
Hypersonic solitons in metals 
A. E. Borovik, E. N. Bratus', and V. S. Shumeiko 

A. M. GorkiState University, Kharkov 
(Submitted 13 September 1988) 
Zh. Eksp. Teor. Fiz. 95,1430-1443 (April 1989) 

A study is made of the evolution of a short longitudinal hypersound pulse in a metal in the case of a 
quantum interaction with resonant electrons. It is shown that, in principle, self-induced 
transparency can appear under certain conditions and then the pulse can travel without 
attenuation at a velocity different from that of sound. The system of resonance-approximation 
equations formulated to describe such pulse evolution is exactly integrable. The Zakharov-Shabat 
representation is obtained for this system of equations by the inverse scattering method and one- 
soliton, two-soliton, and breather solutions are obtained. This mathematical formalism can be 
used to describe a resonance interaction between hf pulses of any physical nature and an electron 
system. 

The problem of nonlinear attenuation of sound in met- 
als has been discussed in the literature on many occasions 
(for a review see Ref. 1). It has been established that the 
most favorable conditions for nonlinear behavior are ob- 
tained in a region of strong spatial dispersion when the 
source of nonlinearity is the nonequilibrium nature of the 
distribution of a small group of resonant electrons. Low val- 
ues of the longitudinal velocity of these electrons moving in 
phase with a wave ensure that their motion is disturbed by 
the field much more strongly than the motion of other elec- 
trons and the distribution in the resonance region may be far 
from equilibrium, whereas electrons associated with the rest 
of the Fermi surface will be close to equilibrium. This is 
precisely the momentum nonlinearity mechanism described 
in Ref. 2 using the semiclassical approximation. In the quan- 
tum case discussed in Ref. 3, when the wave vector of an 
acoustic wave is comparable with the characteristic longitu- 
dinal momentum of resonant electrons, an important role is 
played by modification of the electron wave functions ac- 
companied by the appearance of a specific energy band 
structure of the  electron^.^ 

The nonlinearity reduces the attenuation and at a fixed 
amplitude the scale of the effect is inversely proportional to 
the natural width of the resonance. In the usual case of a 
continuous acoustic signal,' when the time scale of changes 
in the amplitude of sound is the greatest, the width of a reso- 
nance is governed by the electron collision time T which oc- 
curs explicitly in the expression describing the nonlinear at- 
tenuation. In the opposite limit of a short acoustic pulse, 
when the pulse length T satisfies 

the role of the factor governing the resonance width is now 
played by T and the nonlinear attenuation problem can be 
solved in the collisionless limiL5 

The main conclusion reached in the present study is 
that in the case described by Eq. (1)  under certain condi- 
tions we can expect total acoustic "bleaching" of the metal 
similar to the self-induced transparency (SIT) effect in non- 
linear o p t i ~ s , ~  SO that an acoustic pulse is transformed into 
an undamped soliton moving at a velocity other than the 
phase velocity of sound. It follows from the scale of the elec- 
tron collision time in metals that such a soliton can be ob- 
served only in the hypersonic range of frequencies. 

The nonlinear bleaching of a resonantly absorbing me- 
dium, first investigated for two-level atoms,' is based on the 
specific behavior of a two-level system in an external field of 
the resonance frequency inducing periodic changes in the 
populations of the levels at a low frequency proportional to 
the field amplitude.' Similar dynamics of interband transi- 
tions in systems with a spectrum of the semiconductor type9 

, leads to the SIT effect, which can in principle occur also in 
such systems (difficulties in realizating SIT in real semicon- 
ductors are discussed in Ref. 10). The SIT effect for acoustic 
waves in a system with a gap in the quasiparticle spectrum is 
fundamentally identical with the optical SIT and, bearing in 
mind much narrower ranges of frequencies available in 
acoustics (w < 10" s-I), it can be expected in such narrow- 
gap systems as superconductors" or 3He in the superfluid 
state.I2 

