are calculated for v, = v, = A:) = 0, and 
the contribution of the topological restrictions is included in 
a function X, equal to 

xrD (Afi) -CAN (ETpla) '. (49b) 
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Summing (49) over all T, we find the partition function of 
the grand canonical ensemble: 

where the function Z ,  in the right-hand side is calculated 
for the phantom network and x is determined by averaging 
Xr, over all r,. Substituting (50) into the first of the equali- 
ties (33), we bring the functionals, to the form (42), where 

First we find th: entropy of the system, by setting in 
(51) A r ) = 1  a n d A r ) = a , A ,  ( k = l ,  ..., m).  For these 
f i  hk' the solution of Eq. (40) is easily found: 

We now calculate, to terms of first order in m, the combina- 
tion 

Substituting (53) into (5  1 ), to the same accuracy we find 

The derivative ofyo with respect to v, is equal to the mean 
densityp, = N,/VO~ the links of the network skeleton. Us- 
ing (54) and (42) we find the final expression for the 
network entropy (32) : 

It is not difficult to verify that for a, = A, = 1 we have aS / 
aA, = aS(O"/aA F), which, for equal interactions of the links 
in the initial and final systems, leads to equality of their pres- 
sures: P = P ' O '  (Ref. 4).  

We now calculate the correlation functions (9 )  of the 
pressure fluctuations. The entropy S, (A Lk')  is symmetric 
under permutations of all the replicas, and this permits us, 
when determining the coefficients of its expansion in powers 
of (45),  to confine ourselves to the case 

For m = 0 the solution of Eq. (40) with the quantities 2 
defined in ( 56) has the form 

In this case, for the quantity (53 ) to terms quadratic in E we 
find 

Substituting (58) and (51) into (42),  we find the coeffi- 
cients of the expansion of the entropy in powers of LQ'~' 
(45),  and it is these coefficients that determine the correla- 
tion functions of interest to us (see the Appendix) : 

where A = ( a , a ) -2  and the functions 8,8, and x have, for 
A = 1, the very simple form 

It is not difficult to obtain the corresponding expressions for 
A# 1 as well. Because they are cumbersome, we shall not 
give them here. 

Thus, both the elastic and the correlation characteris- 
tics of the network in the presence of topological restrictions 
are fully described by the functionx(A) (49),  (50). We give 
a qualitative estimate of this function. In the case of weakly 
entangled chains the amplitude 6, of the fluctuations of their 
links does not depend on A,. Substituting (49b) into (55), 
in full agreement with the experiment described in Ref. 15 
we find that topological restrictions do not contribute to the 
entropy of such a network. We consider the case of strongly 
entangled chains first for the example of the long chain con- 
sidered in Sec. 2. On the scale {, - aN :'2 the average energy 
of the field v, should be of the order of the temperature. The 
condition N, u, (6, ) - 1 permits us to estimate the param- 
eter N, in the final system: N, z N :''A, N jo' = C - ' I 2 .  From 
this, with the aid of (49b), we find x ( A )  -u, ( l T  ) z l/N,. 
In the case of an arbitrary fractal structure we have 
6, -aN fD, where D is the fractal dimensionality of the 
network skeleton. In particular, for networks obtained near 
the gel-formation threshold ( p-p, ), the quantity D = 4 
and N, -N?)A 413 N (0) - c -213 

3 e , andalsox=:l/N,. 
In the next section we calculate the function x ( A )  in a 

wide range of parameters of the system, in models admitting 
an exact solution. 

5. EXACTLY SOLVABLE MODELS OF POLYMER NETWORKS 

We consider two models of polymer networks. The first 
describes calibrated gels' with a fixed number N of links 
between neighboring cross-links, synthesized far from the 
gel-formation threshold ( p = 1 ). The second describes cri- 
tically branched networks obtained byf-functional polycon- 
densation of monomers near the gel-formation threshold 
( r = p / p ,  - 1<1) .  

The partition function (28),  (37) for the calibrated-gel 
model can be reproduced by expanding the functional inte- 
gral 
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in powers of the activity z of thef-functional units that are 
cross-linking. Here, 

and G (" ( X , X f )  is the correlation function of the ends of a 
chain of % links that is situated in a space of dimensionality 
d = 3  ( 1 + m ) in the self-consistent field ( 18) .  For a Gaus- 
sian field v, ( 3 0 )  with v, = const this function is easily 
found4: 

G(N) (X,  X') = ( - u u N )  [na2N::' sh (W/N,) ] -' 
(na2fl)  '" R=I 

( 6 2 )  
where the parameter N ~ ~ ' = ( C A , ' k ' - " 2  with 
A, = (aa,)-' determines the average number of links 
between two effective entanglements [see also ( 2 3 )  1. 

