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We consider stationary nonequilibrium states induced in the superfluid phases of 'He by phonon 
pumping at frequencies lower than the average pair-binding energy and far from the resonances of 
the collective triplet-condensate modes. The kinematic exclusion of the phonon single-particle 
absorption channel in He-3 interfers with the simulation mechanism known from 
superconductivity physics. Superfluidity can nonetheless be stimulated by phonon-absorption 
events in which several Fermi excitations participate. The calculations are performed for both the 
Band A phases of He-3. For the latter, account is taken of "competing" production of excess 
excitations by phonons via direct condensate-pair breaking. The stimulation is found to 
predominate at low frequencies, so that phonon emission can induce an A-B phase transition. 

1. INTRODUCTION 

The superfluidity of helium-3 is akin to electron super- 
conductivity in metals, but stimulation of the order param- 
eter in %e has been so far neither explained theoretically nor 
studied experimentally. Such a study is hindered by certain 
fundamental differences between superfluid 'He and super- 
conductors. These interfere with direct use of the known 
results of superconductivity physics for analyzing the situa- 
tion in helium-3, and have prompted our present study. 

The stimulation effect is strongest in a superconductor 
acted upon by a high-frequency electromagentic field.'.' For 
a neutral Fermi liquid such as 'He, the analog of electromag- 
netic pumping can be pumping by sound. "Sound" means 
here high-frequency or "zero" sound of frequency w, higher 
than the Fermi-excitation damping rate; these sound quanta 
can be regarded as longitudinal phonons subject to acoustic 
dispersion.' Gap stimulation in acoustic pumping of a super- 
conductor was considered in Ref. 4. Why is this theory not 
applicable to superfluid 'He? The point is that the zero- 
sound velocity in 'He is significantly higher than the Fermi 
velocity, and this closes the single-particle relaxation chan- 
nel for phonon absorption." Yet it is precisely through this 
channel that the usual stimulation proceeds in superconduc- 
tors (for phonon-electron  interaction^).^ 

Bearing the foregoing in mind, we pay principal atten- 
tion here to the mechanism of phonon absorption in super- 
fluid 'He when several Fermi excitations take part. I t  is just 
this mechanism which predominates in the normal state." 
There are two more substantial sound-absorption channels- 
Cooper-pair breaking and buildup of collective triplet-con- 
densate modes in 'He with superfluid ordering. At frequen- 
cies w, comparable with the pair binding energy both 
absorption mechanisms can predominate over the multipar- 
ticle one.h Under certain circumstances, however, the multi- 
particle channel prevails. Thus, collective-mode excitation 
is resonant. Far from resonances we can disregard phonon 
absorption by collective modes (study of this mechanism as 
a source of the departure from equilibrium would in itself be 
of considerable interest). As for absorption with pair break- 
ing, it has a threshold in the pseudo-isotropic (B)  phase and 
is absent for w, < 21 A 1 ,  where I A 1 is the gap in the single- 
particle-excitation spectrum. In the axial (A) phase this 
threshold is indistinct (since the gap has "punctures" in mo- 
mentum space), and the mechanism of absorption with pair 

breaking must be analyzed on a par with the multiparticle 
mechanism. 

To  study the stimulation effect in superfluid 3He it is 
necessary to obtain first an expression for the source of the 
departure from equilibrium in a system of single-particle ex- 
citations. It is convenient to do this by using a quantum de- 
scription of the high-frequency sound field. In the kinetic 
equation for single-particle excitations, the operator for fer- 
mion collisions with external-field quanta is given by 2' 

where 

is a propagator describing the superfluid state of the Fermi 
liquid.x-" The trace in ( 1 ) is taken over the spin indices a 
and 8. The self-energy matrix 

which corresponds to fermion scattering by phonons, con- 
tains the phonon Green's function, which we express in the 
form 

bearing in mind that the average phonon occupation 
numbers Ncoq are determined in this equation by the electric 
field. The functions NCd4 and D, (q) specify the reason for 
the equilibrium departure from in fermion-boson collisions. 
The subsequent transition to the classical limit for Bose 
fields can be made in ( 1 ) and (3 ) ,  as usual, by putting 

We derive in Sec. 2 an expression for the collision inte- 
gral in a multiparticle channel for phonon-emission absorp- 
tion. The cause of the departure from equilibrium in 'He-B is 
discussed in Sec. 3. The stationary states resulting from 

756 Sov. Phys. JETP 68 (4), April 1989 0038-5646/89/040756-07$04.00 @ 1989 American Institute of Physics 756 



phonon pumping are considered in Sec. 4, where the possi- 
bility of stimulating the order parameter in a pseudo-iso- 
tropic phase is demonstrated. An analysis of the same pro- 
cess in the axial phase, with allowance for direct production 
of excess excitations when a Cooper pair is broken by a 
phonon is carried out in Sec. 5. 