The situation is completely different in metals because 
the absorption of sound is due to intraband transitions. The 
dynamics of these transitions is qualitatively different from 
that of interband transitions and the acoustic analog of the 
SIT seems at first sight to be impossible. In fact, as is known 
from Ref. 4, the spectrum of electrons near a resonance ex- 
hibits a forbidden band under the influence of a periodic 
field; the appearance of this band is due to an exponential 
rise of the wave functions. However, in the case of the qua- 
dratic dispersion law considered in Ref. 4, this rise is related 
to a specific property of a resonance transition, namely it is 
accompanied by backward reflection of an electron in a ref- 
erence system moving with the acoustic wave. In the case of 
a more complex dispersion law the scattering may be in the 
forward direction and then, as demonstrated by the calcula- 
tions reported below, the exponential rise of the wave func- 
tions changes to oscillations necessary for the establishment 
of the SIT effect. 

The SIT in optics is mathematically due to the integra- 
bility of the relevant system of equations. l3  The equations for 
acoustic solitons are also integrable and in a certain sense 
represent a generalization of the SIT equations allowing for 
the finite momentum transferred to an electron as a result of 
its scattering by an acoustic wave. The structure of the equa- 
tions of the associated linear problem, which is the basis for 
the application of the inverse scattering method, is analo- 
gous to the well-known (in the theory of solitons) three- 
wave system expanded to allow for the interaction of an 
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acoustic wave with an infinite number of the electron de- 
grees of freedom. This generalized three-wave structure is, in 
our opinion, of universal nature and it describes, subject to 
the conditions of Eq. ( 1 ), nonlinear evolution of fields of 
different physical nature when such fields interact resonant- 
ly with the electron system. 

The present paper is organized as follows. The first sec- 
tion provides a derivation of the resonance-approximation 
equations which describe the nonlinear evolution of a short 
pulse of longitudinal sound in a metal subject to the condi- 
tion ( 1 ) . The second section identifies the conditions for the 
existence of soliton solutions and analyzes a model three- 
wave system. The third section applies a method which fac- 
tors the McCall-Hahn ansatz used to obtain a one-soliton 
solution. It gives the explicit form of operators of the asso- 
ciated problem which is used in the Appendix to obtain 
breather and two-soliton solutions. The third section pro- 
vides a discussion of the properties of acoustic solitons and 
the feasibility of experimentally observing these solitons. 

1. DERIVATION OF THE RESONANCE-APPROXIMATION 
EQUATIONS 

Propagation of longitudinal sound in a metal is de- 
scribed by an equation from the theory of elasticity 

A 

where u (x,t) is the displacement of the lattice; p, is the den- 
sity of the metal; F(x,t) is the force exerted by electrons on 
the lattice and represents a linear functional of the electron 
distribution. In the hf limit this force is known to consist of 
resonant and nonresonant parts. In accordance with the 
above discussion, the resonance term is a source of nonlin- 
earity in Eq. (2) and it can be calculated exactly allowing for 
the quantum nature of the resonant electrons, whereas the 
nonresonant part of the force can be calculated in the linear 
approximation with semiclassical precision. It is known 
from the linear theory that the nonresonant part of the force 
contributes to the renormalization of the velocity of sound 
and is assumed to be included in s. The resonant force is 
dissipative in the linear approximation and becomes disper- 
sive in the SIT case.6 The dispersion of the velocity of sound 
due to nonequilibrium of the nonresonant electrons is a 
quantity of higher order (in the parameter s/v, ) than the 
contribution of the resonant electrons and it will be ig- 
nored.I5 The smallness of the resonance force means that the 
changes in the amplitude and phase of the wave induced by 
this force occur slowly on the scale of the wave period: 

axu ( x ,  t )  = ' I2[  UO ( x ,  t )  e'qX+Uo* ( x ,  t )  e-'qX], 

The explicit form of the resonant force will be described 
by introducing the density matrix for resonant electrons 
P(p,;x,x1,t), in which the conserved transverse quasimo- 
mentum is treated separately and an allowance is made for 
the contribution of only those values of the longitudinal qua- 
simomentum p, which lie in the resonance region (for sim- 
plicity, we shall assume that this region is in the vicinity of 
p, = 0). Following the treatment of Ref. 15, we obtain an 
expression for the force ( f i  = 1 ) 

where A is the anisotropic part of the deformation potential: 
A = A ,  - (A,). In deriving this expression the electric 
field is excluded because of the electrical neutrality condi- 
tion; the inertial term and the corrections to the deformation 
potential made in passing to the laboratory reference system 
are small in the resonance region and are ignored. 

