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We study in this paper the singularities arising during magnetohydrodynamic wave breaking in a 
magnetized plasma when we take the following effects into account: finite magnetic pressure, 
violation of the magnetic-field freezing due to the finite electron inertia, and violation of quasi- 
neutrality. When the Mach number, M = u/c, is large, the wave breaking leads to a significant 
increase of the magnetic field at small scales. We obtain an estimate of the maximum magnetic 
field near the singularity. 

1. INTRODUCTION We discuss in this paper also other effects which modify 

wave breaking, or trajectory intersection, is one of the the "ballistic" singularity-the violation of the magnetic- 

typical hydrodynamical effects which leads to the appear- field freezing and the loss of quasi-neutrality, which can also 

ance of the singularities in various physical quantities and of Occur during wave breaking. 

an enhanced energy dissipation. Since wave breaking sets in 
both in non-dispersive and in many dispersive systems for a 
continuum of initial conditions, the study of appropriate 
typical singularities is of independent interest, like that of 
wave collapse. 

The simplest ideas about wave breaking come from the 
evolution of a cold beam of independent particles, an evolu- 
tion described by the equations 

where v is the velocity and p the density of the particles. In 
this model, which we shall call the ballistic model, after a 
finite time (at t = t, ) a singularity with an infinite density is 
formed; in the one-dimensional case 

Three-dimensional singularities were studied in Ref. 2 in 
connection with a possible explanation of the disk-shaped 
structure of galaxies, and in Ref. 3 where periodic wave 
breaking of electron beams in a plasma was invoked for an 
explanation of the generation of high harmonics of laser ra- 
diation. 

It is known4 at the same time that typical singularities in 
one-dimensional hydrodynamics, which are described by 
simple Riemann waves, do not lead to a significant increase 
in the density, the profile of which breaks like the velocity 
profile, cc (x - x, ) ' I 3 .  

The aim of the present paper is the study of wave break- 
ing in a plasma with a large Mach number M = v/c, 3 1 [ c , ~  
= H(4np) - ' I '  is the Alfven velocity, H the magnetic field, 
a n d p  = Min,  the plasma density] when at the initial time 
the term with the magnetic pressure is a small correction to 
( I ) ,  although it determines the behavior near the singular- 
ity. 

The increase in the density in almost ballistic wave 
breaking is accompanied by an increase in the frozen mag- 
netic field, and this may lead to observable effects, for in- 
stance, to enhanced cyclotron emission. 

2. ALLOWANCE FOR FINITE PRESSURE 

We consider the case of ideal single-fluid magnetohy- 
drodynamics. We neglect the plasma pressure in comparison 
with the magnetic field pressure." In a one-dimensional ge- 
ometry H = Hz (x,t) the motion of the plasma is described 
by the gasdynamics equations with an adiabatic exponent 
y = 2 :  

It is convenient, if initially H / p  = const ("isentropic 
flow"), to rewrite (2) ,  (4 ) ,  (5)  in terms of the Riemann 
invariants: 

One can obtain an exact solution of the set of gasdyna- 
mic Eqs. (6 )  using a non-linear change of variables 
(x,t) - (a&) :  

t I 

-t J ( v + c )  ....,,.,.. dt=a T J (c-C, ,,....., (it. ( 7 )  
0 0 

The meaning of the variables (a,b) (which we can call 
quasi-Lagrangian variables) is that they denote the initial 
coordinates of points moving with velocities u + c and land- 
ing at the time tin the point x. In terms of the variables (a,b) 
we have 

whence we get at once the solution 

where vO(x) and c,,(x) are the initial profiles of the velocity 
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and of the sound velocity c = const expressed in terms 
of the density. 

The solution (8) ,  (9 )  is somewhat formal, as we must 
solve the integral equation 

obtained by substituting (8 )  and (9 )  into (7) ,  in order to 
change to the variables (x,t). Solving ( 10) we can find 

b[uo(a)+c,(a)+A,l-n[uo(b)-c,(~)+~21 
x (a, h) = .- 

u,,((i) -u,(b) + ~ , ( a )  +c,( !J )+~ I 

where A,  and A, are integral terms like ( 11 ), which we do 
not write down for the sake ofbrevity. We note only that for 
y = 3, i.e., a = 1, when Eqs. (6 )  uncouple, 
A = A ,  = A ?  = 0, and Eqs. (8)-(12) are the solution of the 
initial gasdynamic problem in parametric form. 

