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An investigation is reported of dynamic properties of a phase with a spontaneously broken 
symmetry of a ferromagnet characterized by a single-ion anisotropy of the easy-plane type. The 
method used, based on unitary transformations of the Lie groups and the subsequent application 
of a low-temperature modification of a diagram technique for the Hubbard operators, gives 
symmetry-correct results satisfying the Goldstone theorem and the Adler principle for the 
scattering amplitudes and arbitrary ratios of the anisotropy to the exchange f .  The following 
quantities are determined: the spectrum of collective excitations; the scattering amplitudes 
renormalized allowing for the interaction between quasiparticles; the free energy; the 
magnetization and the quadrupole averages. A study is made of the critical behavior of the system 
near the point of an orientational phase transition to a quadrupole-ordered phase. The properties 
of the system are close to the properties of an exchange ferromagnet of the same symmetry only at  
low values off. When 6 rises, the specific single-ion anisotropy mechanism alters the behavior of 
the system: the contribution of optical modes becomes important (these are the modes that 
determine the critical behavior of the anisotropy constant in the vicinity of an orientational phase 
transition), the attraction between long-wavelength Goldstone quasiparticles changes to 
repulsion, the velocity of sound of a Goldstone mode begins to rise with temperature at the lowest 
values of T, etc. I t  is also shown that the characteristic features of quantum critical behavior of the 
anisotropy constant of the system in the vicinity of an orientational phase transition are due to the 
fact that this transition occurs at  a multicritical point. 

INTRODUCTION 
Our task will be to develop a microscopic theory of a 

phase with a spontaneously broken symmetry which forms 
in ferromagnets exhibiting an easy-plane single-ion anisotro- 
py in the case of arbitrary values of the ratio of the anisotro- 
py constant D and the exchange integral J,. This phase has 
been investigated only for the case when D /SJ, 4 1 in Refs. 
1-5 (here, S i s  the site spin). Even in this limiting case such a 
phase does not behave in a trivial manner: it is found that 
application of the standard methods from the theory of mag- 
netism gives strange results such as an imaginary unrenor- 
malized spectrum of collective excitations obtained as a re- 
sult of diagonalization of a quadratic Hamiltonian x ,  after 
application of the Holstein-Primakoff transf~rmation. ' ,~ 
Only inclusion of the contribution of Z,,, = 2? - Z2, by 
summation of all the diagrams of lower order in D /J,, gives 
a real spectrum characterized by weak damping (Ref. 5)  . I '  

This situation is a direct consequence of the fact that a sys- 
tem of this kind exhibits well-defined collective excitations, 
but these have to be introduced in some other way. 

The reason for this situation is readily understood if we 
adopt the concept of dynamics of systems described at rela- 
tively low temperatures by a Hamiltonian which includes 
not only the spin but also the tensor interactions (the single- 
ion anisotropy is an example of one of the latter interac- 
t i o n ~ ) . ~  According to this concept, collective excitations ex- 
cited in such systems at low temperatures T represent small 
fluctuations of the order-parameter vector relative to the 
equilibrium position. However, the order parameter is gen- 
erally not the magnetization vector with three components 

(S" ), but a vector defined in a (n2 - 1)-dimensional space 
of the S U ( n )  algebra (n  = 2 s  + 1 ), the components of 
which are the magnetizations and the tensor contributions. 
Consequently, such collective excitations should be intro- 
duced in a different way without recourse to the Holstein- 
Primakoff or Maleev-Dyson transformations or to other 
methods developed and used in the standard theory of mag- 
netism in the case of systems with a pure spin order param- 
eter, but by special methods acceptable in the case of systems 
with tensor interactions. These methods include the general- 
ized Holstein-Primakoff and Maleev-Dyson transforma- 
t i o n ~ , ~  a diagram technique for the Hubbard operators,'and 
a generalized diagram technique for spin operators.' 

I t  is clear from the above discussion that special fea- 
tures of the systems with the single-ion anisotropy are mani- 
fested to an increasing degree on increase in the relative con- 
tribution of the tensor components of the order parameter 
(if D /J, 4 1 this contribution is small because of the small- 
ness of D /J, ). However, investigations of magnetic materi- 
als with a single-ion anisotropy of arbitrary magnitude have 
been made only for those structures with the order param- 
eter governed exclusively by the ferromagnetic components, 
such a collinear ferromagnetic structures in which the mag- 
netization reaches saturation already at T = 0 (Refs. 9 and 
10); this applies to nonlinear theories. We have recently in- 
vestigated also the opposite limiting case of nonmagnetic 
structures with the order parameter governed entirely by the 
tensor (specifically, quadrupole) components: these are 
quadrupole-ordered structures or, in other words, structures 
of a spin nonmagnetic material." 
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A phase with a spontaneously broken ferromagnetic 
symmetry considered in the present paper and described by a 
model Hamiltonian 

can be observed in the range of parameters 0 <<<lC',, 
(<r D /2Jo) when H = 0 (see Fig. 1 ). This phase is interest- 
ing for two reasons. Firstly, the contribution of the tensor 
components to the order parameter of this phase varies con- 
tinuously with < ranging from zero for < = 0 to unity for 
6 = lcr, which makes it possible to study changes in the 
properties from those typical of a "pure" ferromagnet to the 
properties of a "pure" spin nonmagnetic material. Secondly, 
the phase in question belongs to structures with a degenerate 
ground state which are generally of considerable interest. On 
the other hand, these two circumstances impose stringent 
conditions on the results: they must agree with the known 
anharmonic results for an isotropic ferromagnet when f  = 0 
and for a quadrupole-ordered structure when < = {,, ; more- 
over, the Goldstone theorem for the spectrum and the Adler 
principle for the scattering amplitudes must be satisfied for 
any value of 6. In this connection it should be mentioned that 
in the only treatment7 of an easy-plane phase with an arbi- 
trary value of D /J ,  the calculated scattering amplitudes of 
acoustic excitations satisfy the Adler principle just for D = 0 
(other harmonic quantities were not calculated). 

We shall consider the case when S = 1, which is the 
minimum value of a site spin for which the single-ion anisot- 
ropy can exist and, consequently, the effects associated with 
this anisotropy are manifested most strongly. We shall use 
the Born approximation to find the spectrum of collective 
excitations, the scattering amplitudes, the free energy, the 
magnetization and the quadrupole averages at low T. We 
shall analyze the characteristic features of quantum critical 
behavior of the system (i.e., of the critical behavior at 

T = 0 )  near the point 6 = f , ,  of a phase transition to a quad- 
rupole-ordered phase (Fig. 1 ). These characteristics are as- 
socialed with the fact that, on the one hand, the phase transi- 
tion at the point A is orientational (it involves reorientation 
of the eight-component order parameter vector) and, on the 
other, the point A is special in the phase diagram: it is a 
multicritical point. The nature of multicriticality of this 
point is demonstrated in Fig. 2. We shall plot a three-dimen- 
sional phase diagram using the results of Refs. 12 and 13. 

We shall tackle our task employing a low-temperature 
modificationL' of a diagram technique for the Hubbard oper- 
ators.' 