2.ZERO SOUND AS A SOURCE OF DISEQUILIBRIUM 

To calculate the self-energy expressions in ( 1 ), which 
correspond to fermion pair collisions with participation of a 
phonon, we use the techniques of analytic continuation of 
diagrams drawn in the discrete-imaginary frequency repre- 
sentation. The graphs we need are of the form 

By running through the possible intersections in (5)  with 
four lines and taking into account in them the dependence on 
the imaginary frequencies, on the superfluid ordering pa- 
rameters, and on the phonon field, we obtain the diagrams of 
Fig. 1. The presence of a superfluid condensate in the system 
leads to the matrix structure of Z [see (2)  1. The contribu- 
tion made to 8, by the first diagrams of Fig. 1 is shown in 
Fig. 2. In the discrete-imaginary-frequency representation 

h 

we can write for the elements of the matrix Z (we omit the 
spin indices, which are still immaterial) 

n , ~ ,  P -K)  =T' JJJ d3pi d3p2 d3ps 

e ~ e ~ e l  ( 2 n )  

The arguments in (6)  were chosen in symmetric form, and 
then the 4-momenta of the phonon propagator are defined as 
P 4 = P - P I - P 2 - P 3  and K 4 = K - K l - K 2 - K , .  The 
quadratic forms for the amplitudes X and Yare 

In Eqs. (7)  W, is the effective fermion-fermion collision 

FIG. 1. Diagrams corresponding to the self-energy part ( 1 ). A wavy line 
corresponds to a fermion-ferrnion interaction potential, and a dashed line 
to a phonon propagator. 

FIG. 2. Diagrams, corresponding to the first sk~leton diagram of Fig. I ,  
for the Z ,  component of the self-energy matrix 8. 

potential defined with account taken of the single-phonon 
processes. 

We transform now from expressions ( 6 ) ,  written in the 
discrete-imaginary-frequency representation, to expressions 
on the real axis using the Gor'kov-Eliashberg technique.'* 
To this end we consider the N th  order perturbation-theory 
diagram as a function of the complex variable E for fixed 
imaginary frequencies of the field vertices. For each frequen- 
cy the analytic continuation should be from the upper half- 
plane to the real axis. It can therefore be assumed that to this 
diagram there correspond cuts located between the lines 
I ~ E  = 0 and Im(& - w )  = 0 in the upper half-plane: Setting 
the Green's functions in (6)  in correspondence with the sets 
of cuts 

we transform the sum over the frequencies into a triple inte- 
gral. Since the direction of the arrows does not influence the 
analytic continuation, we rewrite ( 6 ) ,  leaving out the irrele- 
vant symbols, in the form 

where the integration contours enclose the poles of the hy- 
perbolic tangents. Further stage-by-stage transformation of 
(8)  into integration along the real axis leads to 

. d z ,  dz, d z ,  '= \ !! (4niI3 (C i , v , i  6i ( ~ z . + , , , )  6, ( ~ , t m , , )  ~i ( ~ + m , , )  

-2 x 6, (D-,at, oth 4 l l]  cth 3 2T th  

+ G ~ t z . - ~ , ~ - ~ ~ ~ - m ~ , ~ , S ~  (Gz2-zItmIk) 
h', l , n l  
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The external variable E and the field frequencies have re- 
mained imaginary here. Continuing (9) with respect to E 

from the regions I ~ ( E  - 0) > O(Ime < 0)  and then with re- 
spect to all the frequencies from the upper half-plane, we 
obtain for CR'A' the expression 

Using for Z the definition 

where 0, is a certain combination of field-vertex frequen- 
cies, we get from (9) 