Since we are going to discuss the evolution of a short 
wave packet of Eq. ( 11, we shall find using the following 
collisionless transport equation 

idt;= [i, ;I, i=eI l  (P,, px) +A(P,, 01 a ,~ .  (5 

The interaction with sound in the Hamiltonian of this equa- 
tion is included using the same approximations as those em- 
ployed in dealing with the force of Eq. (4) ,  and the kinetic 
energy operator E, ,  (p,, 8, ) is obtained by expanding the full 
dispersion law in terms of small quantities p, -q (p , :  

e ( P I  =&I (PI, 0 )  +€I, ( ~ l r  PX) . 
Relaxation of the electron nonequilibrium resulting from 
the interaction with sound occurs far from the packet and its 
details are important only to the extent that they affect the 
distribution of electrons which return to the resonance re- 
gion. If we assume that these electrons have managed to re- 
lax completely before returning to the resonance region, we 
can formulate the initial equilibrium condition for Eq. (5): 

~ ( p , ;  x, XI. -m) = j d~~~~(n,(e,+e,~)explip~(~-x~) I .  ( 6 )  

The formal solution of Eq. (5)  satisfying the initial condi- 
tion (6)  is 

i (P,; x, xi ,  t )  = j dp=nP (r,+cll) + (P.; x, t )  +. (P,; x r ,  t ) .  

is the solution of the wave equation with the Hamiltonian 
( 5 ) .  

For a constant sound amplitude the exact resonance 
condition is 

It is convenient to rewrite it, by inverting the function 
E~~ ( px 1, which yields an equation for the energy E of an elec- 
tron in a reference system linked to an acoustic wave: 

P+ ( E )  -p- (€1 =q,  e = ~ , , - p ~ s ;  (8)  

For simplicity we shall assume that the scattering is of the 
single-channel type. Reducing the Hamiltonian of Eq. (5) to 
the stationary form by the Galilean approximation, we shall 
seek its wave functions in the direct vicinity to the exact 
resonance SE 4 E,, where En is the solution of Eq. ( 8 ), in the 
form 

9, (5, t) = (Axe'P*X+Bxe'P-X) e-lea' , x=* 4, ( 9 )  
where A(x,t) and B ( x , t )  are slowly varying functions satis- 
fying the initial conditions in the limit T -  - w : 

A- ( x ,  -00) =0, B- ( x ,  -m) =exp (itip-X-irSet) ; 

6px=8~lv",, i?x=v,-s=d~/dp,. 

Retaining the representation of the wave functions in the 
form of Eq. (9) in the case of slow variation of the amplitude 
of sound described by Eq. (3 )  and substituting it into the 
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wave equation, we find that (after averaging over the fast 
variablex) the result is the following system of equations for 
the coefficients A and B: 

It is clear from these equations that the requirement that A 
and B vary slowly is equivalent to the inequality A Uo (qb,, 
which implies that the width of the first resonance is small 
compared with the separation between this resonance and 
the next one, and is the condition associated with the quan- 
tum nature of the problem. At high amplitudes the reson- 
ances overlap and the problem becomes semiclassical. 