1. HAMILTONIAN IN LOCAL COORDINATES. SYMMETRY 
OPERATIONS 

The use of a diagram technique for the Hubbard opera- 
tors implies that local coordinates are adopted first and the 
zeroth-order Hamiltonian is diagonal in these coordinates 
(because otherwise the Wick theorem is not satisfied by the 
Hubbard operators). These local coordinates are obtained 
by unitary transformations of the SU(3)  group described in 
Ref. 14, when the generators are spin operators S" and quad- 
rupole operators 0 :, which in turn form theSU(3) algebra. 
The unitary transformation applicable to a ferromagnetic 
phase with a spontaneously broken symmetry (FM,  ) cor- 
responding to Eq. ( 1 ) is given by 

where the angles p, K, and L are described by the system of 
equations (4)  in Ref. 6. The quadrupole operators occurring 
in Eq. (2)  are defined by 

In the zeroth approximation, which is the self-consistent 
field approximation when H = 0 and T = 0, the solution ob- 
tained in Ref. 6 is 

sin q=cos 2L=0, cos 2 K = i .  \=D/2jo, Jo =x J i j .  

j 

(4)  

H/Jo ", QO - { = D/2 Jo 

FM,, 

FIG. 1. D-H phase diagram at T =  0. Here, F M -  is the phase with a 
spontaneously broken symmetry for rotation about the z axis; the spin 
order in the phase has ferromagnetic components M, = S'and M ,  = S" 
and quadrupole components ( 0 :  ), ( 0 :  + 0, '), and ( 0  + 0, ' )  
[see Eq. ( 3 )  1 .  The ferromagnetic ( F M  ) and the quadrupole-ordered 
(QO) phases retain the indicated symmetry: at T =  0 in the case of the 
F M  , phase we have Mz = 1 and M, = 0, whereas in the case of the QO 
phase we have M, = M ,  = 0. In the present treatment we are dealing only 
with the FM,, phase only along the H = 0 line, where it is of the easy- 
plane type and is characterized by the averages described by Eq. ( 10). FIG. 2. Three-dimensional T-D-H phase diagram represented by sec- 
More detailed information on this phase diagram and on the properties of tions in the D = const planes corresponding to different values of D. The 
QO and F M ,  phases can be found in Refs. 11 and 12. continuous curves represent second-order phase transitions. 
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In general, if H = 0, we have 

where u = (& ) and A = (3a ) are the averages of these 
operators in terms of local coordinates with the total Hamil- 
tonian valid at an arbitrary temperature T (the equations for 
these quantities will be given later). 

We can write down the Hamiltonian of Eq. ( 1 ) in terms 
of local coordinates if we know the relationship between the 
initial spin and quadrupole operators Sa, 0 y and the spin 
and quadrupole operators p, a 7 in terms of local coordi- 
nates. For arbitrary values of p, K, and L this relationship is 
easily obtained from the expressions given in Ref. 14. Adopt- 
ing then the Hubbard operators, which are related linearly to 
the operators 3.. and a [described by the system of equa- 
tions ( 14) in Ref. 61, we obtain 

[The expressions for the quadrupole operators given by Eq. 
(3)  are readily obtained from the system (6)  using the fol- 
lowing rule for multiplication of the Hubbard operators: 
XqqX = S q , X y ] .  Here and later the operators without a 
tilde are defined in the original space, whereas the operators 
with the tilde are defined in the space of local coordinates; we 
shall omit the tilde above the Hubbard operators because 
they are defined only in terms of local coordinates in which 
the levels of an ion given by the zeroth-order Hamiltonian 
X0 are labeled by the spin projections along the z axis. The 
distribution of levels in terms of local coordinates and the 
effect of the Hubbard operators are shown schematically in 
Fig. 3. 

We find thus that the original Hamiltonian expressed in 
local coordinates becomes 

FIG. 3. Sckematic representation of levels of an uncorrelated ion de- 
scribed by ,To in terms of local coordinates. 

This form of the Hamiltonian corresponds to inclusion of the 
self-consistent field in the zeroth Hamiltonian Z,, which is 
a starting point in the diagram technique for the Hubbard 
operators, as well as in the Vaks-Larkin-Pikin technique. l5  

The dimensionless local fields (including the single-ion ani- 
sotropy and the self-consistent fields) are given by 

Y.=- ( l h )  (h+a)/2, yb=-- (A+ a ) ,  y,-- ( I - q )  ( h + a ) / 2 .  

The averages u = (S' ) and A = ( 3 a  ') obtained in the ze- 
roth approximation are given by the equations 

from which we find that a'"' = 0, A "' = - 2 at T = 0. 
Before we include the corrections to the self-consistent 

field approximation, we note that Eqs. (4 )  and (5 )  for the 
angles describe the structure of a spin-ordered system gener- 
ally determined by which of the eight independent Hermi- 
tian averages (Sz),  ( S +  - S - ) ,  i (S+  + S - ) ,  (O:), 
( 0 ;  + 0 y 2 ) , i ( O :   OF^), ( 0 ;  -O;'),i(O: + 0;') 
of the SU(3) algebra differs from zero. In particular, it fol- 
lows from Eq. (4)  that in the case of an easy-plane phase of 
the kind discussed here we have 

If 7 = 1 (or = 6,., at T =  01, which corresponds to an 
orientational phase transition to a quadrupole-ordered 
phase, we find that Mx and Q, vanish (the latter follows 
from y, = y, and, consequently, from u = 0 and 7 = 1 ) and 
then we find that M, = 0 and Q, = 0 remain valid for a 
quadrupole-ordered phase in which the spin order is charac- 
terized by just one parameter Q, (Ref. 1 1 ). The existence of 
nonzero value of Mx and Q, in an easy-plane phase is related 
to spontaneous symmetry breaking as a result of a phase 
transition from a quadrupole-ordered phase. 

An analysis of the symmetry of the operations of the 
Hamiltonian ( 1 ) defined by the SU(3) group shows that 
after transition to the easy-plane phase there are two inde- 
pendent symmetry operations which are now spontaneously 
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broken. This is a continuous symmetry operation exp(i$F ) 
(rotation by an arbitrary angle $ about the z axis) and a 
discrete operation 

exp (insu) =exp [n (02i-02-i)] , (1 1)  

at which the operators are transformed as follows: 

(the other operators are unaffected). 
Before analyzing the influence of the term - Po on 

the dynamics of such a system by a diagram technique, we 
shall conclude this section with some simple considerations 
which make it possible to determine the spectrum of nonin- 
teracting collective excitations and which in our opinion 
make subsequent treatment somewhat clearer. We obtain 
such an unrenormalized spectrum employing the linear part 
of the transformation of the off-diagonal Hubbard operators 
to the Bose operatorsh: 

and also employing the low-temperature limit for a"' and 
A"' which gives 7"' = {. Substituting Eq. ( 12) into Eq. ( 7 ) ,  
going over to the space of quasimomenta k, and diagonaliz- 
ing the quadratic Hamiltonian, we obtain a spectrum 
E 2 = Jo&2, where 

Excitations of the c type, associated with transitions between 
the levels 1) and I - 1) , remain localized in the quadratic 
approximation: 

~k~=y,=l- -E.  (14) 

2. GREEN FUNCTIONS ANDTHE ZEROTH-APPROXIMATION 
SPECTRUM FOR LARKIN-IRREDUCIBLE PARTS OF 
DIAGRAMS 

We shall define a matrix causal Green function 

C (1, T; I f ,  T') =!TA, (=)A, .+  (T') > (15) 

using vector operators A(T) and A(?), where 
A+ = [ (Xa)+ ,Xa, (Xc)+ ,Xc,  ( X b ) + , ~ b ] ; A i s a c o l u m n  
of Hermitian operators; Xu EX'-', Xb EX 'I, F EX - " ; I  
is the site index; T is the imaginary time. 

