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Results are presented of a study of the diffusion, of the spectral density of the current fluctuations, 
and of the correlation tensor that characterizes the degree of correlation (the non-ideality ) of a 
weakly heated nonequilibrium electron gas. The investigations were made at intermediate 
electron densities, when the electron-electron collisions compete with the energy relaxation of the 
electron gas. It is found that under the conditions considered the nonequilibrium correction to the 
diffusion tensor is of the same order as the correlation tensor, so that the chances of observing the 
latter in experiment are improved. 

1. INTRODUCTION 

It is known that a system in thermodynamic equilibri- 
um satisfies the fluctuation-dissipation theorem or the Cal- 
len-Welton relation,' which connect the fluctuation charac- 
teristics of the system with its dissipation characteristics. 
These relations are invalid to some degree or another in a 
nonequilibrium system. It was assumed for a long time that 
in a nonequilibrium electron gas only one of these relations is 
satisfied, the so-called Price relation2 

which connects the spectral density (SjiSjk ), of the homo- 
geneous current fluctuations with the diffusion tensor D, . 
In ( 1.1 ) V, is the normalization volume and n the electron 
density. However, after a consistent theory of fluctuations in 
a nonequilibrium electron gas was d e ~ e l o p e d , ~ . ~  it became 
clear that the Price relation is also violated. It was found that 
the latter violation is due to electron-electron collisions that 
generate, in the nonequilibrium state, a certain electron- 
electron correlation. For a nonequilibrium gas it is therefore 
necessary to replace ( 1.1 ) by (see, e.g., Ref. 5 )  

The additional tensor'' A, introduced by this relation is, by 
virtue of the foregoing, a characteristic of the degree of cor- 
relation (or non-ideality) of the nonequilibrium electron 
gas. 

To our knowledge, there are no experimental studies of 
the tensor A,, . Theoretical estimates of this tensor were ob- 
tained either in the electron-temperature approximation 
(see, e.g., Ref. 5)  or by using a Maxwell distribution with 
drift.6 These estimates pertain to the region of high electron 
densities, when the electron-electron collisions prevail over 
the relaxation processes due to interaction with the heat 
bath. 

We present here the results of a study of the diffusion, of 
the current-fluctuations spectral density, and of the tensor 
A, at intermediate electron densities, where the electron- 
electron collisions compete with the energy relaxation, i.e., 
in the region 

Here rp and 7, denote the times characterizing the momen- 
tum and energy relaxation, and re, is the characteristic elec- 
tron-electron collision time. 

We have carried out a numerical study of these kinetic 
characteristics of an electron gas under weak heating condi- 
tions. This study was prompted by the following factors. 
First, interelectron Coulomb scattering has a singularity at 
low energies and is therefore more substantial for weak than 
for strong heating. Second, a well-developed experimental 
technique for measuring the kinetic properties of warm elec- 
trons in semiconductors is available at present,' so that iden- 
tification of specific parameter ranges is of interest from the 
standpoint of an experimental observation of the violation of 
relation ( 1.1 ) . 

We shall show that the Price relation can be significant- 
ly violated in the considered region of intermediate densities 
(the tensor A, is of the same order as the nonequilibrium 
correction to the diffusion tensor D, ). This violation, how- 
ever is due not strictly speaking to the additional correlation 
generated by the electron-electron collisions (as is the case 
for high densities), but to the dependence of the form of the 
stationary distribution function on the electron density. 

2. KINETIC EQUATION UNDER WEAK HEATING CONDITIONS 

We present in this section the notation and equations 
which will be needed below (a  detailed derivation can be 
found, e.g., in Ref. 8)  and which are connected with the field 
expansion of the solution of the stationary kinetic equation: 

Here S ( F )  is the collisional term of the equation and in- 
cludes both the interaction of the electrons in the heat bath 
and the electron-electron scattering. To be specific, we con- 
sider the case when the electron is heated by a constant elec- 
tric field E directed along thep, axis. We shall calculate the 
nonequilibrium field corrections to the characteristic accu- 
rate to E inclusive, and represent therefore the stationary 
distribution function by the expansion 

For convenience (to make all distribution-function compo- 
nents of the same dimension) we have introduced here the 
constant E * with the dimension of the electric field, and use 
also the dimensionless electron energy 
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(Tis the heat-bath temperature). The function Qo(x) is the 
equilibrium distribution function: Now, substituting the expansion (2.2) in (2.11 ) and next in 

(2.9), linearizing the obtained expression with respect to Q,, 
averaging over the angle variables, and changing to dimen- 
sionless variables, we obtain the final expression for the elec- 
tron-electron collision operator: 