The start of wave breaking corresponds to the loss of 
single-valuedness of one of the functions a(x , t )  or b(x,t) 
[the function u(a,b) is single-valued]. To  be specific, we 
assume that this occurs first for a (x , t ) .  Denoting by an index 
c the point where the singularity occurs, we can write the 
condition for wave breaking in the form 

whence we get, if we use ( l o ) ,  

u, (a)  -v, (b) +c, (a) tc, ( b )  +A 
be-a, = 

u,' (a,) +co' (a,) + d i l l a a  
' (14) 

z), (a,) f c ,  " (a,) +dZA/da2=0. (15) 

The formalism worked out here turns out to be effective 
in the limit of interest to us, of large Mach numbers Mo = uo/ 
co$ 1. In that case, near the wave breaking point we have 
IuO(a) - uO(b) / $ cO(a)  z c O ( b )  and a simple estimate shows 
that A z A  , z A 2  z c O  [we grouped the terms in the denomi- 
nator of (10) just for such a decrease of the integral term 
( 1 1 ) 1. Expanding the smooth functions uo ( x )  ,co(x) in a 
power series in the vicinity of a, we get, neglecting terms of 
orderM; I ,  from (9 ) ,  (14),  and (15):  

We show in the figure schematically the distributions of 
u a n d p  at the initial time and at the moment of the singular- 
ity. In  the point C in the figure the tangents to the curves 
u(x,t, ) andp(x,t ,  ) are vertical. It is interesting to note the 
paired nature of the singularity considered: besides the point 
C there is an "almost singular" point C ' in which soon after- 
wards there occurs also a gradient catastrophy [ to  which 

corresponds the loss of single-valuedness of b(x,t)] ,  but at 
t = t, the slope of the tangent in C '  differs from the vertical 
by a small parameter M ;  ' The distance between the points 
C and C ' is of the order of 10M; I ,  where lo = uO/u; is the 
characteristic scale of the problem. 

Thus, almost ballistic (Mo$ 1)  wave breaking in gas- 
dynamics leads, according to (18),  to an increase in the 
sound velocity in the vicinity of the singularity to a value 
c,,, zc44(,'I3 which corresponds to a density 

The result ( 19) has been found before3 in the case of one- 
dimensional collisionless kinetics (for which we can put for- 
mally y =  3).  

Returning to MHD wave breaking, we note that near 
the singularity the assumption of isentropic behavior, used 
above, does not restrict the applicability of the results. One 
can say the same also about wave breaking in an oblique 
magnetic field. In that case H acquires a component H, per- 
pendicular to the x axis because of the freezing, but which 
changes insignificantly even for three-dimensional wave 
breaking (see below). Putting y = 2 in (19) we get an esti- 
mate for the maximum magnetic field 

H,,,~H,(4npo~~,2/H,Z) "I. (20) 

It is interesting to note that in the limits of the applicability 
of single-fluid magnetohydrodynamics H,,, is larger the 
smaller the initial magnetic field H,,. 

So far we have considered one-dimensional wave break- 
ing. However, thanks to the effective "switch-off' of two 
dimensions, when we approach the singularity, in the case of 
three-dimensional initial conditions (thin "platelets" of en- 
hanced density appear), the quasi-one-dimensional approxi- 
mation is valid in the general case. With reference to the 
method used in Ref. 3, we give here the main results of the 
analysis. When we approach the singularity ( t  = t ,  ) the re- 
gion of enhanced density is a strongly flattened ellipsoid 
(platelet) of thickness l=:l,,(St /to)"" and diameter lo(St / 
t,,) 'I' (here to = 10/uO is the characteristic time of the prob- 
lem, St = t, - t > 0,St < to).  After the velocity of sound in 
the center of the platelet reaches its maximum value 
c,,, ~c,$40''3 the increase in density stops. By that time the 
thickness of the platelet has decreased to I,,,, =: 10M ,; ' Later 
(when t >  t, ) the platelet starts to increase in size having 

FIG. 1. Distributions of the velocity ( u )  and of the density ( p )  of a gas 
initially (dashed lines) and at the time of the singularity (solid lines). 

74 Sov. Phys. JETP 69 (I), July 1989 M. B. lsichenko and Ya. L. Kalda 74 



within it a region of multiple-flow motion. The maximum 
sound velocity c,,, occurs at the edges of the platelet in a 
region which has the shape of an expanding torus which is 
flattened along its main axis, and the major axis of which is 
of the order of I,,( - St / t o )  I", while the minor radii are 
r ,= : l , ,M;  ', r2=:4$40-2'3( - tO/St)  ' I2 .  

3. ALLOWANCE FOR DISPERSION 

In this section we discuss the effect of two-fluid behav- 
ior, which in the linear case leads to dispersion of magneto- 
sonic waves and in the non-linear case to additional restric- 
tions on the maximum magnetic field which arises during 
wave breaking. For the sake of simplicity we consider the 
one-dimensional case. 

