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The possibility is demonstrated of thermodynamically describing quasistationary distributions of 
magnons excited parametrically by powerful microwave pumping pulses. The basic idea is that 
the system Hamiltonian is stationary in a rotating coordinate frame and the problem reduces to 
that of perturbed Bose-quasiparticle gas that approaches thermodynamic equilibrium with a 
certain effective temperature. The basic equations for the resultant states are derived and solved 
exactly. Equations are obtained for the effective temperature in the cases of instantaneously and 
adiabatically applied pump fields. Criteria for thermodynamic stability of the states are 
considered. The spectrum of the collective oscillations of the system is analyzed. An 
interpretation is proposed for some experimentally observed effects. 

INTRODUCTION 

The spin-wave concept introduced in physics by Bloch 
more than fifty years ago explains many thermodynamic and 
kinetic phenomena in magnetically ordered systems. By us- 
ing this concept, perturbations of a magnetic material can be 
regarded as a an evolution of a nonideal gas of quasiparticles 
(magnons) or of an interaction, in a nonlinear medium, of 
waves excited to some definite level. Thus, investigations of 
various (not necessarily small) perturbations in magnetic 
systems permit different processes in nonlinear multiparticle 
media to be studied and simulated. 

A most convenient method of exciting a large (macro- 
scopic) number of magnons in a ferro- or antiferromagnetic 
sample is parametric resonance of spin waves in a microwave 
field h cos w, r (Refs. 1-5). In the case of degenerate pump- 
ing, a microwave-field quantum decays in a magnetic medi- 
um into two magnons having half the frequency and opposi- 
tely directed wave vectors: w, = wh + w - ,  . 

Magnons are parametrically excited only when a 
threshold field amplitude h, is exceeded, in which case the 
number of magnons begins to increase exponentially with a 
growth rate - h /he - 1. This magnon generation can lead 
to fundamentally different end results, depending on 
whether the magnetic system is or is not in contact with a 
heat bath (thermostat). In the former case, nonlinear inter- 
actions stabilize the energy flow from the pump to the excit- 
ed magnons that relax subsequently to form the thermostat 
(other magnons, phonons etc.). There are two known inde- 
pendent mechanisms for this stabilization: 1 ) positive non- 
linear wherein the relaxation rate of the para- 
metric magnons increases as their number increases, and 2) 
the so-called phase mechani~m,~ wherein the forced oscilla- 
tions of the magnetic medium, of frequency w, /2, deviate in 
phase from the pump field. Obviously, the flows are theoreti- 
cally in equilibrium if the thermostat is infinitely large. Prin- 
cipal attention was in fact paid initially in magnon-paramet- 
ric-resonance theory to the equilibrium states of the fluxes, 
and definite advances have been made in the description of 
the evolution of excited slightly supercritical systems with 
h /h, - 1 5  1 (Refs. 8-18). 

Parametrically excited magnons can evolve to an en- 
tirely different state if a finite reservoir is involved, e.g., if the 
magnons are isolated from other degrees of freedom of the 
crystal. Collisions between quasiparticles lead to redistribu- 

tion of the absorbed energy in the magnon gas, and this helps 
establish a steady-state nonequlibrium distribution in the 
gas after a certain time rm (which depends on the magnon 
density). This means that the excited magnon system satu- 
rates and ceases to absorb energy from the pump field. For 
real objects, the approximation of an isolated magnon sys- 
tem is tenable, obviously, only if within a finite time interval 
r<rph, where rph -' is the characteristic rate at which the 
excited magnons relax to form a phonon system. This evolu- 
tion of parametrically excited magnons can therefore be ob- 
served in experiment by using a pulse technique with pulse 
length T, where r, 4 r 4 rp, . This inequality can be satisfied 
for a large number of magnets, in view of the different de- 
pendence of rm and rp, on the density N of the excited mag- 
nons, N: r, /rph - N -' and also because magnon-magnon 
anharmonicities are much more effective than magnon- 
phonon nonlinear interactions. An example of a system in 
which this inequality can be satisfied with sufficient margin 
is a system of nuclear spin waves in an antiferromagnet, for 
which the spin-lattice times at a temperature of order lop2  
K reach several days.I9 Pulse investigations provide infor- 
mation only on interactions inside the magnon system. In 
the present paper we develop a theory for the states for a 
states of a parametrically excited magnon system that has 
reached saturation in a pump field. 