(Do ( x )  =e-x. (2.4 

The equations for the two other components, the symmetric 
@,(XI and the antisymmetric p, (x), are obtained by substi- 
tuting the expansion (2.2) in the kinetic equation (2.1 ) and 
suitably averaging the latter over the angle variables. We 
shall find it convenient hereafter to denote the linearized 
collisional operators by So (a, )/rE and S, (p, )/rP for the 
symmetric and anti-symmetric parts, respectively. The oper- 
ators So(@,) and S, (p,) were chosen to be dimensionless, 
and the quantities T~ and 7, can be easily expressed in terms 
of constants that characterize the intensities of the actual 
scattering mechanisms. We choose the constant E * in the 
form 

+ e-' [ J ~ X ' ~ '  "@, (x' ) - 
0 3 * 

which we have taken into account in Eq. (2.7). 
The constant 

The above expressions for the distribution-function compo- 
nents take then the following dimensionless form 

characterizes the relative intensity of the electron-electron 
scattering compared with the heat-bath mechanisms of ener- 
gy relaxation. The electron-electron scattering is not taken 
into account in (2.6) [by virtue of ( 1.3) 1. Moreover, the 
antisymmetric collision operator is written in the relaxation- 
time approximation 

I I d  
So(Q2)=- - -  

( 3 6 )  '" x'" d x  ( ~ c p i )  9 

where the parameter 

6=.tP/.t, 

characterizes the degree of inelasticity of the scattering. 
Owing to the constraint (1.3) used by us we take into 

account, in place of the total two-particle collision operator 

This enables us to solve Eq. (2.6) right away and obtain, 
after substituting the solution in (2.7), the equation 

where for the symmetric nonequilibrium correction to the distribu- 
tion function. It is necessary to add to this equation the nor- 
malization condition 

( E  is the dielectric constant), only its symmetric part, which 
we include in Eq. (2.7). We use here the collision operator in 
the so-called Landau form, which takes suitable account of 
the scattering with small momentum change, which is most 
significant in the case of we.~k heating. Following a proce- 
dure described in detail in R.ef. 9, we transform (2.10) into 

It was Eq. (2.18) which we have investigated by numerical 
methods. 

3. THE DIFFUSION COEFFICIENT 

We apply now the procedure of the preceding section to 
the diffusion coefficient. 

The diffusion coefficient, defined by the expression for 
the diffusion current 

where 
can be written, following Ref. 5, in the form 

where No is the normalization integral of the equilibrium 
distribution function (2.4), and the function Y, (p) satisfies 
the following kinetic equation: We assume that the Coulomb logarithm is equal to 
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where 

and SL ( Y k  ) denotes the linearized collision operator. The 
function \Vk ( p )  satisfies the zero normalization condition 

Confining ourselves, as in the preceding section, to an 
approximation up to E inclusive, we write for \Vk ( p )  the 
expansion 

Substituting now this expansion, as well as the expansion 
( 2 . 2 ) ,  in Eq. ( 3 . 3 )  we obtain after the appropriate averaging 
and after changing to dimensionless variables the following 
systems of equations: 

1 d + - - (2% (x) e-x)} , 
x'" dx 

where 

Substituting the expansion ( 3 . 6 )  in the definition ( 3 . 2 ) ,  
we express the diffusion tensor in the form: 

We introduce now for convenience a certain dimension- 
less function q , ( x )  defined as 

and satisfying, just as the function @ , ( x )  in ( 2 . 19 ) ,  a zero 
normalization condition. It is now easy to verify that the 
solution of ( 3 . 9 )  can be written in the form 

Substituting this expression in ( 3 . 8 )  and substituting 
next ( 3 . 7 )  and ( 3 . 8 )  in (3.11 ), we obtain the final expres- 
sion for the nonzero diagonal components of the diffusion 
tensor D ,  . It is convenient to write it in the form 

D,=D,,=Do (l+y, (EIE') ' ) ,  ( 3 . 14 )  

Dzz=Do (l+yll (EIE') ') ( 3 . 15 )  

where 

is the equilibrium isotropic diffusion coefficient, and the di- 
mensionless coefficients 

co 

characterize the nonequilibrium corrections to the diffusion 
tensor. 

The differentiation in ( 3 . 17 )  with respect to the density 
is indicative of the dependence of the form of the nonequilib- 
rium increment to the stationary distribution function on the 
inter-electron collisions. 

To find the nonequilibrium corrections ( 3 . 1 7 )  and 
( 3 . 18 )  to the diffusion coefficient we must solve Eqs. ( 3 . 12 )  
and ( 2 . 18 )  numerically. 