In thz self-consistent field approximation the Green 
function G(k,w, ), which is a Fourier transform of the 
Green function of Eq. ( 15) (k  is the quasimomentum and 
w, is a discrete frequency), is diagonal and its components 
are 

~ : f  (ki on) =bfiKpp+ (on) 

where 6, are the characteristics of blocks given by 

and the Green functions KL:+ (w, ) are described by 

The frequencies y, are described by the system of equations 
(8 )  and the equations for 6,  at finite temperatures T are 
given by the system (9) because 

h 

We can obtain higher approximations for G(k,w, ) em- 
ploying a scheme developed specifically for a diagramatic 
Vaks-Larkin-Pikin technique" described in detail in Ref. 
16, which utilizes the concept of Larkin-irreducible parts of 
diagrams, i.e., of diagrams which are not cut along one inter- 
action line. In such a scheme the relationshipietween the 
Green functions and the total irreducible part C is given by 
the Larkin equation, which retains the same form also in the 
diagram technique for the Hubbard operators. Its solution is 

h h 

where I is a unit matrix and the interaction matrix Vk is 
easily obtained from Eq. (7)  if we represent the off-diagonal 
part of R - Po in the form 

%-so =v, v ~ ~ ~ ~ . ~ ( x ~ ~ )  +, p. v-a, b, c. (20) 
PV k 

h 

It is important to note that the matrix Vk is of the block- 
diagonal form 

A 

where the components of the 4 X 4 V, block relate the opera- 
t o r s r  , (Xa ) +, Xc, and (X'  ) +, whereas the components of 
the VLb' block relate the operators Xb and (Xb ) +. zince this 
determines the analogous structure of the matrix G(k,w, ), 
collective excitations represent superposition of excitations 
of the a and c types, as well as independent excitations of the 
b type. A 

In the lowest approximation the matrix Z(k,w, ) is di- 
agonal and its components are 

The Green function deduced by the substitution of the above 
Eq. ( 19Xis known as the zeroth-approximation Green func- 
tion for X and in the limit of low temperatures Tit is identical 
with the Green function of noninteracting quasiparticles. 
This function will be used later in the unrenormalized form 
when we shall allow for the interaction between quasip2rti- 
cles; more precisely, we shall use the Green function K(k, 
w, ) related to G(k,w, ) by 

because in the low-temperature modification of the diagram 
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technique for the Hubbard operators1' used by us the graph 
rows are written down Lor the Green functions found with- 
out the b, multipliers [I in Eq. (22) is a unit 2 x 2 matrix]. 

Explicit calculations in the limit of low temperatures T, 
when b, = 0 and b, = b, = 1, yield the following expres- 
sions for the components of kF, (k,w, ): 

h 

All the other components of the matrix K vanish, owing to 
the block-diagonal form of Eq. (21) for the i.', matrix. The 
functions u t  and 4 in Eqs. (23)-(27) are identical with the 
functions of the u-u transformation that diagonalizes the 
quadratic form of the Bose operators of Eq. (12),  and are 
given by 

where 

AkO=l+t-yr ,  Bka=T;yk, Ar"2-gzyr, Bkb=-E2yk, 

(29) 

and the expressions for the frequencies 

are identical with those given by Eq. (13). In Eqs. (23)- 
(29) we allowed, in accordance with the definition, for all 
the averages of the operators occurring in the unrenorma- 
lized Green functions and these averages were used in the 
zeroth approximation corresponding to Eq. (9) ,  including 
the averages defining the angle K in Eq. (5 ) .  In the limit of 
low temperatures T the "zeroth" value of the angle corre- 
sponds to  17'0' = 6. 

We shall use also the explicit form of the following cor- 
relation functions, which are related to the Green functions 
Kpv ( k , ~ ,  1 : 

nkr= lim I[..+ (k, an) eien', 
r-0- 

0" 

vk = lim K..+ (k, an) rtmnr, = lim &. (k, on) a'", 

which are given by 

iz (x) = [esp ( px) - I ]  -'. 

An analysis of these results shows the following. The 
unrenormalized Green functions G,, + , Go+ .+ , G,, + vanish at 
T = 0, since they are proportional to the factor b,. These and 
not the functions K,, are the true Green functions [for a 
definition see Eq. ( 15) ] and it would seem that introduction 
of the Green functions K,, with indicesp or v equal to c and 
c f  is unnecessary. However, this is not true: it is the inclu- 
sion of these Green functions that will ensure, in the later 
stages of developing an anharmonic theory, that the results 
are symmetry-correct and satisfy both the Goldstone 
theorem and the Adler principle. This is associated with the 
special characteristic of the diagram technique for the Hub- 
bard operators (and also of the Vaks-Larkin-Pikin tech- 
nique) for which at the vertices of the third, fourth, and 
higher orders there are Green functions of the K,, type, de- 
fined without the mutlipliers b,, whereas b,, are characteris- 
tic of the block as a whole; the index ,u is determined by the 
nature of the Green function used in the subsequent pairing. 
For this reason the Green functions of Eqs. (24) and (25) 
may occur in graphs as intermediate elements and, there- 
fore, the processes involving participation of a mode E: ,  

which are not excited in reality at low temperatures T, can 
contribute to the anharmonic results. 
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We shall analyze the characteristic features of the un- 
renormalized spectrum by beginning with the formulas for 
arbitrary temperatures T (i.e., w i t h o u ~ s a t i ~ f y i ~ g  the condi- 
tion b, = 0) .  The secular equation det ( I  - Z1')'V ( = 0 is fac- 
torizable. In the case of b-type co~lec~ive excitations, defined 
by the 2 x 2 block of the matrix 2'"V, we obtain 

In the case of excitations defined by the 4 x 4  block of the 
same matrix, we obtain 

where 

; r k a + B k a = ( l + q )  b s - ( I - q )  y k b . ,  (34) 

xkc-Eke= ( 1 - q )  [b,+ ( 1 -  yr)  b,] , 

We can now see that, in contrast to the T = 0 (6, = 0 )  case 
when there are independent a- and c-type modes of frequen- 
cies E: and EL defined by Eqs. ( 13) and ( 14), at a finite (no 
matter how low) temperature these modes become mixed 
and in the quasimomentum range k- k, (k, is the quasimo- 
mentum corresponding to the point of intersection of spin- 
wave modes) we can expect "repulsion" and a gap in the 
spectrum. The magnitude of the gap is proportional to b,, 
i.e., it is small because the temperatures Tare  low. One of 
these modes (of the Goldstone type) has a linear spectrum at 
low values of ~ ( E E  oc k) ,  but exhibits a very weak dispersion 
in the range k > k, (Fig. 4) .  

The position of the point k,, governed by the condition 

and the magnitude of the gap A depend on the value of [. If 
[ = 0, we find that k, is governed by the equality ykc) = 0. As 
[increases the absolute value of k, decreases and at [ = 1 we 
have k, = 0. 