Collecting Eqs. (7), ( 9 ) ,  (4),  and (3) and substituting 
them into Eq. (2),  we find that averaging with respect to the 
fast variable yields the following equation for the complex 
amplitude Uo: 

where the index j labels the solutions of the system ( 8). 
Equations ( 11) and ( 12) represent the complete sys- 

tem of resonance-approximation equations describing non- 
linear evolution of a short pulse of longitudinal sound propa- 
gating in a metal. The initial conditions of Eq. (10) 
correspond to the problem of a pulse in infinite space. In a 
real experimental situation we have a half-space at the 
boundary of which a signal of given shape 

Uo(x=O)=f(t), f (*m)=O 

is excited and the conditions for A and B of Eq. ( 10) are still 
specified in the limit t -+ - w only for electrons with v ,  < 0 
moving from the interior of the metal to the surface; these 
electrons are scattered on the surface and no longer partici- 
pate in the resonance. On the other hand, electrons with 
v, > 0 reach the resonance region as a result of elastic scat- 
tering of equilibrium nonresonant electrons on the surface of 
a metal; the condition (10) for these electrons retains its 
original form but it now applies at the x = 0 boundary. 

In the linear approximation the process of pulse evolu- 
tion simply represents the Landau damping effect. Lineari- 
zation of the equations about the ground state of Eq. ( 10) 
and the usual application of the Laplace transformation 
yields the following result in the limit x-+ w : 

Allowing for the nonlinearity we find that the asymptotic 
behavior of such an acoustic pulse is more complicated: un- 
der certain conditions it can transform into a soliton or a 
group of solitons which represent the exact solutions of the 
problem described by Eqs. ( lo)-( 12). The necessary condi- 
tions for the existence of soliton solutions are easiest to de- 
rive from an analysis of a model system of equations describ- 
ing the interaction of an acoustic pulse with the only pair of 
electron degrees of freedom. 

2. THREE-WAVE MODEL 

This model is obtained by formal replacement of the 
Fermi function in Eq. ( 12) with the S function, which selects 

one value from the set of the phase parameters St, p, , x and j: 

The system ( 14) consists of equations knownfrom the theo- 
ry of solitons: it is exactly integrable and describes three- 
wave interactions (Ref. 14)." The conditions for the exis- 
tence of the soliton solutions can be found by considering the 
simplest one-soliton solution which is readily found by di- 
rect integration. 

We shall seek the self-similar solution which depends 
on a variable c = x - fit and which contains a real function 
a([) that decreases at infinity. Substitution of a variable 

c 

reduces the first pair of the equations in the system ( 14) to 
two identical equations for A and B 

from which it follows that the nature of the electron ampli- 
tudes depend strongly on the sign of R2: when this sign is 
negative, the amplitudes rise exponentially, but for the posi- 
tive sign the amplitudes oscillate. The solution for @ which 
decreases at infinity can exist only for an oscillatory solution 
of Eq. ( 16). It follows that solitons moving at low velocities 
Ibl < Ib, ( can exist only if b+b- > 0. We can easily see that 
the dispersion law t( p, ), which can ensure that this condi- 
tion is satisfied, should have an even number of extrema 
between the points p+  and p-  of Eq. (8), i.e., it should be 
nonconvex. At high soliton velocities there are no limita- 
tions on the electron spectrum. In the usual formulation of 
the problem of nonlinear attenuation of ~ o u n d , ~ . ~  postulat- 
ing that @ = const and 5 = 0, and that the dispersion law is 
quadratic with b+b-  < 0, we see that the condition R2 < 0 for 
exponential growth of the solutions of Eq. ( 14) is satisfied, 
and this gives rise to an acoustic gap in the resonance region. 

The solution of Eq. ( 16) is governed by the initial con- 
dition ( 10) and depends on x. Let us assume that SZ = 0 and 
x = - 1. In this case the initial conditions A- (0)  = 0 and 
B-(0) = 1 correspond to a stable homogeneous solution 
with @ = 0, and they yield an inhomogeneous solution of the 
type 

B-=cos 520, A-=-iSZ(i7-+)sin Q0. (17) 

Substitution of this solution in the third equation of the sys- 
tem ( 14) gives 

the solution of which exists if b ( b +  - 8) > 0. A comparison 
of this inequality with R2 > 0 obtained earlier yields the fol- 
lowing system of conditions: 

It therefore follows that only a "slow" soliton can exist 
above a stable ground state. 

