
Electron mechanism of Damon-Eshbach wave damping in ferromagnetic metals 
M. I. Kaganov 

Institute of Physics Problems, USSR Academy of Sciences 

T. I. Shalaeva 

Moscow State University 
(Submitted 29 November 1988) 
Zh. Eksp. Teor. Fiz. 95,19 13-1920 (May 1989) 

The dispersion law for surface excitations ( Damon-Eshbach waves) in ferromagnetic metals is 
derived for a nonlocal connection of the current density with the electric field strength. I t  is shown 
that anomaly of the skin effect can convert the surface excitations into weakly damped waves. The 
influence of a sufficiently strong field on the damping of the Damon-Eshbach waves is estimated. 

1. A surface wave (Damon-Eshbach ( D E )  wave'32) 
can propagate along the surface of a ferromagnet magne- 
tized parallel to the surface if its propagation direction does 
not deviate greatly from perpendicular to the applied con- 
stant magnetic field H. The magnetic-field components in a 
D E  wave satisfy the magnetostatics equation (i t  is assumed 
that k$  W/C, where k and w are the wave vector and frequen- 
cy of the wave and c is the speed of light) : 

rot h=O, div b=O. b=ph. (1) 

Herep  is the magnetic-permeability tensor. I t  can be calcu- 
lated by using the Landau-Lifshitz equation without 
allowance for dissipation terms and spatial dispersion, in 
which case 

0 0 ' 

= f p i t , ) ,  U - iy' 

Here w, = gH, w, = 4.rrgM, M is the static magnetization 
of the ferromagnet, and g is the gyromagnetic ratio. We ne- 
glect the anisotropy field compared with the external field H. 
if H is parallel to the anisotropy axis, we can replace H i n  (2 )  
by He, = H + H,, where H, is the anisotropy field. 

If the wave vector k(O,O,k) is perpendicular to the mag- 
netic field H(H,O,O) and the ferromagnetic fills the half- 
space y > 0, the D E  wave frequency for waves with a field 
structure 

under the substitution t- - t, due to the presence of the 
magnetic field and of the magnetic moment 
( H (  - t )  = - H ( t ) ;  M( - t )  = - M ( t ) )  also indicates 
that the usual condition w( - k )  = w(k)  is not mandatory. 

I t  is legitimate to neglect the spatial dispersion of the 
magnetic permeability p if Ja2k 2/,BM4 1, where J is of the 
order of the exchange integral, f l=  g+i, and a is the lattice 
constant (see Ref. 3) .  If this requirement is not to violate the 
validity of magnetostatics it is necessary that the wave vector 
be in the range 

Here and hereafter we assume in the estimates that w, 
and w are of the same order. The presence of the small factor 
(,BM/J) ' I 2  notwithstanding, the interval (w/c, ( l / a )  
(,BM/J) ' I2  is SO wide that various values of the wave vector 
can be assumed. 

Allowance for magnetic dissipation leads, naturally, to 
damping of the D E  wave. Adding to the Landau-Lifshitz 
equation a relaxation term R containing two relaxation 
times3: 

we obtain'' for p and p': 

h=-Vcp, q a e s p ( - i o t f  ikz-y I y I ) 

does not depend on the wave vector k: 

( 3 )  where l / r  = 1/r ,  + 1/r2 is by assumption much lower than 
the frequency w, and the DE-wave frequency acquires an 
imaginary part 

and the logarithmic decrement of the damping along the y 
axis is equal to the wave vector k: 

Note that the D E  wave is non-reciprocal; it does not exist at 
k < 0. The cause of the non-reciprocity is the absence of an 
inversion center on the magnet surface. Owing to the vector 
y x M, the directions z and - z are not equivalent ( y  and z 
are unit vectors along they and z axes. The non-invariance 

which determines its damping. 
Allowance for retardation (for the finite speed of light) 

leads to dispersion of the D E  wave and "turns on" damping 
mechanisms due to electric losses. Analysis of the total dis- 
persion (of the consequence of the Maxwell equations) 
yields for k $ w/c 
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where E = E' + i ~ "  is the complex dielectric constant of the 
ferromagnet. In dielectrics we have E" <E' and the main ef- 
fect of taking the retardation into account is manifested by 
the existence of a finite (nonzero) group velocity of the DE 
wave: 

which, to be sure, tends rapidly ( a k - 3 )  to zero with in- 
crease of the wave vector. 

