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We conduct a theoretical investigation of the amplification of phase-modulated ultrashort laser 
pulses, making rigorous allowance for the dispersive properties of the amplifying medium. We 
analyze distortions (during the amplification process) of the amplitude and phase characteristics 
of pulses modulated by a linear chirp. I t  is shown that these distortions are qualitatively different 
for different parts of a pulse. For the trailing part of a pulse, the presence of a chirp leads to a 
synchronous oscillatory modulation of the intensity and instantaneous frequency of the 
radiation, which can be used, in particular, to generate picosecond pulse packets with terahertz 
repetition rates. Upon further amplification, this modulation is smoothed out, and the original 
pulse shape is reestablished, but not the chirp. Analytic calculations are illustrated by 
numerically modeling the amplification of picosecond pulses in a high-pressure CO, amplifier, 
taking into account the rotational structure of the CO, molecule gain spectrum. The existence of 
this structure means that in addition to effects associated with an isolated line, phase modulation 
of the input pulses induces qualitatively new behavior. 

Achievements in the production of high-power laser 
fields have heightened interest in the theory of the amplifica- 
tion of ultrashort coherent pulses, especially those that are 
linearly chirped" at a high rate (the parameter 
kc, = A m t r P )  1, where Amll is the total pulse bandwidth 
and r, is its duration). The amplification of such pulses to a 
level below the self-focusing and breakdown intensity of an 
active medium,,' and their subsequent compression,' en- 
ables one to obtain ultrashort pulses and at the same time 
efficiently tap the stored energy in the amplifier, thus pro- 
ducing ultrahigh-power laser fields. Recent experiments 
have been the first to implement the amplification of chirped 
pulses., There is, however, no corresponding theory. 

Typical gain behavior for ultrashort pulses is due to 
coherent  effect^,^.^ on the one hand, and to dispersion and 
the specific structure of the gain band in the active medium,' 
on the other. A number of novel features associated with 
such structure have been detected during investigations of 
the amplification of picosecond pulses in high-pressure CO, 
amplifiersG8 and in XeCl excimer  amplifier^.^ Phase modu- 
lation of the amplified pulses induces additional peculiarities 
in this process. 

The amplification of ultrashort phase-modulated 
pulses has been investigated previously in either the balance- 
equations approximation (transverse relaxation time satis- 
fied T2 4 rp ),lo or in the approximation T2 & rp , yielding a 
self-induced transparency problem. ' ' In the first case, apart 
from neglecting coherent effects, one also allows approxi- 
mately for the dispersive properties of the medium to lowest 
order in dispersion theory, as a rule. With these same con- 
straints, one usually also solves for the propagation of phase- 
modulated pulses in passive media. ''-I4 

In self-induced transparency problems, only stationary 
(soliton) solutions are studied; it has been shown that for 
phase-modulated pulses, the "area" theorem then fails to 
hold, and the parameters of a propagating pulse change in a 
complicated manner.15 In the limit infinite pulse trains 
ought to be but of course in real amplifiers this 
does not happen. 

For phase-modulated pulses with an arbitrary ratio 
between the times T, and rP, the problem has only been ad- 

dressed n~merical ly , '~* '~ and even then only to first order in 
two-level media. Numerical modeling has helped to estab- 
lish that chirping the input pulses markedly affects their 
modulation envelope. The lack of an analytic solution, how- 
ever, has hampered a full interpretation of the various regu- 
larities that have been revealed. Furthermore, distortion of 
the pulse phase modulation during the amplification (at- 
tenuation) process has remained almost entirely unexa- 
mined. 