Calculating the integral (61 ) by the method of steepest 
descent, we find the self-consistency equation for the func- 
tion p  ( X )  : 

the solution of which has the form 
m 

Substituting ( 6 4 )  into the exponential in the integrand of 
(61 ) and calculating its extremum with respect toF ,  we find 
the quantityym defined in (51 ): 

The parameters SF' are found by minimizing the function 
x(s?', A?)) with respect to them: 

S F '  , f-z+[  ( f -2 )  2+4 ( f - 1 )  th2 (WIN:;) ) 1% 
2 ( f -  1) N,;' th (WlN;;)) I ( 6 6 )  

and it is the value of this function at the point of the mini- 
mum of the expression ( 6 5 )  that determines the function 
x ( A ,  ) ( 5 0 ) .  In particular, its derivative is equal to 

I 1  
%'(A, , )= - [ - (1+  2A, N,, sh2(m/N,,) " ) - 1 .  ( 6 7 )  

We note that the extremum ( 6 5 )  with respect t o F  is the 
maximum of the exponential in Eq. ( 6 1 ) ,  so that the parti- 
tion function (61 ), calculated with allowance for the fluctu- 
ations of the field p ( X ) ,  is purely imaginary. This result is a 
consequence of the use of the grand canonical ensemble and 
leads to a real value of the entropy S,  (A j:'). In the absence 
of topological restrictions (6 ,  = 0 )  the result ( 6 5 )  was ob- 
tained earlier in Ref. 5. 

From Eq. ( 6 3 )  for the amplitude of the fluctuations of 
the quasi-cross-links there follows the expression 

Er,wa (sII)  -# w a min (m'", N.;") . 

For A, = aa, it determines the characteristic scale of the 
function 

For the model considered above withp = 1 the network 
skeleton coincides with the network itself. A different situa- 
tion is realized in critically branched networks ( T &  I ) ,  con- 
sisting predominantly of chains that are attached to the skel- 
eton by only one ring and make no contribution to the 
elasticity of the network. 

A field theory [with field pi ( X ) ,  i = 1 ,  ..., n ]  describing 
such networks in the limit n  - 0  was constructed in Refs. 7  
and 12. For 1 it is sufficient to confine ourselves to the 
third-order terms in the expansion of the effective action in 
powers of qi = p, - p / ( l  - p )  (see Ref. 7 ) .  For a ,  = 1 
and v ,  = u, = 0  this expansion takes the form 

According to Ref. 7 ,  the solutions $,(" of the equations found 
by minimizing ( 6 8 )  (the solutions describing the polymer 
network) are degenerate = 1 ,  ..., n )  and must be sought in 
the form 

$,'" ( R )  =q ( R )  +$ ( R )  12, $i'" ( R )  =cp ( R )  -$ ( R )  12, iPj. 

After substituting ( 6 9 )  into ( 6 8 )  and eliminating the func- 
tion p ( R )  found by minimizing ( 6 8 )  with respect to p, we 
obtain an effective action that depends only on the field 4 .  
For n = 0  it takes the form 

To find the function x ( A )  ( 5 0 )  we shall consider the A  val- 
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ues specified by (52). In the calculation of the functional 
(70) to terms of first order in m it is sufficient to find the 
function *(R) that minimizes the functional (70) ,  the pa- 
rameters of which are found for m = 0. In the limit m -0 the 
isotropy under rotations in the 3m-dimensional replica sub- 
space is restored, and so the function sought depends only on 
the quantities [A, : 

Substituting (71) into (70), in first order in m we find 

where the functions 7, ( f )  = 7 ( f , 0 , 0 )  etc. are determined 
by the equations 

with the boundary conditions 7, (0 )  = 1 and 
vA, (<+ m)-0. 