This solution models a general situation in the initial 
equations in the case of an uninverted electron distribution. 
An inverted distribution corresponds to the case x = + 1, 
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when similar calculations yield a different system of condi- 
tions: 

The above inequalities admit a "fast" soliton, which is com- 
patible with an arbitrary electron dispersion law. 

3. ONE-SOLITON SOLUTION OFTHE COMPLETE SYSTEM OF 
EQUATIONS 

The existence of a soliton solution of the complete sys- 
tem of equations ( 10)- ( 12) presupposes a matching of the 
electron degrees of freedom such that after the passage of an 
acoustic pulse all of them recover the initial state; in other 
words, the soliton shape should correspond to the nonreflec- 
tion potential of Eq. ( 1 1 ). As in the case of the Schrodinger 
equation, the nonreflection potential in Eq. ( 1 1 ) exists for 
all the values of the mismatch SZ and both signs of x; mode 
locking with different values of v, and A is impossible. 
Hence, we obtained an additional restriction on the possibil- 
ity of appearance of an acoustic soliton: the resonance veloc- 
ities and the component of the deformation potential respon- 
sible for the interaction should be isotropic in respect of the 
transverse quasimomentum, and Eq. (8)  should have just 
one solution. 

Within the limits of these restrictions the system of 
equations ( l o ) - (  12) has a representation which is standard 
for exactly integrable systems and represents a commutation 

h A 

relationship [ 2, ,2, ] = 0 for two linear operators of the 
typeI4 

A 

Zz=- ia,+U+hf, &t=-idt+~+hf.  (21 

The matrices occurring in these operators act in the space of 
infinite-dimensional vector functions of the type 

where the first and third elements are scalar functions and 
the second element, separated by the Dirac bracket, repre- 
sents two consecutive infinite series of elements labeled by 
the variables ( x  = + 1, Sp,) and ( x  = - 1 ,  Sp- ).2' when 
this notation is adopted, the explicit form of the matrices in 
Eq. ( 2 1 )  is similar to the matrices in the usual three-wave 
problem'3: 

In the algebraic operations the products of the blocks within 
the Dirac brackets can be expanded in accordance with the 
rules 

The system ( 2 2 )  is written down for the case of interest 
when 5 ,  5- > 0;  in the nonsoliton case 5+5- < 0 the repre- 
sentation described by the system ( 2 2 )  is still valid when thz 
sign%of the elements of the first columns of the matrices U 
and V are reversed. 

It is worth noting that the representation given by the 
system ( 2 2 )  becomes invalid when the velocities are identi- 
cal: 5 ,  = a_ .  The existence of this singularity follows also 
from the expression for the linear attenuation coefficient of 
Eq. ( 13 which becomes infinite for identical velocities. For- 
mally, this divergence can be compensated by assuming that 
the resonant phase volume in gZ vanishes; in this case after 
going to the limit the system ( l o ) - (  12) becomes equivalent 
to the equations for the optical SIT. A realistic example of 
such degeneracy of the generalized three-wave structure of 
Eqs. ( l o ) - (  12) is a semiconductor near its threshold. '' 

The existence of the representation described by Eqs. 
(21 ) and ( 2 2 )  allows us, in principle, to obtain all the soliton 
solutions ( l o ) - (  12) by the inverse scatterinimethod. The 
technique used to obtain these solutions with the help of one 
of the variants of the "dressing" method,I4.l6 is described in 
the Appendix by considering the examples of breather and 
two-soliton solutions. The one-soliton solutions can be ob- 
tained by a less cumbersome method using the McCall-Hahn 
factorization ansatz.' 