At the same time, this very question is fundamental to 
the implementation of a method for amplifying chirped 
pulses.2 I t  is also quite important in the interpretation of a 
great many experiments (dealing with the amplification of 
picosecond infrared pulses in CO, amplifiers,' for example) 
for which there is a definite lack of consistency between 
theoretical and experimental 

In the present paper, we develop a theory of the amplifi- 
cation of coherent, phase-modulated pulses with an arbi- 
trary ratio between T, and rP. We explore both the ampli- 
tude and frequency characteristics of the amplified pulses. 
We have also carried out numerical modeling of amplifica- 
tion of picosecond pulses in high-pressure CO, amplifiers, 
taking both saturation and the actual structure of the CO, 
gain spectrum into account. In addition to effects expected 
for an isolated gain line, the presence of this structure is 
responsible for the appearance of qualitatively new behav- 
ior. The theory developed for a two-level medium, however, 
also enables one to interpret this novel behavior. 

THE WEAK-GAIN CASE 

The equations describing the coherent amplification of 
ultrashort pulses, taking account of the composite structure 
of the gain band, are of the form 

718 Sov. Phys. JETP 68 (4), April 1989 0038-5646/89/040718-06$04.00 @ 1989 American Institute of Physics 71 8 



where E and w, are the slowly-varying amplitude and carrier 
frequency of the radiation. Y,, d,, n,, and Ktj are the polar- 
ization, dipole moment, population inversion, and transition 
rate of an individual component of the gain spectrum, fi is 
the refractive index, with allowance for nonresonant transi- 
tions, a, is the linear loss coefficient per unit length, TI, and 
np are the longitudinal relaxation time and equilibrium pop- 
ulation inversion for a j-transition, z is the length of the gain 
medium, and t is the time in a comoving coordinate system. 

As will become clear shortly, the basic behavior in- 
duced by the phase modulation of the amplified pulses is 
manifest even in the linear gain regime (n, approximately 
constant). In this linear approximation, let us first consider 
a two-level medium. The Riemann method enables us to put 
the general solution of the system ( 1 ), (2)  in the form 

x exp [--(l+i~) 4A ]It (y)dy) exp (-y) , (4) 

where I, is modified Bessel function, A = (w, - fl) T,, 
A = g,,z/2, go is the gain per unit length for a weak and fairly 
lengthy signal, and ~ , ( t )  is the pulse amplitude at z = 0. 

We begin our investigation of Eq. (4) with the weak- 
gain case, A < 1 (or in general, A 4 T2/rp ), for which it is 
possible to derive a number of exact, finite expressions for an 
input pulse of the special form 

where x = t /T2, k,, is a coefficient related to the chirp for 
the input pulse, n is an integer, and x, marks the moment in 
time when the instantaneous frequency satisfies winst = w,, 
for which two pertinent case can be identified: 1)  a "sym- 
metric" chirp, wherex, = 2n + 1 corresponds to the middle 
of the pulse (this case occurs for phase-modulated pulses in 
Kerr media-in fiber optics, for example1); 2) an "asym- 
metric" chirp, where x, = 0 comes at the beginning of the 
pulse (this type of phase modulation is possible in plasma 
mediaz1."). 

For A < T2/rp, we may put I, (y ) zy/2  in (4), yielding 
t 

x exp (-a0z/2) (4a) 

and Eq. (5 ) then gives 

E=EOO exp (-x) {xzn+' exp[ikph(x-zo) 'i2] 

The integral in (6) can be expressed in terms of elementary 
functions for A = k,,x, (and in particular at exact reso- 
nance, A = 0, or for an asymmetric chirp): 

n-i 

- i(2i)"n!A[ l-exp (ikp;x2)]} -- exp ( -- a ;~ ) .  ( 7 )  
xzntt kphnti 

In the general case, the expressions for the pulse intensi- 
ty I and its instantaneous frequency win,, are quite unwieldy. 
In the special case n = 0, they become (henceforth we as- 
sume k,, > 1 ) 

I=Zo(x) [l+ (2Al kph x)sin('kphx2/2)] e-'OZ, (8) 

~ , n , t  T2= kph(x-so) -A sin (kph~2/2), (9) 