Equation (73) is simplified in the limit of phantom net- 
works (C-O), when the function 7, (<) does not depend on 
p and is determined by the equation 

For f - m, from (74) we find 

q,(b) -5"' exp[- (b/2)'"l~,'O'], ~ ' " B E I ' )  . (75) 

The same asymptotic form (75) is also valid for C >  0. In the 
case of strongly entangled chains there is an intermediate 
interval of lengths $, <f ' I 2  <[:,, in which the function 
7/, ( f )  decreases only by a power law: 

The parameter N,, is equal to the average number of links 
between two effective entanglements along an elastically ac- 
tive chain: 

From (72) and (76) we f i n d X ( ~ ,  ) ~ N N ,  '-A?. 
We note that the gradient expansion in (70)-(73) 

starts from terms of fourth order, this being connected with 
the fractal structure of the network for T <  1. The quantity 
{, =a1 where D = 4 is the fractal dimensionality and 1 is 
the number of links in a region of size 6, : 1- T - ~  for N, 9 T-' 

and l-N,/r for N, <?-I. The quantity [, determines the 
characteristic scale of the function x, z x,( 1 + q4[ 4, ) . US- 
ing ( 4 ) ,  we find expressions for the correlation function of 

the thermodynamic fluctuations of the density and for the 
correlation length of the final system: 

With neglect of the elastic contribution of the quasinetwork 
of entanglements,' these expressions were obtained in Ref. 
16. 

6. DISCUSSION OFTHE RESULTS 

In this paper we have constructed a statistical theory of 
polymer networks with allowance for both the thermody- 
namic and the statistical fluctuations of their density and in 
the presence of topological restrictions. The order parameter 
for such systems with a frozen topological structure is the 
density ( p ( X ) )  (35b) in the replica space. It determines, in 
particular, the densities (35a) of the links in each of the 
replicas. Integrating (p(X) ) (35b) over the coordinates of 
all the replicas except k and I, we determine the "overlap" 
between replicas k and I: 

p ( k o  (x, = <p(;) (x) ) <p!) (xr) ). 

The liquid phase of polymers corresponds to a solution of 
molecules of finite size, which was studied in Ref. 2. Because 
of the absence of correlation between the positions r, and r; 
of a particle over long times, the quantity p'kl)  is a constant, 
and in the thermodynamic limit p(") = ( P ( k ) ) / ~ ( ~ )  
vanishes. In the solid phase the coordinates r, and r: are 
correlated and the order ~a ra rne te rp '~ ' )  is finite. The struc- 
ture of this phase is determined by the symmetry of the order 
parameter. 

In a phase of the spin-glass type there are more than one 
of the "pure" states of Ref. 9, separated from each other by 
high potential barriers. In this case the order 
describes the overlap of states k and I. An exotic phase of this 
type can be realized only in random heteropolymers, the 
number of components of which is of the order of the number 
of their links." In polymer networks a phase of the ferro- 
magnetic type with a single ground state, to which the affine- 
deformation vector n (38) corresponds, is realized. 

In mean-field theory the order parameter is determined 
by the self-consistency equation ( 6 3 ) ,  which, for phantom 
networks (u, -O), is symmetric under rotations in the re- 
plica space and has infinitely many solutions. Which of these 
is the correct one is determined by the conditions on the 
sample surface that break this symmetry. Thus, in the pres- 
ence of long-range ~ r d e r p ' ~ ' )  # O  one must not take the ther- 
modynamic limit until the properties of the surface have 
been taken into account (Ref. 4, p. 85). This anomalous 
influence of the surface is due to the presence of the topologi- 
cal restrictions, which divide the phase space into a set of 
topologically inequivalent regions r .  Local deformation of 
the surface causes a global change of the region r in which 
the system is trapped at the time of preparation. For any 
finite u, f 0 the solution of the self-consistency equations is 
unique. 

The extent to which the topological structure of the lat- 
tice differs from the ideal topological structure is described 
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by the correlation function ( 8 ) ,  (10)  of the spatial density 
fluctuations. We note that for a  = 1 and Cq = Ch0) 

(Ap(x)Ap(~'))=(Ap(~)(x)Ap(~' ( X ' ) ) = ~ ( ~ ) ( X - X ' ) .  

This result is exact and not restricted to the mean-field ap- 
proximation. The important point is that in the networks the 
spatial density fluctuations ( 3 )  can significantly exceed the 
thermodynamic fluctuations (4).  To estimate their relative 
contribution we introduce the parameters 

which characterize the proximity of the initial system to its 
spinodal transition (at  which C"' = C ::') and of the final 
system to its spinodal transition (at  which C = C,, ). Using 
the expressions (8  ), ( 101, and ( 1 1 ), when the wave vector 
vanishes, we find 

We now use the relations (59) and (60)  to estimate the 
quantity k.  In phantom networks we have k -  1 ,  and in the 
case when the chains of the network are strongly entangled 
with each other we have k - N / N ,  $1. 

