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A symmetry approach is taken to analyze the properties of an anisotropic superconducting state 
in a metal having spectrum anomalies at the Fermi surface. The temperature dependence of the 
electron specific heat of the superconductor is derived for a transition accompanied by a change in 
the topology ofthe Fermi surface. It is also shown how degeneracy of the electron spectrum on the 
Fermi surface changes the pattern of zeros of the energy gap. A possible relationship between the 
effects considered and the superconductivity in metal oxides is discussed. 

1. INTRODUCTION 

There have been recent reports that the superconduct- 
ing transition in the compound Y,Ba,Cu,O, is split1 and is 
accompanied by an anomaly in the orthorhombic distor- 
tion.' These facts might imply an anisotropy of the super- 
conducting pairing,'-, so attention is drawn to the causes of 
the anomalies of the nontrivial superconductivity in the new 
materials. In the present paper we wish to discuss one of 
these anomalies. 

Most metal-oxide conductors, particularly 
Y,Ba,Cu,O,, belong to symmetry group D,, which is 
lowered to D, by a slight distortion of the lattice. The super- 
conducting classes and the form of the order parameter were 
listed in Ref. 5 for the most common crystal groups and in 
Ref. 6 for an expanded D2 and D, band scheme. Results on 
the state density near the Fermi surface were also reported in 
Ref. 5. That state density determines the temperature depen- 
dence of the electronic characteristics of the superconductor 
(in particular, the electron component of the specific heat). 
In the situtation studied in Ref. 5 the maximum symmetry of 
a point on the Fermi surface corresponds to a symmetry 
plane or axis. This is the case for an arbitrary position of the 
Fermi surface. In the new superconductors the band struc- 
ture is quite complex and has yet to be analyzed experimen- 
tally. Numerical calculations of the carrier spectrum7-lo 
show that the Fermi surface may pass through a high-sym- 
metry point in the compounds Y ,Ba,Cu,O,, La, _, X, CuO, 
( X  = Ba, Sr), and Bi,Sr2CaCu20,. This situation corre- 
sponds to a Lifshitz transition of order 2.5 (Ref. 11 ). Since 
calculations of that sort ignore electron-electron correla- 
tions, which are strong in the high-temperature supercon- 
ductors, they are probably of only qualitative validity in this 
case. Nevertheless, by varying the pressure and the number 
of carriers (the doping) one can expect to find a Lifshitz 
transition in these materials. The effect of a topological tran- 
sition on superconductivity has been studied previously 
(Ref. 12, for example) for a trivial symmetry of the order 
parameter. It turned out that in the ordinary BCS model the 
spectrum anomalies of the Fermi surface raised the transi- 
tion temperature slightly. 

There is thus some reason to believe that the electron 
spectrum in these new materials has anomalies, at the Fermi 
surface and that the order parameter is anisotropic. The 
electron state density near the Fermi surface, which deter- 
mines the temperature dependence of electronic properties 
(e.g., + ' ~ e  specific heat), can then be found from symmetry 
considerations, without reference to the pairing mechanism. 

The existence of spectrum anomalies at the Fermi surface 
causes far-reaching changes in the results derived in Ref. 5, 
so the corresponding calculations must be repeated. The ex- 
pressions derived here will be valid in the temperature (or 
energy) interval E, - E, < T< T, , where E,, is the energy of 
an electron at the anomaly point and T, is the superconduct- 
ing transition temperature. This temperature interval can be 
quite broad because of the high values T, - 50-100 K in the 
new materials. 

2. METHOD 

As usual, we assume that the superconductivity is in- 
duced by a large sheet of the Fermi surface and that the order 
parameter sets in near the symmetry point k,,. We write the 
basis functions of the degenerate representation in the form 
$,, ( k ) ,  where a Latin letter specifies the number of the 
function in the representation, and a Greek letter specifies 
the spin. Generalizing the customary approach (Ref. 13, for 
example), we write the matrix Hamiltonian 

F$ (k) (k) .= ( 
A;?:* ( I c )  - &;{(-k) 

We assume that the crystal has an inversion center and 
no magnetic structure. We then have E , ~  ""(k) 
= S a D ~ m n ( k ) ,  ~ ~ ~ ( k )  = t m n (  - k) .  Near the point k,, ofin- 
terest we can replace the matrix E"" ( k )  by its expansion in 
powers of k - k,,. By virture of the symmetry of the crystal, 
the coefficients of this expansion can be expressed in terms of 
a few constants. 

By definition, 

AaBmn (k) =-Apanm(-k). (2 )  

If we write the order parameter in its usual form (a are Pauli 
matrices) 

we find the following results in the even case*(P = !, g) and 
the odd case (P  = - 1, u )  for the matrices < and d: 

%"" (k) =PC"" (k) , dm" (k) =-Pd""' (k) . (4) 

We see that if there is a degeneracy the order parameter will 
not be purely singlet o r  triplet. 