These expressions imply that a chirp on the input pulses 
leads to synchronous oscillatory modulation of their enve- 
lope and instantaneous frequency. The depth of modulation 
increases with the length of the gain medium, and its fre- 
quency increases through the end of a pulse. At the same 
time, toward the end of a pulse, the depth of modulation of 
the pulse intensity falls off, and is inversely proportional to 
k,,. Typically, the number of subpulses in the resulting 
pulse train depends on neither the length z of the gain medi- 
um nor the duration rp of the input pulse, and is uniquely 
determined solely by the chirp factor kc,, which is simply 
related to k,, by kc, =-k,, (rp/T2)2. With increasing rp 
(i.e., increasing n) ,  the depth of modulation of both the in- 
tensity and instantaneous frequency decrease (transition to 
incoherent gain regime). 

Now consider the case A# k,,x,. For k,, > 1, the meth- 
od of stationary phase23 is applicable to the evaluation of the 
integral in Eq. (6). The point at which the phase of the inte- 
grand in (6)  becomes stationary, yo = x, - A/k,, may lie 
either inside or outside the limits of integration, depending 
on whether x is less than or greater than x, - A/k,,, and 
this then means that there will be two different ways of cal- 
culating the value of the integral, one toward the beginning 
and one toward the end of the pulse. In the latter case (which 
is the same as the leading edge of the pulse for a symmetric 
chirp and A = 0),  calculating the integral with the station- 
ary phase point outside the limits of integrati~n,'~ we obtain 

For the final segment of the pulse (coinciding with the tail- 
ing edge of the pulse for a symmetric chirp and A = O ) ,  the 
solution takes the form 

E = E ~ ( X )  {1+A (2nlJ kphl )'"(yo/x)2n+1 
x exp [ - ik,, (x- yo) '/2*in/4] )exp(-aoz/2), (11) 

where the choice of sign follows the sign of kph. 
The point x, - A/k,, thus divides the pulse in two. At 

pulse startup (x < x, - A/k,, ) , even though there may be 
some distortion of the pulse phase and amplitude, it is not 
oscillatory. Passing on to x > x, - A/k,, , we find that oscil- 
latory modulation has developed in both the pulse envelope, 

x cos [k~h(x-yO)' 2 FA]} exp (--aoz), ( 12) 
4 
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and in its instantaneous frequency, 

The basic features of this modulation are the same as for 
A = kphx,. 

In the weak-gain approximation, we can also analyze 
gain lines with complex structure. By successive approxima- 
tions [starting with the field value E at z = 0 in (2) 1, we 
obtain to first order 

rn 

where the subscript j identifies quantities corresponding to 
thejth component of the gain spectrum. Higher-order ap- 
proximations follow in a straightforward manner. Note that 
the first approximation, Eq. ( 14), is equal to (4a) for a two- 
level medium. 

Without going into detail, we point out that a complex 
gain line with temporal pulse structure gives rise to addi- 
tional modulation through the factor Z,exp( - @A,) 
(quantum beats). For a uniformly spaced gain spectrum, 
this modulation is regular in n a t ~ r e , ~  and can "interfere" 
quite effectively with the modulation due to the chirp. The 
outcome of this interference depends critically on the gain- 
line structure, so it only makes sense to conduct a detailed 
investigation of this case for a specific system (see below). 

ARBITRARY GAIN 

The method of stationary phase also facilitates an anal- 
ysis of a system with arbitrary gain (4),  and with arbitrarily 
shaped input pulses. 

eo(x) =a0(x) exp [ ikph,(~-~o)2/21 (15) 

(here it is most convenient to assume that the pulse is cen- 
tered at x = 0; then x, = 0 corresponds to a symmetric 
chirp, and x, = - rp/2T2 to an asymmetric chirp). Note 
also that the assumption of a linear chirp is not essential to 
the argument: for kph $1, the method can be used with arbi- 
trary phase modulation. 