The saturation effect is easiest to understand by using a 
coordinate frame that "rotates" at a frequency w,/2. In this 
frame the magnetic Hamiltonian of interest to us does not 
depend explicitly on the time. This Hamiltonian can be re- 
duced by a Bogolyubov canonical ( u,u ) tran~formation*~' to 
a form that describes a weakly nonideal Bose gas of quasipar- 
ticles. Henceforth we shall use the term "quasiparticle" for 
just these excitations. Turning on the microwave pump field 
means creation of a defininte number of quasiparticles 
whose mutual scattering leads to a thermodynamic equilib- 
rium at a certain temperature O. It should be noted that the 
idea of a thermodynamic description of an object in a rotat- 
ing reference frame as applied to NMR was first set forth by 
Redfield (see Refs. 21 and 22). In recent theoretical pa- 
pers"~'~ the thermodynamic approach in a rotating frame is 
used also for sytems with a continuous spectrum, such as the 
Fermi system of the semiconductor is a laser-pulse field. 

In the present paper we use the thermodynamic ap- 
proach in a rotating frame to describe a Bose system. Note 
that a change to representation of quasiparticles in a rotating 
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coordinate frame was used earlier in Refs. 11 and 13, but in 
connection with the evolution of parametrically excited 
magnons in contact witha thermostat. In addition, the re- 
sults of Refs. 11 and 13 are valid only for a quasiparticle 
spectrum a, that is positive-definite (for all values of k ) ,  
and the theory developed there has a susbstantially narrower 
range of validity. We shall show below that in exactly solv- 
able models the quasiparticle spectrum contains an interval 
of negative values, but this circumstance does not prevent a 
thermodynamic description of a thermally insulated system. 

The plan of the paper is the following. In Sec. 1 we 
obtain the conditions for diagonalizing the magnon Hamil- 
tonian in a rotating coordinate frame, and in Sec. 2 the real- 
ization of these conditions is demonstated with exactly solv- 
able cases as examples. In Sec. 3 we determine the effective 
temperature of a quasiparticle gas whose thermodynamic 
stability we verify. Equations for the spectrum of the collec- 
tive exitations of the system are derived in Sec. 4. We con- 
clude with a discussion of the results and with their relation 
to experiment. 

1. BASIC EQUATIONS 

We express the initial Hamiltonian of a magnon system 
in a microwave-pump field in the form 

1 a,., = - m ( 1 , 2 ;  3, 4)a.+a2+a,a4A (k,+k2-k8-k4), 
i ,'2,3,& 

where E, is the magnon spectrum; a: and a, are Bose cre- 
ation and annihilation operators; V ,  is the coupling coeffi- 
cient of the magnons and the pump field; Q, ( 1,2; 3,4) is the 
interaction matrix element. We use a system of units in 
which f i  = 1 and k, = 1. 

The evolution of the system in time is described by the 
equation for the density matrixp: 

Applying the unitary transformation" 

we obtain a Hamiltonian that does not depend explicitly 
on the time: 

Next we diagonalize 2 by using the Bogolyubov (u,v) 
transformation for a Bose system: 

We introduce the vacuum-state vector 10):bk 10) = 0 and 
(016 ,,? = 0. The transformed Hamiltonian (2)  averaged 

over the vacuum state is then 

We use for convenience the notation 

EL=&. - ;+2 CT~..N~, Tkq-(D ( k ,  (; k ,  q) , (78) 

In this notation Eq. (4)  takes the form 

Minimizing ( 5 )  with account taken of (8 ) ,  we obtain 

The functions N ,  and o, that satisfy (8 )  and (9)  describe 
the excited-magnon distribution calculated from the vacu- 
um state of the quasiparticle Hamiltonian: 

Here 

Qk= (EkZ-Ak*)'12 sign (Ek) (11) 

is the quasiparticle frequency and <F4' is a four-particle in- 
teraction Hamiltonian in which the products of the opera- 
tors b : and b , are so ordered that the creation operators are 
on the left of the annihilation operators. 

It is easy to obtain from (8)  and (9 )  the condition un- 
der which the quasiparticle 0, is real: 

It can be seen that it is valid for solutions of physical interest, 
with N ,  >O. Note also that the alternation of the sign of the 
spectrum does not effect the dynamic part of the problem 
and is compensated for in the thermodynamic description by 
the chemical potential p. 