We denote by C a rotation from the point group of the 
crystal. We define the matrices C ,  and C ,  as follows: 
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c [$mu(k)  l=CsmnUu{+ns[C(k)  I ,  
C [ k i ]  =Cvijk,. 

is 
( 5 )  

E ,  ( k )  = E .  ( 0 )  +z k,'l2m.. 

Here Ua8 Cis the spin rotation matrix; i.e., we are assuming 
that the spin-orbit coupling is strong and that the spins are 
"frozen" in the lattice. In this case d transforms under the 
rotation as an ordinary vector. The rules for the transforma- 
tion of the order parameter under a rotation are 

C  [cmn ( k )  ] = C ~ " P C ~ " ' ~ ~ ' ( C  [ k ] )  , 
(6) 

c [dim" ( k )  ] =CsmPCsn'CvijdjP1(C[k]), 

Time reversal is equivalent to taking the Hermitian adjoints 
o f t  and d. 

The complete group of the order parameter is 
G x U(1) X R,  where G is the point group of the crystal, 
U(  1 ) are gauge transformations, and R is time reversal. Its 
subgroups (superconducting classes) were listed in Ref. 5 
for all point groups. Using the laws given above for the trans- 
formation of the order parameter, we can write an expansion 
of the order parameter in powers of k - k, in terms of a few 
constants. The spectrum of the superconducting carriers 
near k,, is determined by Hamiltonian ( 1 ) . Examining all the 
"suspect" points in this fashion, we can calculate the density 
of states near the Fermi surface and other electronic charac- 
teristics. 

3. NONDEGENERATE CASE 

To illustrate the situation we consider the following ex- 
ample. We assume that a metal has a symmetry group D ,, or 
D,, . Near k  = 0 the energy of an electron in a normal metal 

For the group D4, we have m, = my. We assume that by 
varying the pressure or the doping we can make ~ ~ ( 0 )  small 
in comparison with the temperature (the energy is reckoned 
from .cF ). In this case the metal is at the point of a topologi- 
cal transition that corresponds to the formation of a new 
cavity of the Fermi surface if the product m, my m, is posi- 
tive or to the formation of a bridge if it is negative. In the 
former case, we are forced to assume the existence of a large 
Fermi-surface sheet responsible for the metallic behavior 
and the superconductivity. We assume that the effective 
masses m, are on the order of the free mass. Everywhere 
below we will be discussing the electron specific heat, whose 
temperature dependence corresponds unambiguously to the 
dependence of the state density on E - E,. As was shown in 
Ref. 11, the component of the specific heat corresponding to 
the vicinity of the point k = 0 is C - y ~ s 1 ' / ~ F " 2  (the con- 
stant y is equal to C,,,,/T, and &,-is of atomic order of 
magnitude). In a normal metal at reasonable temperatures, 
T < E ~ ,  this component is much smaller than C,,,,, . Below 
the superconducting transition temperature, however, this 
momentum region may become important. 

Let us assume that a superconducting order parameter 
corresponding to a nontrivial phase has arisen in the crystal. 
Because of the electron-photon interaction, an order param- 
eter is also imposed near the point k = 0. Since the branch of 
the spectrum is not degenerate, an even order parameter ( g )  
corresponds to S = 0, and an odd one ( u  ) to S = 1. The basis 

TABLE I. Specific heat of a superconductor at low temperatures: the components from various 
regions of reciprocal space. 

2 )  ,Vote. Here C ( k <  k, .)  is the component of the specific heat which comes from the vicinity of 
the point k = 0 if ~ ( 0 )  = 0. The case m, my m, > 0 corresponds to the formation in the course of 
the topological transition of a small cavity on the Fermi surface. The case m, m,m, corresponds 
to the formation of a bridge between two sheets of the Fermi surface. Here C(k-k,) is the 
component which comes from a large sheet of the Fermi surface (from Ref. 5 ) .  The temperature 
T, is T, = T, ' / E / . . ,  where E,. is of the atomic order of magnitude. 
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y-'C f!i << XF). 
n~ m m < O  

x 11 2 
Class 

y-'c (k (< kF). 
I , I ~ ? I I ! , T I I ~  > 0 

Dd X R 

D2 y R 

D* fC4) '< X 

DIIDII X R 

D2 (Uz) X R 

D L  (C2j :< R 

D4 ( E )  

Tce-T'Tc 1 ~ ~ r - ~ ~ ~ ~  

T V S I ~ ' / ?  T , F '  > T l  
T3&F/T%, T < T I  

T ~ ' Z / ~ ' ( ~  

T a / T c ,  T > T1 
T3/cF\T;, T < T i  

T'/~/T;/' 