Substituting ( 15) into (4),  we obtain 

a. (x- y/4A) I ,  (y'") 
e=eo (x) {I + + I 

a. (x) 4A 

[ k p h  (Y' y 6 ) ] d y ) e x p ( - ~ ) .  (16) xexp 1- -- 
4A 8-4 

where S = x - x, + A/kph . The integral in ( 16) has one sta- 
tionary phase point y, = 4AS, which may lie either inside or 
outside the limit of integration, depending on the sign of S. 

In the initial stage of the pulse (6 < O), for a fast enough 
falloff in amplitude a,(x) as x - co , the method of stationary 
phase applied to (16) yields 

which is the same as Eq. ( lo), the latter having been derived 
with A g T2/rP. In ( 17), however, we may also examine a 

system with fairly high gain. Deformation of the envelope 
and instantaneous frequency of the pulse is not oscillatory 
for either small or large gain values A, and variations in oinst 
are small in either case: 

A(oinstT2)zA/kPhS2~1 ( A K ~ ) ,  

A(oinstT2)~kPh/A4l (ABI) ,  

which suggests that in the linear stage of amplification, the 
chirp is approximately preserved in this part of the pulse. 

In the final part of the pulse (6 > 0),  the pointy, lies 
within the limits of integration, and the method of stationary 
phase yields 

ezEo(z)  {i+B exp [-  ikb, 62/2*in/41 }exp(--aoz/2), I( 18) 

where 

and the sign in the exponent is the same as the sign of k,, . 
Thus, for A ( 1, the pulse intensity and instantaneous fre- 
quency are 

and for A% 1, 

I=Io(x) B2 [1+2B-' cos (kph1FZ/2Tn/4)] exp (-aoz), (21 ) 

Olns tT2=:kPh(~-~ , , )  - kphs[l - B - 1 ~ ~ ~ ( k p h S 2 / 2 ~ r / 4 ) ] .  
(22) 

Clearly, in the initial stage of amplification (A 4 1 ), the 
final part of the pulse exhibits synchronous oscillatory mod- 
ulation of both its amplitude and instantaneous frequency. 
This modulation is of the same nature as in the special cases 
considered above: the rate of oscillation increases toward the 
end of the pulse, its relative amplitude is proportional tog$ 
and Ik,, and the number of subpulses depends on 
neither the length of the gain medium nor the input pulse 
duration, but is determined soley by the value of kc,. 

For long gain paths z (assuming that the system re- 
mains in the linear gain regime), the relative amplitude of 
these oscillations begins to decline rapidly-there is a 
smoothing of the amplitude modulation of the pulse, and 
"destruction" of the chirp: 

In the linear stage of chirp amplification, then, the input 
pulse engenders an oscillatory modulation of the intensity 
and instantaneous frequency. Upon further amplification, 
this modulation is smoothed out. The original pulse shape is 
thereby restored, but not the chirp. For compression of am- 
plified pulses to occur,2 it is therefore necessary that the 
transition to the nonlinear gain regime (or considerable am- 
plification of the input pulses) occur before the chirp is de- 
stroyed. 

AMPLIFICATION OF PICOSECOND PULSES IN A HIGH- 
PRESSURE C02 AMPLIFIER (n,#const) 

The full system of equations ( 1 ) - ( 3 ) ,  with both the 
composite structure of the gain band and saturation taken 
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into account, can only be investigated numerically, and 
therefore only for specific systems. Here we consider the am- 
plification of picosecond infrared pulses in a TE-mode CO, 
amplifier. The j components of the gain band in ( 1 )-(3)  
then correspond to a number of vibration-rotation transi- 
tions of the CO, molecule which exhibit inversion and which 
are "covered" by the spectrum of the pulse being amplified. 
In our calculations, we took account of 10-16 such transi- 
tions in the vicinity of the P(20) line of the (00'1 )-( 10'0) 
band of CO,. 

Numerical modeling was performed for.pulses with a 
duration rp = 10-100 psec and various coefficients kch . We 
also varied the value of w, over the gain band and the pres- 
surep of the active medium in the amplifier. 