If, as expected, we have < = 0, there is no mixing: the 
interaction V p  in Eq. (33) vanishes at the point of intersec- 
tion of the renormalized modes, because y,,) = 0 and we 
have one Goldstone mode characterized by 
.?E: = b, ( 1 - y, ) (if [ = 0, we find that b, = (S" ) , , ) ,  cor- 
responding to spin excitations, and two dispersion-free 
modes Pt = 2b,, E l  = b,, corresponding to localized quad- 
rupole excitations. 

A second special point at which mixing is absent is the 
boundary of the range of existence of the investigated phase, 
which is the point where g = g,, (T) (or v =  1 ). At this 
point we have 

(we are assuming here that if 77 = 1, we have b, = 0 and b, 
= b, ), i.e., a Goldstone mode vanishes identically, whereas 

FIG. 4. Dispersion laws for three branches of selective excitations E;', E: ,  

and E L .  The 1 and 2 lines are the spin-wave spectra E'; and f i .  The repul- 
sion between the modes in the region of intersection of the spin-wave 
spectra k- k,, is due to the temperature factor in the case of unrenorma- 
lized spectra or the anharmonic interaction factor in the case of collective 
excitations. The gap A is small because temperatures are low so that A' 
a r,, 'a t  T = 0. The results plotted in this figure correspond to some value 
o f l i n  therangeO<{<lL, .  

two optical modes soften and become degenerate. 
For all other values of [ we have a situation shown in 

Fig. 4 and in the range of energies - 1 - g there is a gap in 
the spectrum. It should be noted that this is true of the sys- 
tem as a whole and not only at finite temperatures T; in 
particular, when T = 0 the same situation applies if we allow 
for the anharmonic effects (see Sec. 4 ) .  Mixing of the a- and 
c-type modes is due to the fact that because of the interaction 
PC in the Hamiltonian of Eq.^(20) the 4 X  4 block of the 
matrix of the Green functions K'"" does not factorize into 
2 x 2 blocks associated with the a and c excitations. Indepen- 
dence of the spin-wave frequencies is the effect of the approx- 
imation adopted here and it is associated with the triangular 
form of the 4 X 4 matrix at b, = 0 also in the absence of the 
anharmonic effects. It should be stressed that mixing in- 
volves a mode corresponding to transitions between excited 
modes, which makes the effect nontrivial. 

The transformation of the spectra due to variation of 
is as follows. In the case of a Goldstone mode an increase in f 
alters the range of quasimomenta where this mode is charac- 
terized by an approximately linear dispersion law: 
6; oc ( 1 - y, ) ' I 2 .  In the case of optical modes and finite val- 
ues of [ we can expect dispersion which grows on increase in 
6, whereas a gap at k = 0 decreases and at the orientational 
phase transition point characterized by [ = l,, the modes 
become softer and we have E l  = 2.: - k. The separation be- 
tween the modes .?: and .?: in the region of the maximum 
approach is greater at some point within the interval (0, ,, ) 
and it decreases on approach to the edges of this interval. It 
should also be mentioned that at the point f = [,, the spec- 
tra and .?: become nonanalytic at k = 0; the velocity of 
sound c:,~ = d~; ;~ /dk  depends on the order of the transition 
to the limit A[ = [,, - [- 0, k- 0 .  In particular, in the case 
of a y mode, we have 

which is in agreement with an analogous result obtained on 
investigation of the spectrum on the side of the quadrupole- 
ordered phase1'; similarly, in the case of the a mode, we have 
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This picture can be understood if we turn to the expres- 
sions relating the spin and quadrupole operators to the Hub- 
bard operators [see Eq. (6 )  ]. It is clear from these relation- 
ships that, for example, a Goldstone mode associated with 
the breaking of the continuous symmetry of rotations about 
the z axis, i.e., a mode generated by S ; ,  is a superposition of 
oscillations of the a and c types generated by the operators xo- I , + X 7 and X ,  I '  + X ?-,I. As {increases, the width 
of the region where 2;: ( 1 - y, ) ' I 2  is valid decreases because 
of a corresponding reduction in the contribution of the oper- 
ator X :- ' + X 1 to S', and the spectrum of this operator 
is 2:. The behavior of the 2: mode generated by the 
XO,' + X '2 ,  operator is as follows. If { f 0, such operators 
represent superpositions of spin and quadrupole operators, 
and the dispersion of the mode is proportional to the contri- 
bution of the spin operators (because in the initial Hamilto- 
nian we allowed only for the spin-spin interaction and not 
for the biquadratic exchange interaction). If < = 0 this con- 
tribution vanishes and there is no dispersion. This is also true 
of the second optical mode EL.  

It is interesting to note also that two soft modes with a 
linear dispersion law, EL and E l ,  exist at the phase transition 
point. This is a special feature of an orientational phase tran- 
sition at a multicritical point A (Fig. 1) and it differs from 
the behavior at any other point on the line 1 where there is a 
soft mode characterized by the dispersion law E,, cc k * (Ref. 
1 1 ). The following comments can be made when considering 
a phase transition between quadrupole-ordered and FM, 
configurations in a field H. In the case of the quadrupole- 
ordered phase there are two collective excitation modes. I '  

One of them is critical at an orientational phase transition 
which occurs in the upper part of the line 1 and the other is 
critical in the lower part of this line. At the point A,  where 
the two parts of the lines converge, we can expect simulta- 
neous softening of both modes so that their dependence on 
the quasimomentum changes to E,  oc k. (This is a self-evi- 
dent consequence of the l /k2 Bogolyubov theorem, l 7  but we 
shall not consider this in any detail.) 

The characteristic features of the behavior of the spec- 
trum at the point A can be explained also by a different ap- 
proach involving an analysis of the symmetry operations of 
the Hamiltonian when the symmetry is broken spontaneous- 
ly as a result of a phase transition from a quadrupole-ordered 
to an easy-plane phase. As pointed out in Sec. 1, this repre- 
sents one continuous symmetry operation and two identical 
discrete operations. Consequently, a phase transition from a 
quadrupole-ordered to an easy-plane phase creates a Gold- 
stone mode and two modes which are soft only at the phase 
transition point. [I t  should be noted that i f H  # 0, the unitary 
transformations of Eq. ( 11) are not symmetry operations of 
the Hamiltonian, so that there is only one soft mode, identi- 
cal with the Goldstone mode, at the phase transition point.] 

3. POLARIZATION OPERATOR IN THE BORN 
APPROXIMATION 

An allowance for the interaction of collective excita- 
tions yields a renormalized Green function k(k,w, ), which 
is defined-in the low-temperature variant of the diagram 
technique for the Hubbard operators-by the Dyson equa- 
tion 

A 

where K is the matrix gf the unperturbed Green functions of 
Eqs. (23)-(27) and II is the matrix polarization operator 
with the components II,, usually represented by a set of 
graphs which are not cut along one Green function line and 
which have an ingoing vertex of t h e p  type and an outgoing 
vertex of the v type. In the Born approximation these graphs 
have the topologically standard form in the Vaks-Larkin- 
Pikin and Hubbard operator diagram techniques (see, for 
example, Fig. 29 in Ref. 16 and Fig. 1 in Ref. 1 1 ). In view of 
the large number of graphs of topologically identical form, 
we shall not give them explicity; we shall simply point out 
that they differ from those shown in Fig. 1 of Ref. 11 by 
additional components described by Eq. (24).  The analytic 
form of the results of the a- and c-type components are as 
follows: 

B n,+ (k) =no+.(k) = -Tx {[ 12 (yk+~P) 
P  

P 
n c a  (k) =IICta+ (k) = - - { [- (I-g2) '12ypppa 

N P  

whereas the 6-type components are described analytically by 
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The other components of II,,, vanish. The above expressions 
are obtained allowing for the following equalities valid at 
low temperatures: b, = b, = 1, b, = 0 and also using the 
zeroth approximation for the angle: 7 = 77'0' = 6. The ex- 
pressions given for n,,,, are quantities of the first order in r;.' 
( r, is the radius of the exchange interaction) and the validity 
of the Born approximation is in this case related to the long 
interaction radius; the higher approximations contain high- 
er powers of r; 3, as well as terms allowing for the correc- 
tions A7 to 7"). 