According to ( lo ) ,  the DE wave is subject to damping 
due to electric losses, with 

2 

WMOGE off = -- 
8 ( c k )  ' Eff' 

The electric damping can exceed the magnetic damping if 

for which the rather strong condition E" > l/wr must be met. 
It can apparently be met, together with the condition E')E", 
in ferromagnetic semiconductors. 

DE waves can exist, however, not only in ferromagnetic 
dielectrics and semiconductors, but also in ferromagnetic 
metals for which E = 4n-iu/w, with 4 ~ u / w )  1. In metals, 
therefore, 

It must be borne in mind that the condition for the exis- 
tence of DE waves in metals is much more stringent than in 
dielectrics. It is evident from (13) and (10) that for the 
damping to be small the following condition must be met: 

where S = c / ( 2 m D ,  ) '" is the skin-layer depth at the DE- 
wave frequency. 

At low temperatures in thin metals, the electron relaxa- 
tion frequency 1/r,, where re is the electron free-path time, 
can be lower than the DE-wave frequency w,, . For wr, ) 1 

where w, is the plasma frequency of the metal. Then 

Hence 

and consequently the DE wave carries in this case energy in a 
direction opposite to that of the wave vector. 

Equations (13) and (14) were obtained without 
allowance for the influence of the magnetic field on the con- 
ductivity. Owing to the Hall effect, the conductivity tensor 
becomes gyrotropic in the magnetic field. 

In the simplest case (see, e.g., Ref. 4) we have 

Analysis of the Maxwell equations shows that the x-compo- 
nent ex of the electric field strength is exited in the DE wave 
considered here, and Eqs. (13) and ( 14) contain a conduc- 
tivity component along H. This component is known4 to 
depend weakly on the magnetic field (for an isotropic dis- 
persion law the static conductivity u,, is altogether indepen- 
dent of the magnetic field). 

2. The inequality ( 14) shows that allowance for spatial 
dispersion may become more necessary for the study of DE 
waves in a metal than for the study of the skin effect. In fact, 
spatial dispersion of the conductivity, which is a conse- 
quence of the nonlocality of the coupling between the elec- 
tric-field intensity and the current density in the metal, is 
caused by the finite electron mean free path I. A measure of 
the nonlocality is here quantity kl (see below), while in skin- 
effect theory this measure is I /S [cf. ( 14) ]. 

Our main purpose here is to develop a kinetic theory of 
electronic damping of DE waves in a ferromagnetic metal. 
Recognizing that the damping is determined by the longitu- 
dinal conductivity component, we neglect initially alto- 
gether the influence of the magnetic field on the electrons. 
The complete system of equations (the Maxwell equations 
and the kinetic equation) of the problem are then: 

Here ef: is the electric field strength in vacuum, and f, is an 
increment, linear in the electric field e,, to the Fermi distri- 
bution function f,. 

v = p/m is the electron velocity; the integration in (18) is 
over all of p-space; the electron gas is degenerate, so that 
- dfF/d& = S(E - E,). The usual electrodynamic condi- 
tions (continuity of the tangential components of e and h in 
the wave) must be supplemented by a boundary condition 
for the electron distribution function f,. We confine our- 
selves to specular reflection of the conduction electrons by 
the surface: 

The second equality ensures equilibrium of the electrons in 
the interior of the metal. 

Equation ( 17) was written in the 7-approximation for 
the collision integral and under the assumption w7, < 1, and 
the term df,/dt was therefore omitted. The dependences of 
all the functions in ( 16) and ( 17) on z and y are of the form 

According to ( 17)-( 19) we have 
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Expressions (20) are valid, naturally, if y >  0. An even 
continuation of ex (y) into the region y <O (so that 
ex ( - y )  = ex (y) allows us to solve the problem by a Four- 
ier transformation in y, since it transforms K(y,yl) into a 
difference kernel: 

We use a Fourier transformation of Eq. ( 16) continued into 
the half-space y < 0: 

Here 
m 

K,(q) = K(y) eiqy dy  
- = 

is the kernel of the conductivity operator in the q representa- 
tion; 

is the static conductivity of the metal, and N is the electron 
density. 

From Maxwell's equation we obtain 

Finally, we use the boundary conditions for e and h: 

With the aid of (22) and (24) we get, after obtaining the 
field distribution in the metal and eliminating (de, (y)/dy) ,, 
a system of two linear equations in h, (0) and ex (0). Equat- 
ing the determinant of this system to zero we get an equation 
from which we determine the DE-wave dispersion law: 

As k +  co we obtain from (26), naturally, the value (4)  
of the DE-wave frequency. For k l 4  1, when the local con- 
nection between the current density and the electric-field 
intensity is valid, we arrive at Eq. ( 10) with E = 4n-iu/a [see 
also (13)l. 