Bearing in mind that in the one-soliton solution the 
quantity cP is a function of just one variable ( and assuming 
the absence of phase modulation, we go over in Eq. ( 1 1  ) to 
the stationary equation 

In solving the system ( 2 3 )  we follow Ref. 1 1  and replace the 
complex two-component vector ( a , b )  with a real four-vec- 
tor y  = ( yo ,  y, , y,, , y, ), which is composed of bilinear com- 
binations of the components of the vector ( a , b ) :  

In terms of the vector y the system ( 2 3 )  can be rewritten as 
follows: 

where the following notation is used for the sake of brevity: 

The initial conditions of Eq. ( 10) for the vector y  become 

Following Ref. 7, we represent y,, in the factorized form 
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ru=f (bx)a,@; (28) 

then, Eqs. (25) subject to the initial conditions of Eq. (27) 
yield expressions for the remaining components of the vector 
7': 

~,=6J(6,)@, rz=x/2+wf(6,)@2, 

Substitution of the solution described by Eqs. (28) and (29) 
into the identity (24), which is satisfied by y,, and separa- 
tion of the variables in this identity gives two equations for 
finding the functions f(S, ) and (7): 

Equation (3 1 ) has solutions which vanish at infinity only if 

Q2>o, D = - d 2 c o .  (32) 

Going back to the variable f, we obtain 

The dispersion equation for the soliton velocity tr is obtained 
by substituting the solution described by Eqs. (28)-(30), 
subject to the definition of Eq. (24), into Eq. ( 12): 

In this expression the Fermi function, which depends 
smoothly on the mismatch, is taken outside the integral with 
respect to S t  in accordance with the main initial assumption 
that the resonance is narrow [Eq. ( 1 ) 1. The contribution to 
the right-hand side of Eq. (34) originating from yx of Eq. 
(29) then vanishes (in this approximation) because yx is 
odd in of S,,, which justifies the assumption of no phase 
modulation. Integrating Eq. (34) and bearing in mind Eq. 
( 13 ) for the linear attenuation coefficient, we obtain 

i?='12rL sign(&-Z). (35) 

The solution of Eq. (35) exists only if 

F(c,-c) >o, 
which together with Eq. (32) reproduces the conditions for 
the existence of a soliton above the stable ground state of Eq. 
( 19), which is obtained in the three-wave model framework. 

We shall now rewrite the final expressions for the soli- 
ton characteristics [Eqs. (33) and (35)] by introducing the 
soliton velocity in the laboratory reference system u = b + s 
as well as the duration on the lifetime T = L /u: 

1 
m=mmch-i[f ( t  -')I, m,,, =- 

TQv ' 

Figure 1 plots the soliton amplitude and velocity as func- 
tions of the lifetime. 

4. DISCUSSION OF RESULTS 

The acoustic soliton of Eq. (36) resembles a 2n- pulse 
considered in the optical theory of the SIT effect6: it has the 

FIG. 1. Dependence of the velocity 
(a) and amplitude (b) of an acoustic 
soliton on its duration. Curve 1 in 
Fig. la corresponds to u f > s and 
curve2tou+ <s. 

same spatial configuration and for u, <sits velocity depends 
in the same way on the duration. However, there are also 
some qualitative differences. There is a maximum lifetime 

where u, is the value of u, closest to s, and supersonic veloc- 
ities are permissible. These features follow directly from the 
inequalities of Eq. ( 19) and are due to the electron transport 
mechanism for the soliton energy: in the time during which 
the energy of the leading edge of a pulse is transferred to 
electrons and is returned by electrons to the trailing edge, 
electrons manage to travel a certain distance. Therefore, in a 
reference system linked to an acoustic wave a soliton moves 
in the same direction as the electrons and its velocity cannot 
exceed the electron velocities. It therefore follows that if a 
resonant pair of electrons overtakes an acoustic wave, the 
soliton will move at a supersonic velocity, but if such a pair 
lags behind an acoustic wave, then the soliton velocity will be 
subsonic; the limitations on the soliton velocity are commu- 
nicated through the dependence v ( T )  of Eq. (36) to the 
soliton pulse length. Since the characteristic velocities of res- 
onant electrons in a reference system moving with an acous- 
tic wave are of order q /m,  the deviation of the soliton veloc- 
ity from the velocity of sound at frequencies close to the limit 
of w - 10" s-' can reach a value on the order of the velocity 
itself: 

The conditions under which acoustic solitons can exist 
impose certain restrictions on the material and on the pa- 
rameters of an acoustic signal. The main requirement on the 
material, which follows from the preceding sections, is that 
its dispersion law should have the following properties: the 
velocities of electrons in a resonant pair should have the 
same sign in a reference system moving with the sound; all 
the existing resonance pairs should have identical character- 
istics (in terms of the transverse quasimomentum, identical 
and isotropic longitudinal velocities and isotropic compo- 
nent of the deformation potential which is responsible for 
the interaction). 