The steady-state temperature O of the quasiparticles 
depends in general on the initial conditions (this question is 
dealt with in detail in Sec. 3 ) .  I t  may turn out that no vacuum 
state is realized (O # O )  under any physical assumption. It is 
necessary therefore to genralize for the case O f 0  Eqs. (8 )  
and (9 )  for the coefficients (3 )  of the conversion that re- 
duces the Hamiltonian ( 2 )  to normal modes. Such a general- 
ization is possible in the framework of the self-consistent- 
field approximation if the quasiparticle occupation numbers 
are small. Following Ref. 25, where a similar problem is 
solved for a Fermi system, we introduce the density matrix 
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Let us determine the averages (a:  a ,  ),,and ( a k a  , ), over 
the density matrixp, with allowance for relations (3) ;  then 

distribution as a function of k,: [a, (k,) and N, (k,,) ] off the 
resonance suface. Note that this solution is meaningful (i.e., 
the quasiparticle spectrum is real) if 

In fields stronger than hi an excited magnon system has no 
stationary state and only vibrational regimes are possible. 

On the resonance surface ( 16) we obtain 

where n ,  ~ ( b :  b,), are the quasiparticle occupation 
numbers, equal at the temperature O to 

nk= {exp [ ( Q k - p ) / e ] - l ) - ' .  (13) 
sko - 0. +2  ZT (ko-k) N*+ 2 ~ ,  (k.) =0, (21a) 

k e K ,  Using Wick's theorem for fourth-order correlators, we ob- 
tain now the conditions for the minimum of (p),, with a 
specified number n,. We get ultimately 

where 

where E ,  and A, are defined by expressions ( 7 )  in which N ,  
and a, are taken from ( 12). 

The only parameter still undetermined in Eqs. (14) is 
the chemical potentialp," which enters explicitly in expres- 
sion (13) for n , .  Its value in the ideal-gas approximation 
with a variable quasiparticle number is, for a given energy 
and under conditions of maximum entropy, 

Simultaneous solution of Eqs. (21) is in general a rather 
complicated task. These equations, however, can be easily 
solved if the functions V , ,  S ( k )  and T ( k )  they contain are 
independent of the direction of the wave vector k and if the 
resonance surface is a sphere of radius k,,. Then 

N,= [ o , / 2 - e , - 2 ~ ,  (k.) 112 T ( I ko-k / 1,  (22a) 
'=go p = min (Qk)  . 

k 

For a monotonically increasing function R, = R (  1 k 1 ), for 
example, we have ,u = R,. 

Substituting these expressions in the condition ( 14a), we 
obtain an equation fork,,. For example, if V,  = V, S ( k )  = S, 
and T(k)  = Tare constant we have A, = 0 for all k, a, = 0 
and N ,  = n ,  for all k f k,,, while for k = k,, we obtain 

2. EXACT SOLUTIONS 

It follows from Eq. (14b) that in the quasiparticle k- 
space one can distinguish a characteristic region, a reso- 
nance surface with ~,,EK,,, on which 

o,/2-e,-2TJT (0) 
N ,  = 

2&T 
? 

where 

while outside of its Eqs. ( 14) can be transformed into 

The expressions for E ,  and A, can be written, with 
allowance for ( 16), in the form 

is indicative of the "measure" of the resonance surface; L is 
the linear dimension of the crystal; 

The value of k,, is determined from the equation 

Clearly, the system ( 17) can be solved in the general case by 
iteration, substituting in it relations ( 18) with N p' = 0, a;'' 
= 0, and with kAo' determined from E , ~ ,  = w, /2. 

If the matrix elements T , ,  and S,, have a definite sym- 
metry, Eqs. ( 16) and ( 17) can be solved analytically. 

1) The case T , ,  = T(k  - q ) ,  S,, = S ( k  - q) .  In this 
case, taking ( 18 ) into account, E ,  and A, take the form 

It must be emphasized that anomalous correlations of mag- 
nons ( a  condensate) are singular only if the coefficients V, S, 
and Tare  constant; in all other cases a, # O  for all k. Note 
also that the equality (23a), rewritten in the form 

Substitution of these expressions in ( 17) yields the magnon 
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coincides with the known S-theory resultX for "effective" 
pumping in the limit of infinitesimal dissipation. 