4. RENORMALIZATION OFTHE SPECTRUM 

The renormalized frequencies of collectke excitations 
are governed by poles of the Green function K(k ,  w,, ). Ac- 
cording to the Dyson equation [Eq. (36) 1, these poles can 
be found from 

det I I - K ~ ? ~  =o. (39 
h h 

Since the matrixes K and II are block-diagonal, the se- 
cular equation (39) is factorizable. In the case of the 2 5 2 - 
K '*' block, which governs the renormalized frequencies EL, 
this equation becomes 

The solution of the secular equation for the 4 X 4 f?'"'' block 
is 

It is clear from these expressions that the anharmonic 
effects, like the temperature factor in the case of the unrenor- 
malized spectra, mix the a and c modes, i.e., they produce an 
effect similar to that discussed in Sec. 2; see also Fig. 4. As in 
the case of the unrenormalized spectra (and mathematically 

for the same reason), there is no mixing if { = 0 and { = 1. 
In tke case of an arbitrary value of { the graph A between the 
h 

q, Elspectra in the region of the maximum approach k -  k ,  
is a small quantity: A ' z r ;  h t  T = 0. The coefficient de- 
pends on < and its maximum value occurs at some point 
within the interval (0, l,, ) and decreases toward the edges. 
I f l g  1, we find that the gap obeys A 2 z { 5 " .  

We can readily show that the Born correction of Eq. 
(41 ) maintains the Goldstone nature of the 2: mode. In fact, 
it follows from Eq. ( 1 )  that the gap is absent at k = 0 
( P ; , ,  = 0 )  if 

which is satisfied for all values of {, as can readily be deduced 
from Eq. (37).  

The nature of the spectrum (41 ) simplifies if the anhar- 
monic corrections are small compared with 1 ( E : ) ~  - yf I: 

n k r v  (k) I ( E*') 2 - ~ , 2  I , 
i.e., far from the point k = k,,. When this is ensured by the 
inequality k&k,,,  we find that the Goldstone mode is de- 
scribed by 

- 
/JWL"G ( F ~ " ) ~ - ( E I , ~ ) ~ = - ~  ( A  t"IIau+-Bk 'ITaz), 

whereas in the case of a 2; mode, we have 

Thus, all the modes can be described by 

where 

[Beginning from Eq. (40) ,  we have to substitute 
I1 ,,,. = I1 ,,,. (k)/fl in the above expressions.] 

Using the explicit expressions for II, , , . ,  we can write 
down the dispersion law for a Goldstone mode at low values 
of k: 

The dimensionless correction to the square of the velocity of 
sound at T = 0 is 
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for the functions ul,' and 6 given by the expressions in Eq. 
(28).  The correction for finite temperatures T is 

Ack (T) = - - 2fi(g) [ (l-yp)/e/ln(.s;) 
N P  

The following notation is used in Eq. (45):  

In the derivation of Eq. (45) we allowed for the fact that 
because of the kinematic relationships, we have 

The temperature correction was calculated only for the 
limiting case defined by 

With the exception of the regions adjoining the limits of the 
interval (0, lC;., ) and requiring a separate discussion, these 
relationships apply also in the limit of low temperatures T 
irrespective of the low value of 6. The first inequality in Eq. 
(47) makes it possible to use the substitution l /(y< + E;) - l/y, when expressions for the correlation functions vp 
and ve are integrated with respect t o p  and this also makes it 
possible to ignore the contributions of nt  and because 
they are exponentially small. The second inequality in Eq. 
(47) makes it possible to limit the integration with respect to 
p to the terms linear in p in the unrenormalized dispersion 
law of Eq. (13).  

In the same limit we find that the temperature correc- 
tion to (E; )' corresponding to k - 0 is 

We shall not write down the explicit form of Ao; (0 )  because 
it is too cumbersome. We can readily obtain the relevant 
expression by direct substitution of Eqs. (38) and ( 3  1) into 
Eq. (40). 

We shall now consider the behavior of the anharmonic 
corrections near the boundaries of the range of existence of 
the easy-plane phase. 

Left-hand boundary. If { = 0, when E: = 1 - y,, we 
find that Eqs. (41) or (41a) yield 

representing the familiar Born result for an isotropic ferro- 
magnet. If 6 1, the condition of low temperatures Tis com- 
patible with two inequalities setting the limits: e<{ and 
836. We consequently obtain 

Ack (T) =-e4E (2gp)-l'lI'(4) (4) In2, 6KgK1, 
A~k(T)=-O"gp-"I'(~/2)%(~/2)/n~, lB0BE. 

The first of the above expressions follows from Eq. (45) in a 
lower order in {, whereas the second follows from the last 
equality in Eq. (45) if we integrate using the unrenormalized 
dispersion law E; = 1 - y,. Both expressions are identical 
with the results obtained in Refs. 1,2, and 5 in the limit {< 1. 

Right-hand boundary. I f f  = 1, when there are two E: 

and E: = E:,  modes with the unrenormalized dispersion 
laws 

&kb=&ka'2 (1-yk)'", 

where 

vp=qp=IIe.=IIca+=O, npa=npb, ppa=-p:, 

and we find from Eqs. (40) and (41 ) that 

aokb=*6)kT=(2/N) ( (l-yk)2yp(hb+bb) 
P 

+ [6rrhb+5yp (hb+l*.;) -7r-p (hb-$) I )  

is an expression identical with the results obtained for aqua- 
drupole-ordered phase in Ref. 11 provided we substitute 
6 = 1 and H = 0 and bear in mind that the correlation func- 
tions n,, Np,  and ,up are related when 6 = 1 to the correla- 
tion functions used in the present study by the expressions 
np = n:, NP = nt ,  ,up = ,u;. Near the right-hand boundary 
the condition of low temperatures T is compatible with the 
following two limiting inequalities: 

@<I-E and O % l , ,  ( T )  - 6; 

the latter inequality is analogous to the condition 6 3 5  near 
the left-hand boundary." If 6< 1 - 6, then Eqs. (45) and 
(48) are valid. If B36,, ( T) - f ,  we obtain 
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Ack (T) =-02p-3'':% (2)  /8x2, 

The result given by the system ( 5 0 )  for the EL and E,Y modes, 
which exist on opposite sides of a phase transition, is identi- 
cal with the corresponding result for the spectrum of aqua-  
drupole-ordered phase near the phase transition point, ob- 
tained in Ref. 1 1  [it is understood that the expressions in the 
system ( 5 0 )  are valid outside the scaling region]. 