As will become apparent, much of the behavior ob- 
served in isolated-line gain media is preserved in a composite 
gain band. Moreover, the theory developed for an isolated 
line also turns out to be useful in interpreting the qualitative- 
ly new phenomena that arise in a real TE-mode CO, amplifi- 
er. 

In Fig. 1 we have charted the evolution of a pulse of 
duration rp = 12 psec, with an asymmetric chirp and a fre- 
quency o, that matches o,,,,, , the frequency of the center 
line of the P(20) gain band of CO,. It is quite apparent how 
oscillatory modulation takes shape in the pulse envelope 
(for kc, under these conditions, the pulse shape remains 
practically unchanged). It is also clear that this modulation 
is manifested most strongly toward the end of the pulse (at 
the beginning of the pulse, both amplitude and instanta- 
neous frequency distortions are small). The reasoning goes 
as follows. According to ( 14), we may write for the pulse 
intensity in the initial stage of amplification 

where A&, is an integral that takes the contribution of the j- 
transition of the gain band into account. The summation in 
(24) contains two types of terms: 

FIG. 1. Evolution in the shape of a pulse of duration T, = 12 psec, with 
peak intensity I,, = lo4 W/cmZ, o, = w,,,,,, and an asymmetric chirp 
with kc, ~ 2 3 ,  during amplification in a TE-mode CO, amplifier ( p  = 10 
atm). 

When a chirp is present, terms in the first of the sums in (25) 
lead to oscillatory modulation of the pulse parameters 
(when kc, ) 1, the stationary phase point y in the corre- 
sponding integrals lies between the limits of integration). 
Terms in the second sum, on the other hand, do not give rise 
to oscillatory modulation of the pulse parameters. In the 
latter case, the point yo lies outside the limits of integration, 
and the contribution of an individual term hej -.kzl is 
much smaller than in the first sum, where Acj - k zl". On 
the whole, however, the ratio of the contributions from the 
two sums depend on the number of terms N, and N2 in each 
(N, + N, = N, where N, is the constant overall number of 
actual j transitions in the gain band). 

At the beginning of a pulse, the contribution from the 
second (nonoscillatory) sum dominates. Indeed, .for the 
sake of definiteness, let us consider an asymmetric chirp, 
kc, > 0, and a frequency w, equal to the lowest-frequency j 
transition in the gain spectrum. Then right at the beginning 
of the pulse, N, = 0 and N, = N, . Near the end of the pulse, 
N2 will have decreased, while on the other hand N, will have 
grown and the contribution of the oscillatory part to the 
pulse intensity will have become the dominant factor. This 
contribution can be written out approximately as 

N, 

where 

Sw is the offset of the instantaneous frequency winst ( t )  from 
the (currently) closest frequency R, < w,,,, , and AR, is the 
frequency separation between neighboring j-transitions. It is 
fairly easy to see that if the parameter q = <ARdT,kch is 
small enough, the form taken by the oscillatory modulation 
of the intensity will be determined by the superposition of a 
certain number of sinusoids of approximately the same am- 
plitude, but displaced in time with respect to each other 
(both the period and depth of modulation will then depend 
critically on the relationship between the parameters kc,, T,, 
and rp ) . The example presented in Fig. 1 (AR,= 1.8 cm- ', 
T 2 z  8 psec) corresponds to qz0.3. Note that for such rela- 
tively short pulses, weak discrimination between contribu- 
tions from various j-transitions in (26) a tp  = 10 atm occurs 
by the time kc, 2 10. 

Now consider the situation when there is good discrimi- 
nation. For qR 1, the main contribution to (26) at a given 
instant in time comes from just a single j-transition. After a 
time At, = qT2, the main contribution will come from the 
next j-transition, and so on. This occurs when either the 
pressure in the gain medium is increased (q -p) or the am- 
plified pulsed is made longer (q - < ). Thus, for pulses with 
rp = 30 psec andp = 10 atm, there should be good discrimi- 
nation even at the rather high value kc, 5 40. 