2. The case T,, = t,  t, , S,, = s,s,. We have then 

The equations for N ,  and a, on the resonance surface are 
the same as (21),  but with N, (k,) and a, (ko) given by 
expressions ( 17) and (25) taken into account. Just as above, 
we get for the spherically symmetric case 

and the equation for ko follows from ( 14a). 

3. EFFECTIVE TEMPERATURE; THERMODYNAMIC 
STABILITY 

The effective temperature O reached by a quasiparticle 
gas after the pump field is switched on can be obtained ana- 
lytically in two important cases: l )  instantaneous switching 
and 2) adiabatic switching. 

1. When the pump field is switched on instantaneously 
there is not enough time to change the initial system density 
matrixp,, that describes the equilibrium magnon gas at the 
temperature O m .  This alllows us to calculate the energy Uo 
of the initially nonequilibrium state of the quasiparticle gas 
in the rotating coordinate frame, using the functions 

A'irn)=sp (pmak+ar) = [exp (ck/Orn) -1 I-', 

I S ~ ~ ) = S ~  (pmaka-k) =O. 
Taking the change of the chemical potential into account, we 
get 

k 

Since the Hamiltonian ( 10) does not depend on time expli- 
citly, the energy isconserved. For thermodynamic equilibri- 
um, the expression for the quasiparticle-gas energy is 

k 

where go is defined by (5)  with allowance for relations 
( 12), while the second term is due to the indeterminate num- 
ber of quasiparticles. The equation 

yields an implicit dependence of O and a,, . For example, in 
the case V ,  = V, S,,  = S, and T, ,  = 0 this equation takes 
the form 

It  follows from (30) that the sign o f S  determines the charac- 
ter of the dependence of the temperature O on the amplitude 
h. For S >  0 an increase of h causes O to increase, and for 
S < 0 the quasiparticle gas cools down. This cooling contin- 
ues up to a value h, at which O reaches zero. With further 
increase of h it follows from (30) that only a solution with 
negative O is possible. I t  appears that in this case the para- 
metrically excited system does not reach a stationary state 
and executes finite motion with U = Uo = const. 

2. If the pump field is turned on adiabatically the en- 
tropy is constant. I t  is assumed that a new quasiparticle- 
system temperature sets in after each small change of the 
amplitude h (the chemical potential is determined then from 
the entropy maximum). The equation for the temperature O 
as a function of Om is 

where 

and the expression for Y (a, - p,O) is similar. It is clear 
that in the general case a<@,,  , but each specific case must 
be separately computed. 

The question of the thermodynamic stability of the 
equilibrium state of a quasiparticle Bose gas reduces to satis- 
faction of the following thermodynamic inequalities2': a )  
the heat capacity at constant volume must be positive, and 
( b )  isotropic compression increases the pressure. An explic- 
it form of condition a )  can be obtained by differentiating 
(28) with respect to O: 

For constant V ,  and S,, and for T,, = 0 we have, for exam- 
ple, 

This inequality is obviously always valid. 
I t  is easiest to verify condition b )  by using the equation 

of state of an ideal Bose gas": 

Since the quasiparticle spectrum R, is in our model is inde- 
pendent of the pressure P and of the volume r/', we have 
P 7 '  = const for a given temperature. The criterion b )  is ob- 
viously met in this case. 

4. COLLECTIVE OSCILLATIONS 

If the quasiparticle gas is thermodynamically stable, 
small density perturbations relax to an equilibrium within a 
characteristic time r determined by the four-particle part of 
the Hamiltonian ( 10). The relaxation due to the phase rela- 
tions is then oscillatory and its frequency w is referred to as 
the system collective-oscillation frequency. We work in the 
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approximation w % T-  '. We write the time dependences2' of 
N ,  and a, in the form 

Combining these equations, we readily obtain 

This integral of motion obviously accords with Eq. ( 14a). In 
the stationary case it follows from (32a) that a, is real, and 
Eq. (32b) reduces to (14b). 

Let us investigate the spectrum of small deviations from 
equilibrium values of N ,  and a, : 

6Nk=6NkA e x p ( h t )  , 6ok=60kh exp(h1) .  