Summarizing, we should mention the following fea- 
tures of the anharmonic corrections to the spectrum of a 
Goldstone mode. These are, firstly, the change in the tem- 
perature dependence of the velocity of sound of a Goldstone 
mode when ( is  varied: according to Eq. ( 4 5 ) ,  the behavior 
usual of ordered magnetic systems, which is a fall of the 
velocity of sound on increase in Tobserved at low values of f 
( f < f o ) ,  changes to an increase at sufficiently high values of 
f ,  i.e., in the region where the quadrupole ordering predomi- 
nates. The quantity f, is found from f ,  ( g )  = 0  and its value 
is fO=:0.3 1. This behavior occurs at the lowest temperatures 
T. At higher values of T the velocity of sound begins to de- 
crease even at high values of f ,  as demonstrated by Eq. ( 5 0 ) .  
Secondly, there is an interesting change in the nature of the 
power laws 

Ac, ( T) oc T.", T4, TB, T b ,  T2, 

The T "* and T '  laws are observed, respectively, near the 
left- and right-hand boundaries of existence of the easy- 
plane phase, whereas the T h  law occurs when I f  - f(, /  < 0 
and the T law applies for all other values of f [the law is 
obtained if the expression for Ac, ( T) includes higher pow- 
ers in the momentum than those in Eq. ( 4 5 )  ]. 

5. FREE ENERGY. SCATTERING AMPLITUDES 

The complete expression for the free energy is 

where Fo is the free energy in the self-consistent field ap- 
proximation, which in the limit of low values of Tis identical 
with E,, of Eq. ( 7 ) ;  

is the contribution associated with noninteracting collective 
excitations characterized by dispersion laws E/,'; AF'"' is the 
contribution due to the interaction between such excitations, 
which in the Born approximation is governed by standard 
diagrams (see, for example, Fig. 3  in Ref. 1 1 ). Calculation of 
the last contribution gives 

The expression for the T-independent correction AF, ( 0 )  

which follows from Eq. ( 5  1 )  is in fact the correction to the 
energy of the ground state due to the interaction of the zero- 
point vibrations. Its explicit form for an arbitrary f is found 
by direct substitution of Eqs. (31 ), ( 37 ) ,  and ( 3 8 )  into Eq. 
(51 ). We can easily show that the value of AF, ( 0 )  rises on 
increase in 6 [this is due to an increase in (ut )' and utv',' 1. 
The maximum value obtained for f = 1 is 

where u, - u: (6 = 1 ), u, = ui ( f  = 1 ) . This applies to a 
simple cubic lattice. The correction to the ground-state ener- 
gy due to the noninteracting collective excitations has the 
following value for f = 1 : 

The T-dependent corrections are 

where T1"'(kp, pk) are the forward scattering amplitudes of 
quasiparticles of types p and v. The explicit expressions for 
these amplitudes obtained for arbitrary values of k and p will 
not be given because they are too cumbersome; however, 
they can be readily deduced from Eq. ( 5  1 ). We shall simply 
write down the amplitudes for the scattering involving Gold- 
stone particles and valid in the long-wavelength limit. 

The amplitude of the scattering involving two Gold- 
stone quasiparticles and two quasiparticles of type b is 

I- y k  rab (kp, pk) =rab (kp, pk) = - ----;;fa (%I B, k a k o ,  a p e f ;  
e k a e p  

The amplitude of the scattering involving four Goldstone 
particles is 

pa (lip, ~ k )  =raa (kp, pk) = 
(I-Yk) (1-y*) 

E ~ ' E ~ '  
f i  P1 

The quantities f, ( 0  and f , ( f )  in Eqs. ( 5 2 )  and ( 5 3 )  are 
given by Eqs. ( 4 6 )  and ( 4 9 ) .  In the derivation of Eqs. ( 5 2 )  
and ( 53)  we are assuming that q <go ( q  = p, k )  allows us to 
use the approximation l / ( y ,  f E: ) - l / y ,  in calculating the 
correlation functions of Eq. ( 3  1 ) . We can easily see that the 
amplitude of Eq. ( 5 3 )  changes sign as a result of variation of 
c ,  showing that in the case of low values off  the amplitude 

525 Sov. Phys. JETP 68 (3), March 1989 F. P. Onufrieva 525 



corresponds to attraction between quasiparticles (in agree- 
ment with the well-known behavior in the range (< 1) ,  
whereas at high values of ( the amplitude corresponds to 
repulsion. If ( = 0, the amplitude of Eq. (53) vanishes and 
in the next order in k andp, we obtain the familiar results for 
an isotropic ferromagnet. 

The amplitudes of Eqs. (52) and (53) tend to zero as 
the quasimomentum of a Goldstone quasiparticle ap- 
proaches zero, i.e., they satisfy the Adler principle for sys- 
tems with degenerate v a c u ~ m . ' ~ . ' ~  The nature of the depen- 
dences on the quasimomenta corresponds to the symmetry 
of the system and has the usual form for easy-plane ferro- 
magnets. '9.2" 

The specific properties are, firstly, the repulsive nature 
of the interaction of Goldstone quasiparticles, realized for 
high values of {; secondly, on approach to the point ( = 0 
Eqs. ( 52) and ( 53) remain valid for a decreasing range of 
quasimomenta characterized by aq 4 A( (q = k, p ) .  At the 
phase transition point itself these equations retain their 
original form only if k = p = 0: 

It is interesting to note that the results given by Eq. (54) 
correspond to a specific sequence on approach to the limit in 
the calculation of Ta"(kp, pk): we first have k, p - 0, and 
then A(-0. For the opposite sequence when 
II,, . = 11," = 0, we obtain from Eq. ( 5  1 ) 

For this sequence of going to the limit we have E: = EL (see 
Sec. 2 ) ,  so that r"" = Q7"', and the amplitude given by Eq. 
(55) no longer applies to Goldstone quasiparticles, i.e., the 
Adler principle is no longer obeyed. The same form of Eq. 
(55) at low values of k, p ,  and ( = 1 is exhibited by the 
scattering amplitudes Thh and Tub. This result is identical 
with the result for the scattering amplitudes in the case of a 
quadrupole-ordered phase. " 

We shall finally write down the explicit form of the tem- 
perature Born corrections AFz ( T) and AF3( T) . In the limit- 
ing case described by Eq. (57), they are given by 

with the exception of the range 16 - 4 0  where the terms 
proportional to 0'" make the dominant contribution to 
AF,( T) [the numerical value of Ac, ( 0 )  in Eq. (56) is given 
by Eq. (54 ) l .  If[=O,weobtain 

A F ? ( T )  =0, AF3(T) =-Jo05c2(Vz)  3n-34-5, 

i.e., the result is identical with the familiar Born expression 
for an isotropic ferromagnet. From the system (56) we read- 
ily obtain the required expressions for various thermody- 
namic quantities if we use thermodynamic relationships. 