The expressions for the quantities ZR'A' and X that de- 
termine the collision integral follow from ( 6 )  when account 
is taken of ( 10) and ( 12). Before presenting the results, we 
integrate in (6)  over the variables 6 = u, ( p  - p, ); this pro- 
cedure is allowed because of the short-range character of the 
effective interaction, which permits the amplitudes X and Y 
to be regarded as dependent only on the angles. We can 
therefore write3) 

whereg i%the quasiclassical Green's function.' Defining the 
operator L as 

and restoring the previously omitted symbols, we represent 
the results in the form 

Substituting ( 15) in ( 1 ) and using the factorization of the 
Green's functions of the superfluid state 

(here n, is the nonequilibrium distribution function of the 
single-particle excitations, IAl = /A,  I is a (generally speak- 
ing) anisotropic gap in their spectrum, and d is the anisotro- 
py vector) we get the collision integral that will serve. as 
stipulated in Sec. 1, as the source of single-particle excita- 
tions in the fermion system. 

3. PROPERTIES OFTHE SOURCE OF THE DEPARTURE FROM 
EQUILIBRIUM 

In the pseudo-isotropic B phase the spectrum of the sin- 
gle-particle excitations is isotropic with a gap IAp (, which is 
independent of the direction of the momentum p. The anisot- 
ropy vector d in the B phase can be chosen in the form d = p/ 
p,. The collision integral is then 

- ( 1  - n1) N w , ]  6 ( E  - E l  + E 2  + F 3  + 6)q)) 

+ ( P  + P I  + P ,  + P, - q) [ ( I  - n) 
X ( 1  - n,) ( 1  - n,) (1 - n,) NwY 

- nn,n,n3 ( N O 4  + 1)16 ( E  + E l  4- E2 + € 3  - 4 1 .  

The factor M, in ( 18), which is a combination of interaction 
potentials, state densities, and coherence factors, is equal to 
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where 

Us = 
IeIe(&2-IApIz) , v e  = 

IAple(~~-lApI~)  
sign E. 

(e2- I Ap  1 = ) I h  (E2- I Ap 1 2, 

The expressions for' the other factors M,, are similar to 
(19), where the momentum and frequency variables are ar- 
ranged in accordance with the following rules: 

M2=MI(P, -Pi, -Pzl P3) 

+Ml(P, P2, -PI, P3)+ Mi(P, p3, -PI), 
Ms=Mi(P, Pi, -Pz, -P3) (21) 

+Ml(P, -Pz, Pi, -PS)+Mi(-P, -P3, -Pzr Pi),  
M,=Ml(P, -Pi, -Pz, -P3), P=(p, E ) .  

We assume next that wq / A ( .  It can be concluded in this 
case that the J'f-f-ph terms proportional to the factor M ,  
make up the distribution function n, for E) 3 ( A  1 .  The terms 
proportional to M, and M, cause the distribution function to 
depart from equilibrium for E> I A  1. Participating in the ele- 
mentary events described by the terms with M, are three 
excitations with energies E > ( A ~  and one excitation with 
E> 3 1 A  1. The processes described by the terms proportional 
to M, correspond to (four) particles with energies &>(hi. 
No terms with M, appear for w, < 41 A  1. 

Assuming monochromatic phonon emission, we define 
the wave vector of the external phonon field 

N,, = N,;6 (q - q o ) .  (22) 

Since we are interested in the action on 3He by radiation of 
frequency w: & I A ( ,  we can assume that the dominant contri- 
bution to the distribution function n, is made by that part of 
the collision integral ( 18) which is proportional to the factor 
M,. Retaining in ( 18) the group of terms that make the main 
contribution, we express the source of the departure from 
equilibrium ) 

under condition (3)  in the form 

where 

with the quantities xi and y, in (24) defined by 

In the last expression the S function restricts the integration 
over the angles. Noting that the momentum of an (external) 
phonon of frequency & IA( & E ~  is much smaller than p, 
and leaving q, out of the argument of the S function, then the 
quantitiesx, (yi ) for the B phase of 3He become constants. If 
the applied fields are not too strong, we can assume the 
source Q(n, ) of the departure from equilibrium to contain 
Fermi excitations with equilibrium distribution functions: 

Let us examine the properties of such a source, assuming the 
parameters ( A ( / T  and w:/(Al to be small. 