Notice that only a few periods of oscillation are excited 
by an individual j-transition in the time Atj.  In fact, since 
these oscillations have a period r,, z .r, (47r/kch ) '", we 
find that even for the minimum possible kc, (as determined 
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FIG. 2. Pulse shape for a duration 7, = 30 psec, Ii, = 1@ W/cm2, 
oo = w,,,,, , andanasymmetricchirp witha) kc, z 10,b) kc,, z23,  andc) 
kc, = 3 1, for g,,z-8 andp = 10 atm (for kc, -0, the pulse envelope is an 
undistorted Gaussian). 

by requiring that rose = rp ) we have Atj/.r,, zrp (psec)/ 
33. Furthermore, in the case of good discrimination, these 
oscillations will have almost completely died out by the end 
of the time interval Atj. For q 2 1, therefore, the period of 
both the amplitude and frequency modulation of the pulse 
should equal Atj. The number of subpulses NAM = rp/Atj 
formed as a result of the amplitude modulation will then be 

As in the case of a single gain line, NAM -kc, (Fig. 2). In 
(27), however, there is a substantial dependence on the 
pulse duration which is absent from the single-line case. This 
dependence has been confirmed by numerical modeling. For 
example, for fixed values of kc, = 20-40 and pulses with r, 
= 60 psec, the value of NA, is half that for pulses with rP 
= 30 psec. 

Note also that just as for a single gain line, there is syn- 
chronization of the amplitude and frequency modulation of 
the pulse (Fig. 3). 

In Fig. 4a, we show the evolution of a pulse with good 
discrimination (q z 1.8). The interference between pulse 
modulation due to the chirp and modulation associated with 
the beating between different j lines of the CO, molecule is 
a ~ p a r e n t , ~  with a period of 27r/Afi,z 18.5 psec. A compari- 
son with the case kc, = 0 (Fig. 4b) shows that this modula- 
tion results in deeper modulation of the pulse envelope, and 
its developing at a later stage of amplification. 

Finally, we note that for sufficiently small kc, < 47r, the 
pulse envelope and its instantaneous frequency are hardly 
distorted by the chirp, and efficient compression of the am- 
plified pulses is therefore feasible. At the same time, obtain- 
ing ultrashort pulses with deep amplitude modulation at 
large kc, may be looked upon as the generation of pico- 

FIG. 3. Time dependence (upper) and instantaneous frequency (lower) 
for a flat-topped pulse, 7, = 36 psec, I,, = lo6 W/cmZ, oo = o,,,,, ,and a 
symmetric chirp with kc, ~ 4 6 ,  for g g ~ 8  andp = 10 atm. 

FIG. 4. Evolution of a pulse with 7, = 30 psec, I,, = lo4 W/cmZ, 
oo = up,,,, and an asymmetric chirp with a )  kc, = 23 and b) kc, = 0 for 
p = 10 atm. 

second pulse trains with a high repetion rate ( - 10" Hz), a 
feat with important  application^.'^*'^ The repetition rate 
within the pulse train is controlled in the latter case by vary- 
ing the chirp rate on the input pulses. 

To summarize, we point out that our approach enables 
one to analyze the amplification of ultrashort phase-modula- 
ted pulses in other gain media as well, and, for example, to 
study the efficiency (and feasibility) of proposed amplifica- 
tion techniques for chirped pulses.' This approach can also 
prove useful in research (and particularly in the interpreta- 
tion of results) on coherent spectroscopy,25~26 since from the 
present point of view, the difference in the linear stage 
between passive and active media is not a fundamental one. 
On the other hand, the results that we have obtained invite 
inquiry into the feasibility of deliberate control of the shape 
of ultrashort laser pulses by chirping them, so as to obtain, 
for example, picosecond pulse trains with terahertz repeti- 
tion rates. 

"In the foreign literature and lately in the Soviet literature as well, the 
term "chirp" has been used to refer to linearly frequency-modulated 
radiation. 

z'Self-focusing and breakdown are fundamental limiting factors in the 
generation of high-power laser radiation. 
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