Of greatest interest is the opposite limiting case, which 
is analogous to the anomalous skin effect (k l$ l ) .  Assume 
that in this case 

Since it is certain that wuF/w,c4 1, the second condition is 
more important. 

The condition (27) jointly with inequality kl% 1 makes 
it possible to use, upon approximate evaluation of the inte- 
gral of (26), the asymptotic value of K, (q), which is propor- 
tional to ( k 2  + qZ)-'I2 [see (23)l .  Then 

Owing to the spatial dispersion, the dissipative term 
( a k - 3 )  tends to zero more rapidly than the dispersion term 
( a k - ' ) .  If 

the DE wave is weakly damped. It must be remembered, 
however, that our entire analysis is valid if the spatial disper- 
sion f i  is neglected: the condition (29) must not contradict 
the inequality (6).  To this end it is necessary to satisfy the 
following inequality: 

The nonlocal connection between the current density 
and the electric-field intensity leads to a non-exponential de- 
pendence of the field components in the DE wave on the 
coordinate y. Analysis shows that allowance for the non- 
locality adds to the h(y) components "slowly" attenuating 
terms proportional to y312e - ky but containing a small (com- 
pared with the main terms) amplitude of order 
(k80) -2(~ /kuF) .  These terms, naturally, can appear only 
at sufficiently large distances from the metal surface. 

3. As indicated by us, in our approach the magnetic 
field does not alter the static conductivity.2' Allowance for 
spatial dispersion, however, changes the situation: a depen- 
dence on the magnetic field appears simultaneously with the 
dependence on the wave vector. The equations of the preced- 
ing sections are valid therefore under the following addi- 
tional conditions on the magnetic field H or on the wave 
vector k: 

where r ,  = cpF/eH is the radius of the electron orbit in the 
magnetic field. 
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A consistent allowance for the influence of the magnetic 
field on the high-frequency properties of ferromagnetic met- 
als will be the subject of a separate communication. We wish 
to consider here the one case 

It permits a simple order-of-magnitude estimate of the ef- 
fect. 

In a ferromagnet, the conduction electron is acted upon 
by an average magnetic field B = H + 4n-M. We introduce 
the time t ,  of motion over the trajectory in the magnetic 
field, 

dp ,  eB -=- ~ P I !  eB u,,, -=-- vz, 
d t ,  c d t ,  c 

The kinetic equation takes then the form 

a f l  a f l  a f l  f l  a f ~ .  v,-+v,--I--+-= - e u g , - .  
a y  az at, T, a e 

( 3 2 )  

If the magnetic field is directed along the x axis, 
v, = p , / m ,  is a conserved quantity and the current density 
is 

Averaging Eq. ( 3 2 )  over t ,  and multiplying it alter- 
nately by v,, and u,, we obtain a system of two equations. To 
simplify them we assume that 

The justification of this assumption is that w,  is large, mean- 
ing that cos w,t ,  and sin w,t ,  are rapidly oscillating func- 
tions. The equations that follow are only estimates. For the 
Fourier transform of the distribution function we get3) 

According to ( 3 1 ) ,  we can use the expansion of Eq. 
( 3 4 )  in terms of v L 2 ( k  + q 2 ) / 2 w C 2 ,  i.e., 

1 uF2(k2+q2)  
( 3 5 )  

As before, the condition ( 14) must be met if the dissipation 
is to be small (Im wgRe  w ) .  According to ( 2 6 )  and ( 3 5 ) ,  
the DE-wave dispersion law is of the form 

It can be seen that in this case [see Eq. ( 3 )  ] the influence of 
the magnetic field reduces to a small decrease of the DE- 
wave damping. 

Surface excitations of various types are studied as a rule 
with the aid of ~cat ter ing.~ The equations above can be of 
help in the interpretation of experimental data. Unfortu- 
nately, we are unaware of any experimental studies that lend 
themselves to a direct comparison with our theory. 

I '  For a definition of the effective field see Ref. 3, p. 64 (of the Russian 
original). 

"We just simply neglect quantum effects of the Shubnikov-de Haas type. 
''Since these are estimates, we need not ponder over the boundary condi- 

tions, and can use the solution of the kinetic equation in all of space, 
allowing for the even continuation of the electric field into the half-space 
y < 0. In the theory of the skin effect for H = 0 this is the counterpart of 
specular reflection of the electrons from a boundary. 
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