Note that the expressions in the curly brackets of (23) 
vanish (by virtue of familiar trigonometric identity) if the 
frequency w i  is neglected in the arguments of the S func- 
tions. We use this circumstance for the subsequent transfor- 
mations. We integrate in (23 with respect to some variable, 
say E ~ .  Expanding next in terms of w: and using the identities 

the validity of which can be verified directly, we get 

where 

The term proportional to (U- - U,) in (25) differs from 
zero if E- 1 A  1 .  At the same time, the part proportional to 
Z -  + Z +  is defined in the wider region E- T. In addition, 
the second of the foregoing terms has an additional small 
factor in terms of lAl/T. Recognizing that the function 
m , ,  (E, E ~ ,  E ~ ,  E ~ )  is negative-definite4) for the argument val- 
ues E, - / A ( ,  we see that the function Q(E) is negative for 
values directly above the gap, where &-mi .  For larger E the 
function Q(E) is positive. It becomes exponentially small for 
E %  T. 

4. STIMULATION OFTHE SUPERCONDUCTIVITY OF 3He-B 

We can now consider stationary and spatially homoge- 
neous solutions of the kinetic equation for the single-particle 
excitations. In this case the kinetic equation is written in the 
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form 

O=Q(n,)+J(f-f' (n,) .  (28) 

Here J(f-n (n, ) is the inelastic collision integral of the exci- 
tations in 3He-B, which is responsible for relaxation to equi- 
librium and, finally, a stationary state. The expression for 
this collision integral is well known (see, e.g., Refs. 10 and 
13), and for brevity J'f-n (n, ) is not given here explicitly. 
For low-intensity fields, a linearized solution of the kinetic 
equation suffices. We can use here the Q(n, ) properties de- 
termined in the preceding section. The fact that the source of 
the departure from equilibrium breaks up into two groups of 
terms, one localized with respect to E near above-gap values 
and the other (smaller in size) in the temperature-spread 
region, allows us to assume that a similar breakup in the 
linearized approximation for the change of the Fermi-excita- 
tion distribution function: 

To calculate the local part Sn; it suffices to use in (28) the 
relaxation-time approximation for J' f-n (n, ) : 

where ya T2/&, is the excitation-energy damping and de- 
pends little on E when E- lA( .  From (30) and (28) an 
expression for the "local" increment Snt follows directly: 

This expression must be substituted in the self-consistency 
equation, which for the B phase has the same form as the 
BCS equation; as a result we have for the change of the gap 

As to the function Sn:, the relaxation-time approximation 
for J 'f-n ( n ,  ) in (28) is insufficient for its calculation. High- 
er accuracy, however, is unnecessary, since the function Sn; 
is smaller than 6n: by a factor IAl/T, and this smallness is 
not offset by the integration with respect to E in (32). We 
shall therefore neglect in the source ( 18) of the departure 
from equilibrium the contribution of the "tail" of the excita- 
tion distribution function, i.e., the contribution connected 
with Sn:, and also the contribution due to other terms (pro- 
portional to the factors M ,,, which are also smaller by a 
factor I A l/T). 

Let us verify that when (31), (25), and (26) are substi- 
tuted in (32) the correction to the gap is positive. Recogniz- 
ing that in the expression resulting from this substitution the 
integration is sensitive to the values E ,  - I A 1, and retaining in 
this expression the functional dependence on E, only in the 
factors that have singularities in the principal order in 
wi/lAl, we get 

where, in the approximation assumed, 

Noting that the integral with respect to E, in (33) and (34) 
reduces to quadratures, we express the correction to the gap 
in the form 

The remaining integrals are elementary and their contribu- 
tion is equal to m i .  The final result, after changing to the 
phonon-radiation energy-flux density, which is connected 
with N<4 [Eq. (22)], is 

The stimulation correction to the gap in the B phase is thus 

Substituting in (37) the typical values of the quantities, 
we find that measurable changes of SA (e.g., SA/l A I - 1 % ) 
can be expected at energy flux densities j = uw on the order 
of a watt per square centimeter. 

5. COMPETITION BETWEEN THE PROCESSES IN THE A 
PHASE 

As stipulated in Sec. 1, the presence of "punctures" in 
the gap [A, = Asin 8 smears out the phonon-absorption 
threshold in the axial phase. Consequently, at arbitrary fre- 
quencies w, there is a finite probability of phonon absorp- 
tion with pair breaking. As a result a surplus of fermions is 
excited and suppresses the superfluid ordering parameter. In 
addition, a stimulation mechanism similar to that consid- 
ered in the preceding section acts in the A phase. To ascertain 
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which of the nonequilibrium-action mechanisms predomi- 
nates we shall analyze the influence of the excitation source 
corresponding to direct pair-breaking in the A phase. 