4. SPECTRAL DENSITY OF CURRENT FLUCTUATIONS 

A definition of the spectral density of homogeneous 
current fluctuations is the expression ( 1.2)  above. For the 
additional correlator we write, following Ref. 5, the expres- 
sion 

Aik=Aih+B,, ( 4 . 1 )  

where 

1 aih =, 1 d 3 ~ '  V ~ V , ' S , - ~ S ~ ~ - ~ W . ~ ~  ( F ,  F), ( 4 . 2 )  
No 

The symbol Sp - ' denotes here formally an operator inverse 
to the linearized kinetic operator, i.e., to the operator in the 
left-hand side of Eq. ( 3 . 3 ) .  By virtue of the approximation 
( 1 . 3 )  we need use for the correlation operator Wpp. ( F ,  F )  
only the symmetric part of the expression (2 .1  1 ) used above, 
in the Landau form, for this operator which acts on the sym- 
metric component of the function @ ( x ) .  

We see from ( 4 . 2 )  and ( 4 . 3 )  that the additional tensor 
A, consists of two different parts. One of them, A,,  , is due to 
the electronic-states correlation generated in the electron- 
electron-scattering process, as evidenced by the presence of 
the operator Wpp. (F,F)  in the integrand of ( 4 . 2 ) .  It is just to 
this part of the tensor A, that principal attention was paid in 
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earlier studies (see, e.g., Ref. 5), inasmuch as in the electron 
temperature approximation (which is valid in the region 
re, <rE ) BBlk is simply zero. Only the quantity A, was like- 
wise investigated in Ref. 10, where the violation of the Price 
relation under strong heating condition was studied by the 
Monte Carlo method and where this violation was found for 
high densities (n 2 10" ~ m - ~ ) .  The second part B,  is like- 
wise due to electron-electron collisions. Their influence 
here, as we see from (4.3), is differently manifest, namely, as 
a dependence of the form of the stationary distribution func- 
tion F(p)  on the intensity of the electron-electron collisions 
(via the dependence on the density n ) . 

Substituting the symmetric part of the expansion (2.2) 
in (4.2) and (4.3), we readily verify that the first nonvanish- 
ing terms are proportional exactly to the correction, propor- 
tional to E 2, of interest to us, since 

It suffices therefore to take the inverse operators Sp - ' into 
account in the zeroth order in E. In addition, it is evident 
from the structure of the integrals in the indicated expres- 
sions that only the antisymmetric part of the opertors Sp 
need be considered. We can write then, in accordance with 
the approximation used by us, 

Sp-'=tpt (x). (4.6) 

Thus, substituting (4.6) in (4.2) and (4.3), integrating over 
the angle variables, and changing to dimensionless quanti- 
ties, we obtain as the final result: 

where 
m 

and 

where 

the density dependence of the stationary distribution func- 
tion. 

5. RESULTS OF NUMERICAL CALCULATIONS AND THEIR 
DISCUSSION 

For an actual estimate of the extent to which the Price 
relation can be significantly violated in the weak-heating re- 
gion, we cite in this section some numerical-calculation re- 
sults. 

We have calculated the coefficients yl,  , y, , and yB for 
quasi-elastic electron-gas interaction, when the equations 
for the symmetric parts of the distribution functions (2.18) 
and (3.12) contain the electron-electron-collision operator 
(2.15) and the operator of electron collisions with a heat 
bath of the Davydov type: 

The momentum-relaxation time was estimated by the 
expression 

Approximation by quasi-elastic collisions is frequently used 
to describe the electron gas both in a gas-discharge plasma 
and in semiconductors. Since (5.1 ) is a differential operator, 
and the integral part of (2.15) is a Volterra operator, Eqs. 
(2.18) and (3.12) can be reduced to a system of differential 
equations, and these were calculated by the Runge-Kutta 
method. The dependences of the coefficients yll , y, , and yB 
on the only parameter w, calculated for this model, are 
shown in Fig. 1. The parameter w [Eq. (2.16) ] is indicative, 
as noted earlier, of the relative intensity of the electron-elec- 
tron scattering compared with the heat-bath energy relaxa- 
tion. In the limit as w-0, the coefficients yll and y, go over 
into the values obtained without allowance for electron-elec- 
tron collisions, while as w- cc we have values that agree 
with the result of the electron-temperature approximation. 
The coefficients yB , as should be expected, vanishes in both 
limiting cases. It has a maximum when the energy relaxation 
rate produced inside the electron system by electron-elec- 
tron collisions is of the same order as the energy relaxation 
rate in the heat bath. This is attested to, in particular, by 
estimates of the times T, and T,, , which are equal at w -- 6. 
The maximum of the y, dependence corresponds to approx- 
imately the same value. 