According to ( 7 9 ) ,  the spatial density fluctuations in 
networks obtained in an uncompressed initial system exceed 
the thermodynamic fluctuations only near the spinodal tran- 
sition. In the region T,, s 1 the classical theory of polymer 
networks, which neglects such fluctuations entirely, is valid. 
However, if in the initial system the density fluctuations are 
not too small, i.e., TAP' 5 k  2 1 ,  in the final system the spatial 
density fluctuations can significantly exceed the thermody- 
namic fluctuations even far from the spinodal transition. 
The role of such statistical fluctuations increases near the 
spinodals of the initial and final systems. In particular, near 
the spinodal of the final system for q = 0  the correlation 
function (2 )  increases not as go- T; ', but much faster, as 
T,; 2. Since it is this correlation function which determines 
the intensity of light scattering, x-ray scattering, and neu- 
tron scattering by polymer networks, fluctuations of the to- 
pology of the networks can be studied experimentally. 

The strong spatial fluctuations in reticular polymers 
make it possible to explain their experimentally observed 
nonuniformity. The characteristic length scale R of the non- 
uniformities is determined by the expression 

By making use of the expressions (8),  ( 10) for Gq and neg- 
lecting the dependence of 8 and 8 on the wave vector q, we 
find 

where the correlation lengths of the initial and final systems 
are defined by the usual expressions 

The result (80)  is easy to understand in limiting cases. 
If the network was obtained in an uncompressed intitial sys- 
tem, then f ( a )  = 0  and R ~ 5 .  But if the network was synthe- 
sized near the spinodal of the initial system (r$" 5 k ) ,  then 

f ( a )  = a 2  and far from the spinodal of the final system the 
size of the nonuniformities is equal to R = a f  (O'. 

The properties of a network that has swollen in the final 
system in the presence of a solvent differ substantially from 
its properties in the dry state. As the quality of the solvent 
worsens one observes in swollen networks the phenomenon 
of "microsyneresis" (Ref. I ) ,  which consists in the forma- 
tion of regions with an enhanced concentration of solvent. It 
is customary to assume' that microsyneresis can arise only 
beyond the spinodal point. In this case, it is only because the 
observation time is finite that macroscopic phase separation 
of the solution does not occur. 

Strong spatial pressure fluctuations ( 6 )  can give rise to 
the appearance of microsyneresis long before the spinodal 
point. In such systems, solvent is partially expelled from re- 
gions of enhanced pressure into regions in which the pres- 
sure and the concentration of chains of the network are low- 
er. 

To describe this effect, besides the interaction Cmm of 
the monomer links with each other we must also take into 
account the monomer-solvent interaction Cm' and the sol- 
vent-solvent interaction C"'. It is not difficult to show that 
the correlation function of the solvent-density fluctuations is 
determined by the expression 

dp:dp?, = (Cm"/C")2 dp,"dp>, 

where the density-density correlation function for the links 
is given by the expressions ( 8 ) ,  ( l o ) ,  and ( 1 1  ) with the 
renormalized interaction C = Cmm + Cms /C"\ Comulete 
expulsion of the solvent from regions of enhanced pressure -- 
sets in when the condition (dp")2 z ( p s ) 2  is fulfilled, after 
which the network becomes strongly heterogeneous on mi- 
croscopic scales. We stress that the heterogeneity of such 
networks is already manifested in their thermodynamic- 
equilibrium properties. 

I wish to express my deep gratitude to S. P. Obukhov for 
discussing the results of this paper. 