We shall now consider an electron spectrum which has 
all these properties. We shall assume that the constant-ener- 
gy surfaces near the Fermi level are spherical and that a ring- 
shaped trough with a characteristic transverse size -q  ap- 
pears along the meridian of a constant-energy sphere. This 
trough should be oriented at right-angles to the direction of 
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FIG. 2. a )  Longitudinal dispersion law of resonant electrons in a refer- 
ence system linked to an acoustic wave. b )  Pair distances along the 
horizontal between all the points of the graph 8( p, );pairs of points with 
the same sign of the derivative correspond to the sections ab and cd, and 
the thick segment on the abscissa identifies the interval of the allowed 
wave vectors. 

propagation of sound. Then, the function E~~ ( p, ) in Eq. (5)  
can be regarded qualitatively as having the configuration of 
a biquadratic parabola ap: - flp; ; Fig. 2a shows a plot of the 
corresponding function 2 ( p, ) of Eq. ( 8) in the case of a 
filled Fermi surface. Figure 2b gives pair distances along the 
horizontal between all the points in the plot representing 
E( p, ); this plot makes it possible to determine, for a given 
value of q, all the resonant pairs by applying Eq. (8).  In the 
sections ab and cd the resonance velocities have the required 
identical sign, but the condition of uniqueness corresponds 
only to the section cd characterized by v, > 2. Therefore, if 
we select the wave vector of sound inside the interval corre- 
sponding to the projection of the section cd on the abscissa, 
we obtain a supersonic soliton. In reality, this situation is 
closest to a semimetal with a small dumbbell-shaped Fermi 
surface. 

The condition that the pulse length should be short 
compared with the mean free time of electrons [Eq. ( 1 ) ] 
imposes stringent requirements on the purity of a metal or 
semimetal: even in the case of hypersound with w- 10"- 
10" s-' the electron collision time should not be less than 
7- 10-8-10-9 s. The amplitude of a pulse injected into a 
metal sample should be long enough so that a soliton can 
form: the amplitude should be of the order of Rqu - 1/T; on 
the other hand, the amplitude should not be so high that the 
quantum nature of the interaction of sound with electrons is 
lost: Rqu &q2/m. The other condition is compatible with Eq. 
( 1 ) if q2/m $ l / r .  
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APPENDIX 

A Th2 existence of the commutation representation 
[YX, Y,] = 0 of the investigated nonlinear equation 
makes it possible, in principle, to solve the Cauchy problem 
using some modification of the inverse scattering method 
because of the one-to-one correspondence in the associated 
problem 

between the dependence of the scattering data on the spec- 
tral parameter and the coordinate dependence of the poten- 
tial matrix. 

We limit ourselves to constructing particular solutions 
of the soliton type using the system (lo)-( 12) and the var- 
iant of the method which makes it possible to construct solu- 
tions of this type from the initial $ata by algebraic proce- 
d u r e ~ . ' ~ . ' ~  The potential matrix U, corresponding to N 
soliton solutions of the initial system, gives rise to eigenfunc- 
tions in the associated problem and these eigenfunctions as 
functions of the spectral parameter R have only pole-type 
singularities. Bearing this point in mind, we represent the 

A 

fundamental matrix \V of the solutions of the system (A1 ) in 
the form 

h 

where \Yo is the fundamental matrg of thyolutions of "free" 
equations in which the matrices Uo and Vo are obtained by 
substituting in Eq. (22) the initial values of the functions A, 
B and @ in the limit t = - m [Eq. ( lo ) ] .  It should be 
stressed that these maFices contain nonzero elements. 