We write down immediately the self-energy parts corre- 
sponding to pair breaking by phonons in the approximation 
(4)  that takes into account only induced processes (cf. Ref. 

11 1, 
OD 

where g2m, is the square of the fermion-phonon interaction 
matrix element. Simple transformations reduce (38) to the 
form 

el = ?,.N,~": -2 6 (p' ,- p - q,) 5 "4"' 

where A = g2(mp,/2a2) is the dimensionless constant of 
the phonon-fermion interaction in 'He. Substituting the 
self-energy parts of (38) or (39) in ( I )  and recognizing that 
the 'He-A propagators integrated over energy are given by 
Eqs. ( 17) in which now d = const, we obtain for the disequi- 
librium source 

This source, together with an expression of type (25), is 
contained in the kinetic equation (28) for 'He at all frequen- 
cies wt  . In the linear approximation, the correction due to it 
is added to Sn, and is given by a relation of type ( 3 1 ) (here 
IA, I = Asin 0) :  

The self-consistency equation for 3He-A (see, e.g., Ref. 10) 
can be written in the form 

Here V is the pairing potential, fi = p/p,, and f, (p) is the 
orbital part of the function ( f, ),a [Eq. ( 16) ] : 

where 

The vector P is equal to 

where A' and A" are orthogonal unit vectors that define the 

symmetry axis 1 = A' x A". Substituting in (42) Eq. (43) 
with (44) taken into account, multiplying both sides of (42) 
by Y*, and using the relation 

where 0 is the angle between the anisotropy axis and the 
vector p, we obtain an equation that determines the excita- 
tion-spectrum gap for the nonequilibrium function n, : 

From (47) we get after standard transformations a gap cor- 
rection linear in the change Sn, : 

Substituting (41) in (48) and using the smallness of the pa- 
rameter (m:/A) we get 

o.0-A s l n  8 

de = a "(L)', 
-sin)'"[ (to;-E) -A sin 81''' 2 2A. . - 

4 Sl" 8 

Converting to the phonon-radiation energy density, in ac- 
cordance with (36), we get 

We have thus obtained the negative gap correction ne- 
cessitated by direct phonon depairing events in 3He-A. Let us 
compare it with the positive stimulation correction. The lat- 
ter can be found without special calculations, since it suffices 
to obtain its order of magnitude by using the equation de- 
rived in Sec. 4 for 'He-B. Comparing (37) with (50) we 
conclude that stimulation in the A phase can be observed 
(accurate to numerical factors) at frequencies 

the left-hand inequality of ( 5  1 ) being the condition for the 
validity of our analysis. 

Note that stimulation of superfluid ordering in 3He-A 
can lead to an interesting phenomenon. It is caused by stabi- 
lization of the order parameter in the A phase by a paramag- 
non field whose amplitude decreases when the superfluid- 
ordering parameter increases (this is in fact the cause of the 
transition into the B phase14). The stimulated increase of the 
order parameter of the A phase can destabilize the latter and 
force a transition into the B phase, provided, of course, that 
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the stimulation is initiated close enough to the thermody- 
namic limit of the transition. 

"The same is true of photons in superconductors. In the latter, however, 
no kinematic constraints occur usually because many scattering centers 
on present.' 

"We consider here only states with a symmetric population of the parti- 
cle-hole excitation modes, since the unbalance by phonon pumping is 
small by the factor IA~/E, (cf. Ref. 7).  

3'The D-function can be taken outside the integrals with respect to 6 be- 
cause the external and internal momenta in Z are close top,. 

4'Toverify this circumstance we must return to Eq. ( 18) and interpret it to 
mean the collision operator of fermions with the self-field of the 3He 
phonons (i.e., put in (18) N,, = [exp(w,/T) - 1 ] ' ,  where T i s  the 
Fermi-liquid temperature). The channel proportional to the factor M, 
should describe relaxation to equilibrium when the function n, departs 
by a small amount from equilibrium. The positive damping of the excita- 
tion energies leads then to a negative sign of the factor m , ,  . 
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