6. MAGNETIZATION ANDQUADRUPOLE AVERAGES 

The expressions for the free energy readily yield also the 
expression for the quadrupole average Q,, = 3dF/dD - 2, 

but we cannot calculate the magnetization 
Mx = - dF/dHx,  because F ( T )  in Eq. (56) is defined at 
Hx = 0. Therefore, we shall calculate the averages of the spin 
and quadrupole operator2 inde~endently using the renor- 
malized Green function K = (K -' - n ) - ' ,  the relation- 
ship between the averages of the diagonal Hubbard opera- 
tors and the components of the Green function 

(Xill>=(Xi'OX:')-Kb~(i~ j~') I,=,, r=rvr  

(57) 

and the relationship ( 10) between the spin and quadrupole 
averages and the averages a = ( X  ' ' - X - ' - ' ) , 
A = 3 ( X 1 '  + X-I - ' )  - 2. If in Eq. (57) we use the unre- 
normalized Green functions of Eqs. (23) and (27), we ob- 
tain the spin-wave result for (Xku') : 

(we recall that X ""=X - ' - ', X hh=X ' I ) or explicitly 

[ 4 ( T )  is exponentially small in the first two cases]. 
The corrections due to the interaction of collective exci- 

gtions, obtained using the renormalized Green function 
K(k ,  w ,  1, are 

Here. 
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and Lt and are defined by the expressions in Eq. (28) if we 
substitute2 { a n d z  from Eq. (42). The expressions for the 
corrections in Eq. (60) consist of terms of two types. Those 
of the first type, Agr" and Ar"(T) are related to the renor- 
malization of the functions of the u-v transformation, and of 
the frequencies at T = 0, i.e., they are related to the differ- 
ence between the effective quasiparticles and those which are 
unrenormalized and governed by the quadratic Hamiltonian 
[see Eqs. (12)-( 14) 1. Together with the term q, + 9 ( T ) ,  
which occurs in Eq. (58), they describe the contribution 
governed by noninteracting quasiparticles which are not un- 
renormalized but effective. The term of the second type, Pp 
(T),  is associated with the dynamic interaction of these 
quasiparticles. The expressions in Eq. (60) are obtained 
bearing in mind that the diagonal components of the renor- 
malized Green function are given by Eqs. (23) and (27) 
subject to the substitutions ul'- Ep, d - P, and B-Ep3', us- 
ing also the expansion in terms of A E ~  under the sign of the 
sum over w,, , the identity 

and the representation 

for the temperature Born correction to the frequency. 
Explicit calculations give the following exp'ressions for 

P'(T): 

P ( T )  =04b(3 /2)%(5/z )  ( 3 ~ 1 2 )  (4n) - ' ,  )KO. 

The explicit expressions for Af"(T) will not be given: they 
have the same structure as Eq. (59) with the multipliers Ac, 
Ad, and Ae which are numerically small compared with c, d, 
and e. 

The expressions obtained for (XIq" allow us, firstly, to 
find the renormalized phase boundary c,, (T )  at low tem- 
peratures T, governed by the condition 7 = 1, i.e., by the 
condirion 6 = b ( . If we calculate b, 
= 1 - 2 (X ' I )  - (X I )  for the unrenormalized value 
6 I:' = 1, we obtain the same result as in Ref. 1 1, where use is 
made of the condition of softening of the renormalized spec- 
trum of a quadrupole-ordered phase. Secondly, we can read- 
ily obtain now the explicit expressions for the magnetization 
and quadrupole averages employing the expressions in Eq. 
( lo ) ,  and the definitions 

and the definition of 7 given by Eq. (5) .  Outside the direct 
vicinity of the phase transition point, they are of the form 

Q z = ( l - E )  /2+ ()-3) [ v + f " ( T ) + P " ( T )  ]/2+EQb, 
(62) 

@"=cpP+Acp", P" ( T )  = P ( T ) + A P ( T ) ,  

where the first terms correspond to the self-consistent field 
approximation at low temperatures T, and the other terms 
are low-temperature corrections associated with the exis- 
tence of collective excitations and with their interactions. If 
6 = 0, when 4( T) and Pa( T) are given by Eqs. (59) and 
(61 ) in the limiting case of (< 8, whereas Arp(T), q, van- 
ish, we obtain the familiar result for an isotropic ferromag- 
net. 

Near a phase transition we cannot use perturbation the- 
ory (in particular, the Born approximation) to describe the 
behavior of thermodynamic functions. Some general conclu- 
sions can nevertheless be drawn from an analysis of the be- 
havior of the system in the Gaussian approximation. We 
note first of all that if the Hamiltonian contains two types of 
external fields, which are the magnetic H a s a  and quadru- 
pole (single-ion anisotropy) fields D "(0 ," f 0 ; "), the 
reaction of the investigated system to external perturbations 
is governed by the isothermal static susceptiblity tensor of 
the 8 X 8 type, which includes the components of the mag- 
netic susceptiblity tensor 

the components of the quadrupole susceptiblity tensor 

and the mixed susceptibilities 

In studies of phase transitions on the basis of the single-ion 
anisotropy constant D- - Do the greatest interest lies inthe 
quadrupole susceptibility xt", = - d 'F/aD 2 .  It follows 
from the above definition that the role of this quantity at a 
phase transition induced by variation of the anisotropy D is 
similar to the role of the specific heat C =  - Td2F/dT2 
when a phase transition is induced by variation of tempera- 
ture. At T = 0 in the Gaussian approximation the quantity 
Qo = ( 3 0  ") is given by 

Obviously, the critical behavior of the susceptibility ,y: 
= - 3dQ,/dD is governed by the mode E: and not by a 

Goldstone mode, because 

It follows from Eqs. (63) and (64) that in the Gaussian 
approximation we obtain 

The behavior described above is of completely different 
nature from quantum critical behavior (at T = 0)  ofsystems 
with a two-component order parameter experiencing an 
orientational phase transition as a result of variation of the 
field, characterized by d,, = 2 (Ref. 21); it is not a feature of 
a phase transition induced by variation of the anisotropy 
constant, but it does characterize a phase transition at T = 0 
occurring at a multicritical point, representing in particular 
a consequence of the existence of a critical mode with a linear 
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dispersion law at  the orientational phase transition point. 
All this applies not only to a single multicritical point A 
corresponding to S = 1, but also to all the 2S - 1 multicriti- 
cal points which exist in this system for arbitrary S a n d  are 
also characterized by a linear dispersion law of the critical 
model2 (we recall that at an ordinary orientational phase 
transition of the second order a soft mode obeys a dispersion 
law E~ a k 2).  I t  should be pointed out that for the same rea- 
son we can expect specific critical behavior of the system on 
approach to multicritical points also along other directions, 
for example, when H x  is varied. This problem and on the 
whole the behavior of all the components of the isothermal 
static susceptibility tensor will be discussed e l~ewhere .~ '  In 
the case of the critical behavior at T #O, we find that at all 
very low but finite values of T there is a small but finite 
region near the phase transition where the critical behavior 
obeys the classical scaling laws and outside it we observe the 
quantum critical behavior described above. 

CONCLUSIONS 

In summarizing the results we must stress that the be- 
havior of the investigated system taken as a whole is gov- 
erned by two factors. The first is the symmetry which deter- 
mines the properties common to all the easy-plane systems: a 
phase with a spontaneously broken symmetry exhibits a 
Goldstone mode with E,  a k, there are definite dependences 
of the scattering amplitudes of these modes on the quasimo- 
menta, etc. The second factor is associated with the follow- 
ing: the single-ion anisotropy acts as an external quadrupole 
field and it not only sets the symmetry but also introduces a 
new qualitative feature associated with broadening of the 
basis of the operators representing the state of the system, 
which increases from the three-dimensional basis of the 
SU(2)  algebra to the eight-dimensional basis of the S U ( 3 )  
algebra, giving rise to specific features of the behavior exhib- 
ited only by a system of this kind. For example, the spectrum 
of collective excitations of a conventional easy-plane ferro- 
magnet consists of three branches (two degenerate branches 
of transverse oscillations and one branch of longitudinal os- 
cillations), whereas in the case under consideration there are 
eight branches: six pairwise-degenerate branches of trans- 
verse oscillations with frequencies &:, .$, EL and two 
branches of longitudinal oscillations corresponding to 3; 
and 00, (longitudinal oscillations are ignored because they 
are unimportant at low values of T). The role of the optical 
modes E L  and EL is very important and, in particular, it is 
shown that they and not the Goldstone mode E: determine 
the critical behavior of the system. 