The equation for S, which follows from Eqs. (A1 ) and 
(A2) in the lipit R m ,  determines the algebraic relation- 
ship between U and Ai: 

N 

and its residues at the points ili yield a system of equations 
for the determination of Ai : 

It therefore follows that the selection of the pole dependence 
(A2) of the eigenfunctions ( A l )  on the spectral parameter 

h 

determines the coordinate dependence of A,  and, on the basis 
of Eq. (A3), also the 2N-parameter solution o i  the initial 
problem. The existence of one imaginary pole S ( R )  corre- 
sponds to the solution (36) given in the text above. We shall 
now find the explicit solution for the casezf two~oles .  

Using the symmetry of the matrices U and V, 

we can ea~ily~demonstrate that the fundgmental matrix of 
the solutions \V and, therefore, the matrix S have the proper- 
ty of B unitarity:. 

S - ' ( A ) - - B ~ + ( Y ) B .  (A61 

which means that ifR, is a pole of?(/2), then R is zero. Let 
us assume that 

and that A^, is a bivector3': 

Ai=zi@xi+B. 

It then follows from Eqs. (A2), (A7), and (A8) that 
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A direct check shows that if x ,  satisfies the "free" equations 

I 
gl*&O$ Pot(~:)xi=o, (A101 

theni ;  of Eq. (A9) satisfies the system (A4) and the matrix 
&A 7 )  of Eq. (A2) satisfies the condition (A6). 

We can find the solutions of the "free" equations (A 10) 
by rewriting the first of them in terms of c2mpon~nts and 
utilizing the explicit form of the functions U and V of Eq. 
(22) and the initial conditions of Eq. ( lo):  

We can easily see that the system of equations separates into 
two independent subsystems, ofwhich one couples $,,, to the 
first half of the block I$o2) corresponding to x = + 1, while 
the second couples to the second half of the same block 
corresponding to x = - 1.  The dispersion equations for the 
subsystems are 

Similar dispersion relationships are also obtained for the sec- 
ond equation in Eq. (A10). The soliton solutions of the ini- 
tial equations are obtained if we select the vector xi as a 
linear combination of independent solutions of Eq. (A10): 

xi=aiYo +(h;)+brYo -(hi'), 

yox (h) = exp [iq, (X - F,t)  - ihG+G-t] 

I (px (% I )  >=ap(i+x)'2  exp [ -i6p. (~-5,t)  1 L . ) ,  

where aj and b l are arbitrary constants. 
Substituting Eqs. (A12) and (A13) into Eq. (A9), we 

find with the aid of Eq. (A3) that the potential @ represent- 
ing 

can be described by the following final expressions. 
1.  In the case of a breather characterized by A, = 

- A * , a ,  =a , ,  b ,  = b,, wehave 

cD=4@,c'" ch Xi  COS Xz cos cp-sh X ,  sin X ,  sin cp 

ch 2X,+c cos 2Xz  9 

2. A two-soliton solution characterized by Ri = - R t 
has the potential 

c ,= (p++p- )  Ot(D2, c ~ = 2 0 ' ( 9 z  cos (p, 

In Eqs. (A14) and (A15) the quantities Xoi and g, are con- 
stants, Qi = @, ( Ti ), and vi = v( Ti ) is described by the ex- 
pressions in Eq. (36). We can easily show that Eqs. (A15) 
and (36) are consistent: when solitons travel to infinity a 
two-soliton configuration should split into two independent 
solitons. In fact, in the limit X I - .  GO or X2+ GO,  (A15) re- 
duces to Eq. (36). 

"The difference between this problem and the usual formulation of the 
three-wave problem, which gives different soliton solutions, is due to the 
assumption of a nonzero ground state of Eq. ( 10). 

''The idea of this representation was put forward by A. V. Mikhanov. 
3'Here, the symbol 8 denotes a tensor product. 
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