~ 5 ' 7  /e;i2 T ' / J / T ~ / J  

I / Ty'2:et'? ' F '  

Talzlp;? 1 ~ ' / a / ~ i f .  1 T Y T C  
g I 

-- 

T8"/e;', T > T I  / T 2 / T c ,  T < T I  
_.ITc T3/Tca 

u 

T'/x/T:/z 

T S f 2 / ? 2 ,  T > T I  

T " Z E ~ / T ~ ~ ,  T < T~ 

TVT,, T > T I  

T ~ ~ ~ c ~ ! T ; ,  T < T~ 
T3/TCZ 



functions in this case are no different from those given in 
Ref. 5, which dealt with the situation in which the position of 
the Fermi level is arbitrary, and the maximum symmetry of a 
point on the Fermi surface corresponds to a rotational axis 
or a mirror-image plane. A zero of the energy gap arises at 
this point if this element enters the superconducting class 
along with a gauge transformation. Correspondingly, there 
are only two possibilities for the temperature dependence of 
the specific heat: T (an axial phase) or T (a planar phase). 
We now assume that the Fermi suface passes through the 
point k = 0. Since this point is invariant under all operations 
of the point group, the number of possibilities for the tem- 
perature dependence of the specific heat increases sharply 
(Table I) .  The temperature T, = Tc ' / E ,  is much lower than 
Tc. The case D,(C,)XR, m,m,m, <O (a  bridge) is the 
most interesting in our opinion. The expansion of the order 
parameter in powers of the momentum begins with k ( a  
singlet) and k (triplet) in this class, so there is a substantial 
volume in the reciprocal space in which the order parameter 
is small. The exponent in the power-law temperature depen- 
dence of the specific heat is therefore close to unity (respec- 
tively 5/4 and 4/3). 

If the point at which the topological transition occurs 

lies at the boundary of the Brillouin zone, we need to exam- 
ine the small symmetry group of this point, which obviously 
contains an inversion. 

4. DEGENERATE CASE 

We turn now to a case which is probably not pertinent 
to the new superconducting materials and which is of only 
methodological interest. We assume that in a crystal with a 
symmetry group D,, there exists a sheet of the Fermi surface 
which corresponds to wave functions from a doubly degen- 
erate representation E. Degeneracy is conserved along the 
entire symmetry axis C,. The Fermi momentum along the C, 
axis is k, = (0, 0, k,). The spectrum near k,, is 

where 

The Fermi surface consists of two sheets, which touch at the 
points + k,. 

If there is a degeneracy, the order parameter is a 4 X 4 

TABLE 11. The order parameter at the degeneracy point. 

I 1 
Class I K I  (I 

2)  Note. The form of the order parameter at the point k,, = (0 ,0 ,  k,,) if the wave functions of the 
electrons transform under a two-dimensional representation E of group D,. The Pauli matrices 
cr, and the unit matric ul, act on the indices which specify the basis functions of representation E. 
There is no energy gap at point k,, in classes D,(C,) x R - g, u and D,(E) x R - g. 
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matrix, and the carrier spectrum is determined by Hamilto- 
nian ( 1 ). In this situation, even if there is a nontrivial sym- 
metry element which leaves k, invariant, the carrier spec- 
trum at this point may nevertheless have a gap. Table I1 gives 
the order parameter at point k, for classes from D,. The 
Pauli matrices Bi and the unit matrix 6, act on the Latin 
indices in this case. The coefficient d, are real. An energy gap 
appears at point k, in all classes except D4(C4)  X R - g, u 
and D,(E) - g. Interestingly, a gap also arises in the class 
D,(E) - u, although in the absence of degeneracy the zero 
of the order parameter at point k, is of a topological nature. 

5. CONCLUSION 

We have derived results on the low-temperature behav- 
ior of the specific heat for a superconductor at the point of a 
topological transition. A question which arises in this con- 
nection is that of making a comparison with experiment. 
Important evidence in favor of the existence of spectral fea- 
tures at the Fermi surface would be the observation of an 
anomaly in the specific heat as a function of the doping or the 
pressure. Unfortunately, at this point we are unaware of any 
such measurements, which would be rather complicated 
from the technical standpoint. The existence of such features 
along with an anisotropic superconductivity would lead to 
predictions regarding the behavior of the specific heat at the 

extremely low temperatures. Of greatest interest from this 
standpoint are phases in which the C( T )  dependence is ap- 
proximately linear ( T ~ ' , ,  T ~ " ) .  

We wish to thank L. P. Gor'kov for suggesting the prob- 
lem and for interest in the study. We also thank G. E. Volo- 
vik for useful discussions. 
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