APPENDIX 

THE CORRELATION FUNCTIONS OF POLYMER NETWORKS 

We obtain first an expression for the thermodynamic 
potential of a network with allowance for its density fluctu- 
ations. In the microscopic approach of Ref. 6, for the parti- 
tion function of a network of topology T,, under a given 
external pressure P, one finds the following expression: 

where Sr7 is the entropy of the network and E,,fp) is the 
internal energy of the system of broken links.3s6 Performing 
statistical averaging over all topologies T, we find the ther- 
modynamic potential of the network: 

where the probabilities P Fr' are given by the expression 
( 14), in which the partition function of the initial system is 
equal to 
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Using the replica method ( 3  1 ), from (A1 ) - (A3)  we obtain 

where the integration is over the densities pCk)  of the initial 
system ( k  = 0 )  and of each of the m replicas of the final 
system ( k  = 1, ..., m ) .  The parameters T (k '  = T, P ( k '  
= P, ... have the same values for all these replicas. For m = 0  

the functional Z, = Z ( 0 )  (A4)  determines the partition 
function ( 14) of the grand canonical ensemble of the initial 
system. The entropy functional S ,  in the replica space has 
the form 

m 

and is symmetric under the group of permutations of all the 
replicas k = 0, ... , m.  

In the mean-field approximation the functional inte- 
grals (A4)  are calculated by the method of steepest descent. 
In this approximation the entropy S,, is given by the expres- 
sion ( 1 9 ) ,  and the function s,,, has the form (33) .  We now 
obtain expressions for the density-fluctuation correlation 
functions ( 1 ) - ( 3 )  of interest to us in the language of the 
replica method [ ( A 4 ) ,  (A5)  1. 

We first find an expression for the correlation function 
( 3 )  of the statistical fluctuations of the density of links: 

The average link density (p(x) ) in a network of given topol- 
ogy r can be obtained by introducing into the integrand of 
(A1 ) the factor 

and differentiating In Zr7 with respect to the field h at h = 0. 
The correlation function (A6)  of interest to us is equal to 

Using the replica method, we can rewrite the average (A7)  
in the form 

-- 
[ Z z  {hd Zrm,' (h,) - Z z  {h,) - Z$ (h,) + I]/m,m, (A8)  

with m, , ,  -0. A  contribution to the correlation function 
(A7)  is given only by the first term in the square brackets of 
(A8) ,  which differs from Z,,, (A4)  for m = m ,  + m,  only 
by the presence of the extra factor 

in the integrand. 
Differentiating the resulting functional Z ,  {h ,,h,) with 

respect to h, and h, [see (A7)  ] and taking into account the 
symmetry of the action @, (A4)  under permutations of the 

replicas k = 1 ,  ..., m,  we find for m-0 

The correlation function ( 1 )  of the thermodynamic 
density fluctuations in the final system is determined by the 
expression 

g (x-x') = 
6' 

6 h ( x ) 6 h ( x f )  
In zr , { h )  I h=O. 

Using the replica method, we can rewrite the average in 
(A10) in the form 

[Zm{h, h ) - l ] / m  ( A l l )  

with m -0. After differentiating (A1 1 ) with respect to h 
[see (A10) 1, we obtain 

The expression (A12) together with (A9)  for m -0 gives 

Finally, the expression 

g(O' (x-x')  = < A ~ ( O )  ( x )  AplO) ( X I )  ) (A141 

for the correlation function of the density fluctuations of the 
initial system is a consequence of the identity 
z,{h(O' = Z (O){h(O)). 

In the expressions (A9)  and (A12)-(A14) the func- 
tional averaging of the right-hand sides over the density fluc- 
tuations Ap(k' = p(k)  - (P(k) ) of the replicas is performed 
with the action @, /T  ( A 4 ) .  We now calculate these corre- 
lation functions in the Gaussian approximation. 

We consider first the case a = 1 .  Expanding the func- 
tional @, ( A 4 )  to terms quadratic in , we obtain 

where the functions X, 0, and Cik'  are defined as follows: 

Inverting the matrix G - '  (A15),  we find 

where the functions g, and g:) are defined by the expres- 
sions ( 4 ) .  In the limit m -0 the matrix (A17) in the mean- 
field approximation determines for a = 1 the correlation 
functions ( A 9 ) ,  (A13),  and (A14) of the replica densities. 
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The expressions thus obtained are given in (4), (8),  ( lo),  
and (11). 

The general case a # 1 is treated analogously. We give 
the resulting expressions for the statistical pressure fluctu- 
ations ( 6 ) :  

6Sr, ( p ( a )  6Sr, (fck)} 
(x) = - 

6p(L) (x) 6p(k) (x) 

Since these fluctuations are due to fluctuations of the topol- 
ogy of the network, only the entropy, and not the energy 
term E,, contributes to them. The statistical averaging in 
(A18) and (9 )  is performed with the probability 
P fP) -exp S,  G'O') that the network is synthesized with to- 
pology r, in the uncompressed initial system. 
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