For transverse magnetosonic waves in a cold plasma 
there are two characteristic dispersion scales: d = c/w,, 
[a,, = ( 4 r n e 2 / m )  ' I 2  is the electron plasma frequency; in 
this formula c denotes the velocity of light] and A = c, / 
wpi = H / (4aen) (api is the ion Langmuir frequency). The 
dispersion equation of such waves has the form 

o ( k )  =kc,/ ( I f  kZa2f  kZA2). 

The scale d characterizes the size at which the electron 
inertia starts to play a role whereas when the scale A is 
reached the quasi-neutrality in the plasma is violated (in 
that sense A can be treated as a "magnetic Debye length" 
differing from the normal Debye length in that the electron 
thermal pressure is replaced by the magnetic pressure). 

It was noted correctly in Ref. 5 that dispersive effects do 
not prevent the appearance of a singularity, but only lead in 
some cases to a threshold effect in wave breaking. We shall 
assume that the motion of the plasma is well above thresh- 
old, thus assuming that not only is the Mach number large, 
but also the initial scale of the plasma flow I,, is significantly 
larger than the characteristic dispersive scales d and A. 

We shall, to begin with, assume that during the whole 
wave breaking process the inequality d>A is satisfied, and 
that the restrictions connected with the finite magnetic pres- 
sure are insignificant. In that case the ion motion is ballistic 
and the plasma is quasi-neutral: n ,  = n, = n, but as the 
characteristic scale decreases near the singularity. 
1 oc n p  ' -0 ,  this scale reaches the more slowly decreasing 
value d ac n- "'. The freezing of the magnetic field onto the 
electrons is then violated, but the freezing of the curl of their 
generalized momentum is conserved": 

anlati-a ( Q V )  /ax=o, (21) 

Since we have as before by virtue of ( 2  1 ), S2 a ( x  - x ,  ) -?I3, 
and dcr n- ' a ( x  - x, )'I3, at t = t,, we conclude from ( 2 2 )  
that when 1,-d the growth in the magnetic field stops and 
afterwards, on the background of the maximum attainable 
field 

a "cusp" type singularity in the profile of H, 
H a  ( X  - X ,  )213, is formed at t = t ,  with a characteristic 
half-cubic cusp. 

Also possible is a regime such that either d,, <A,, or 
d,, > A ,  from the start, but during the wave breaking d in the 

vicinity of the singularity becomes less thanA a H / n  because 
the latter is conserved due to the freezing, even when /,)A. In 
that case the freezing of the magnetic field onto the electrons 
does not prevent changes, but when the characteristic scale 
becomes comparable with the small scale A the plasma loses 
its quasi-neutrality, in agreement with the equation:'s5 

As a result the increase of the electron density and of the 
magnetic field which is proportional to it is stopped, forming 
only, according to ( 2 4 ) ,  an insignificant discontinuity in the 
second derivative of H a n a ( x  - x ,  )413  on the background 
of the maximum magnetic field 

4. CONCLUSION 

Summarizing what we have said we are led to the con- 
clusion that initially ballistic wave breaking of a plasma in a 
magnetic field leads to a local increase in the field when the 
characteristic scale 1 decreases to lmin = max 
(l,,M, ' ,d ~/I,, ,A,,),  after which the finite magnetic pressure, 
the electron inertia, or the violation of quasi-neutrality pre- 
vents a further growth in the magnetic field which reaches 
near the singularity a maximum value 

Hmax=min (Ifofif:ll, IIu (Lo/do)z, HoLo/Luj . ( 2 6 )  
Further wave breaking leads to multiple flow and turbuliza- 
tion of the plasma, which is characteristic for the "flicker- 
ing" structure of collisionless shock waves.' 

In the case when the characteristics of the plasma flow 
are controlled by the large parameters M,, $1, I,, > do,A,,, the 
wave breaking is accompanied by bursts of strong magnetic 
fields ( 2 6 )  concentrated in small scales I,,,,,, . Such a situation 
may turn out to be typical of the interaction of the solar wind 
with the Earth's magnetosphere, where magnetic-field 
bursts may cause local flashes of electromagnetic radiation 
generated when electron cyclotron waves fuse into trans- 
verse waves.' The peaking in the power of the radiation may 
in this case be caused by an adiabatic increase in the ampli- 
tude of the oscillations when the magnetic field grows, and 
also by the appearance of the dominant dipole radiation 
component due to the strong inhomogeneity of the density 
and of the magnetic field near the singularity." 
"Havinga strong inequality is not of principal importance when we study 
singularities, since the magnetic pressure increases faster ( y  = 2) than 
the gas dynamic pressure ( y = -4 ). 
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