The interaction of collective excitations is also a charac- 
teristic: it changes with 6 = D /W,, and, for example, in the 
case of long-wavelength Goldstone quasiparticles it varies 
from attraction at low values of 6 to repulsion at high 6. A 
change in 6 alters also the signs and nature of the tempera- 
ture corrections to the velocity of sound of a Goldstone 
mode, the anharmonic temperature corrections to the free 
energy, the magnetization, and other properties. (Transfor- 
mation of these and other properties due to variation of 6 
reflects the transformation of the structure of the spin order 
from "pure" ferromagnetic for 6 = 0 to "pure" quadrupole 
for { = lC, .) Finally, it should be pointed out that the criti- 

cal behavior of the system is special at  a phase transition to a 
quadrupole-ordered phase near a multicritical point. All 
these special features of the behavior of the investigated sys- 
tem are discussed at  the ends of Secs. 2-6. 

In describing the various properties we limited our- 
selves to the Born approximation, which is known to predict 
correctly all the qualitative effects at low temperatures T 
(with the exception of the scaling range). As far as the nu- 
merical coefficients are concerned, the Born approximation 
allows for terms up to - l/rg inclusive (in the case of ther- 
modynamic functions), which is satisfactory in the case of 
long-range interactions of the RKKY type known to act in 
systems with a strong single-ion anisotropy (for example, 
rare-earth magnetic materials). 

We shall now make some comments of methodological 
nature. 

1. As pointed out already, the earlier applications of the 
diagram technique to the Hubbard operators have failed to 
yield, in an anharmonic theory, the results satisfying the 
Goldstone theorem and the Adler principle. On the other 
hand, our attempt to use the same technique8 yielded direct- 
ly results correct in respect of the symmetry. Our results 
indicate that this is not due to some defect of the Hubbard 
diagram technique, but is a consequence of lack of allowance 
for transitions between excited states and lack of allowance 
for the corresponding Green functions, which is a general 
feature in the development of low-temperature theories. ( In  
the technique described in Ref. 8 all the Green functions are 
included automatically.) We can allow for these transitions 
by employing the low-temperature modification of the dia- 
gram technique for the Hubbard operators, involving 
"dressing" of the Green functions K,, defined without the 
factors b,,, because otherwise the relevant Green functions 
are rejected automatically. The fundamental importance of 
inclusion of all the Green functions even at  low temperatures 
is demonstrated above by presenting the results in terms of 
the formalism of the Hubbard diagram technique. 

2. The results of the present study demonstrate that the 
Hubbard diagram technique and the technique of Ref. 8 are 
equally suitable in the case of low and high values of(, and in 
particular they reproduce the familiar results when {< 1 and 
5 = 0. We shall stress this in connection with a review of 
these methods in Ref. 23, where it is suggested that they are 
valid when the nonlocal interaction is weak compared with 
the one-particle interaction, i.e., at  high values of 6. This is 
not true because the zeroth-order Hamiltonian is not of the 
one-particle type, but includes not only external fields but 
also the molecular field. In particular, if D = 0, it is identical 
with the zeroth-order Hamiltonian utilized in the Vaks-Lar- 
kin-Pikin technique, which is known to describe well an iso- 
tropic ferromagnet. 

In discussing the Maleev-Dyson, Holstein-Primakoff, 
or G ~ l d h i r s c h ~ ~  transformations, we can hardly assume that 
their use is more natural even when 6-g 1, because then they 
yield an imaginary unrenormalized spectrum (see the Intro- 
duction). The alternative to the diagram technique is the 
quasiparticle method which can be applied to systems with 
the single-ion anisotropy and nonlocal tensor interactions 
and represents a special transformation to the Bose opera- 
tors of Ref. 6, defined in terms of the S U ( n )  algebra 
( n  = 2S + 1) .  

I t  should be stressed also that all these transformations 
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to the Bose operators, like the diagram techniques applied to 
the spin and Hubbard operators, are based on the self-consis- 
tent field method as the zeroth approximation; this is clear 
from the definition Sz = S - a + a of the Maleev-Dyson or 
Holstein-Primakoff transformation, which implies 
(SZ), = S, and similar definitions in the case of diagonal 
operators employed in the case of the transformation pro- 
posed in Ref. 6. Moreover, at low temperatures T these dia- 
gram techniques degenerate to the corresponding diagram 
techniques for interacting Bose particles, which are equiva- 
lent in the case of the Vaks-Larkin-Pikin technique to quasi- 
particles introduced by the Maleev-Dyson transformation 
(see Ref. 16), whereas in the case of the Hubbard diagram 
technique they are equivalent to quasiparticles introduced 
by the transformation of Ref. 6 (see Ref. 11 ). Therefore, the 
selection of one of the two approaches-diagram techniques 
for the spin and Hubbard operators or quasiparticle meth- 
ods-is dictated at low temperatures T simply by conven- 
ience. It is important to select them satisfactorily for the task 
in hand, and in particular, in the presence of the easy-ion 
anisotropy and nonlocal tensor interactions, we should use 
the Hubbard diagram technique (or  the technique of Ref. 8 )  
and the transformation to the Bose operators defined in the 
S U ( 2 S  + I ) algebra. 

"Special approaches have also been developed3-' beginning from the well- 
defined unrenormalized quasiparticles, but all of them are limited to the 
case when D / J ,  1. 

"The co~dit ion 0) 1 - { or the more general condition Q)g, ( 0 )  - {, 
where lL, ( 0 )  is the renormalized value of the critical anisotropy at 
T = 0, applies at temperatures outside the range of existent: of the easy- 
plane phase, because when H = Oa multicritical point { = lC, ( 0 )  corre- 
sponds to T, (0 = 0. 

"This conclusion is rigorous in the case of the K,,,, Green function, but it 
is only approximately valid in the case of K,, . The structure of this 
function differs from the structxre of the unrenopalize4Greenfunc- 
tion K,, .  , because i n c l ~ i o n  of 11 in the equality K ' = K ' - I1 has 
the effect that the 4 x 4  K'"" block no longer contains zeros, in contrast 
to the unrenormalized Green function [see the expressionsjn Eq. (26) 1 .  
This has the effect that the renormalized Green function K,, contains 
not only terms - l/[D(eg f io , , ) ,  but also terms - l/D(&i; + iw, ,) .  
However, their contribution is exponentially small when Q< 1 - {. 

"This behavior is in agreement with the current ideas on a phase transi- 
tion induced by variation of the single-ion anisotropy when H = 0 in 

systems of this kind, which are characterized by d,, = 3 and have been 
studied by, for example, numerical experiments in the one-dimensional 
caseZ2 or have been deduced from phenomenological considerations.' 
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