Linearization of (32a), (32b), and (33 yields 

ih6Nkk=At (60kr*-6okk) or ( 6 A r r - 6 A r ~ * ) ,  (34a) 

where 

Equations (34) cannot be solved in the general case. We 
consider below the case of constant coefficients V ,  = V, 
S , ,  = S, and T,, = T, when the solution for a, is singular. 
For k # k,, we have then from (34) 

Summing both sides of (35b) over k we get 

Give this relation, simple transformations of (34) lead to 
equations for small deviations on the resonance surface: 

[ ih+.XSh' ( 2 N k , + 1 )  1 6Nk,r=2dSok,Re ( A )  6okoi, ( 37a) 

From the condition that the Eqs. (37) have nontrivial solu- 
tions we obtain an equation for the collective-oscillation 
spectrum 

hZ-4.MS(N,,+'IZ) h Im(A) + 4 [ d S ( N , + ' / , )  I21AlZ 
+ 8 d 2 T S R e  ( A )  ok,2=0, (38) 

whence we get in the single-mode approximation ( A  = 1) 
the solution 

Equation (38) yields also a stability criterion for the station- 
ary state. Stability is lost in a Hamiltonian system only when 
A passes through zero. It follows therefore from (38) that 
the stationary state is stable if 

We conclude this section by noting that Eqs. (32) can 
be expressed in terms of the Hamiltonian variables N ,  and 
*k : 

dN,/dt=-6%/6$r, d$k/dt=6%/6Nr, 

where 4, is defined by the relation 

or= (NkZ+Nr-ntZ-nr)  '" elip(-i$k) 

and the Hamiltonian is 

For n, = 0 and N ,  % 1 the expressions for N ,  , $, and 2Y 
agree with those obtained in the S theory." 

DISCUSSION 

We have thus shown that the steady-state energy of par- 
ametrically excited Bose particles insulated from a thermo- 
stat can be represented in a rotating coordinate frame by two 
terms. The first corresponds to coherent interaction of the 
magnons with the pump field (condensate), while the sec- 
ond describes an equilibrium quasiparticle gas having a cer- 
tain effective temperature indicative of the degree of devi- 
ation of the magnon distribution function from the coherent 
one (see Fig. 1 ) . We have obtained criteria for the stability of 
such a "thermodynamic" state and have found the distribu- 
tion functions in certain cases. 

FIG. 1. Nonequilibrium magnon distribution functionduwe 1 .  Curve 2 
shows the coherent part of the magnon distribution (condensate). while 3 
shows the incoherent part described by the thermodynamic diskibution 
function with effective temperature O. 
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"In a rotating reference frame the origin of the chemical potential is shift- 
ed by - w,/2 from its value in the lab. 

"These equations were obtained in the self-consistent-field approximation 
by a method similar to that used in Ref. 20. Analogous equations were 
analyzed earlier in Ref. 1 1. 

FIG. 2. Example of oscillations of above-threshold susceptibility on a 
microwave pulse passing through a cavity with a sample of the antiferro- 
magnet CsMnC1, (Ref. 28). The lower curve shows the oscillation in 
enlarged scale. Estimates yield T,,, - 1 ps  and .r,, 2 20,us. 

The onset of thermodynamic equilibrium in a system of 
quasiparticles can be revealed in experiment by the satura- 
tion effect, when the microwave power absorbed by a sample 
with pulse-excited magnons decreases noticeable with time. 
Such behavior of the absorption (see Fig. 2 )  was observed in 
a number of studies in which, however, the onset of satura- 
tion in the system was accompanied by instability that led to 
a time-periodic process. According to our theory this means 
that under the experimental conditions the stationary state 
was unstable and the system of excited magnons became self- 
oscillating near this state. Note that saturation is possible 
also when the quasiparticle gas enters into thermodynamic 
equilibrium with the heat bath (phonons), if the relativistic 
interactions are negligibly small.".'3 Another criterion of 
thermodynamic equilibrium in a rotating coordinate frame 
is quasiparticle accumulation on the band edge of the mag- 
nons that can be detected by radiation from the sample. 

We note in conclusion that the results can be used to 
describe real magnetic systems only when the magnons are 
pumped by a pulsed field having an amplitude much higher 
than the threshold, so that the energy flow into the heat bath 
can be neglected. In principle, the thermodynamic approach 
with a rotating coordinate frame can be generalized (in the 
context of weak-nonequilibrium thermodynamics) also to 
include low energy fluxes. We assume that this will lead to a 
unified description of the below-threshold state, of the 
threshold, and the of above-threshold state of parametrically 
excited magnons. 
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