It can be seen from Fig. 1 that in the case of quasi-elastic 

The smaller of the quantities x and x' should be substituted 
here for x, , and the larger for x, . 0.2 

We see thus from (4.7)-(4.10) that the tensor A, re- 
ceives in the weak-heating region an isotropic contribution, o 
proportional to E ', indicative of the degree of violation of the 
Price relation. In the case of the quasi-elastic scattering -0.2 

mechanism S< 1 (this is precisely what is assumed in the 
case ( 1.3) considered by us), it is necessary to include in the -0.y 
calculated tensor A,, only the term B,,  since the expression 
for y, contains the parametrically small quantity 6. Under FIG. 1. Plots of the coefficients y,, y,, , and y, against the parameter w 

the that determines the relative intensity of the electron-electron scattering 
Price relation at intermediate densities is possible because of compared with the interaction with ;he thermostat. 

- 
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FIG. 2. Plots of y, (curves 1 and 2 )  and y,, (curves 3 and 4 )  against the 
holedensity inp-Ge at T = 80 K, with ( l , 3 )  and without ( 2 , 4 )  allowance 
for electron-electron scattering. 

scattering the diffusion coefficients (the plots of y, and yll ) 
is sensitive to the presence of electron-electron collisions and 
violation of the Price relation (curve y, ) also occurs but is 
small, on the order of 10% (compared with the corrections 
to the diffusion tensor). 

It is known that in the case of low-temperature scatter- 
ing of electrons by optical phonons in semiconductors the 
interelectron collisions provide a new energy-relaxation 
channel (the scattering mechanism called composite1' sets 
in) and influence thereby substantially both the energy re- 
laxation itself and the form of the stationary distribution 
function. It is natural to assume that in this situation the 
coefficients yll , y,, and y, turn out to be more sensitive to 
the presence of electron-electron collisions. To illustrate this 
possibility we computed these coefficients for semiconduc- 
tors with parameters corresponding to the heavy-hole band 
inp-Ge. We took into account in (2.7), besides the interelec- 
tron scattering, the scattering by acoustic and optical phon- 
ons. In addition to the last two mechanisms, we took into 
account in the obtained momentum relaxation time ~ ( x )  
also scattering by ionized impurities. We used in the calcula- 
tion an effective mass 0.3m0, a sound velocity 5.4. lo3 m/s, a 
density 5.33. lo3 kg/m3, a deformation-potential constant 6 
eV, a constant of coupling with the optical phonons 9.10" 
eV/m, a characteristic optical-phonon temperature 430 K, 
and a relative dielectric constant 16. 

The calculation was performed for a compensated semi- 
conductor at T =  80 K. Equations (2.18) and (3.12) were 
solved by a previously proposed8 two-particle Monte Carlo 
method and the electron-electron collisions were taken into 
account by an iteration procedure described in detail in Ref. 
12. 

The calculation results are shown in Figs. 2 and 3. Fig- 
ure 2 shows the dependences of y, and yll on the hole density 
p (the density is a measure of the electron-electron-collision 
intensity). The reversed sign of the correction to the longitu- 
dinal diffusion coefficient yll is due to the hole scattering by 
ionized impurities. Comparing the results calculated with- 
out and with allowance for electron-electron collisions, we 
see that at intermediate densities (p- l 0 ' ~ - 1 0 ~ ~  ~ m - ~  ) these 

FIG. 3. Plots of y, and y, (a)  and of the ratio y,/y, against the hole 
density in p-Ge at T = 80 K. 

collisions influence the diffusion coefficient substantially. 
Note that the influence of this type of scattering on other 
parameters of warm electrons was noted also earlier.'2"3 

Since the collision operator is not quasi-elastic in the 
presence of scattering by optical phonons, we have plotted in 
Fig. 3a not only the coefficient y, but also yA . In the region 
of intermediate densities the coefficient yA is still small com- 
pared with y,, apparently an indirect indication that the 
inequality T, ,T~ holds in this case. Figure 3b shows the 
ratio of the coefficient y,, which is indicative of the violation 
of the Price relation, and the nonequilibrium correction to 
the diffusion coefficient y,. It is seen to be substantial at 
p-  10'4-1015 cmP3. This leads to the hope of being able to 
observe in experiment violations of the Price relation in 
semiconductors at intermediate densities under conditions 
of weak heating, and possibly also strong. 

The authors thank R. Katilyus for a discussion of the 
results. 
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