
The thermodynamic and magnetic properties of a system of superconducting 
twinning planes 

A. A. Abrikosov, A. I. Buzdin, M. L. KuliC and D. A. Kuptsov 

Moscow State University 
(Submitted 9 June 1988) 
Zh. Eksp. Teor. Fiz. 95,371-383 (January 1989) 

The influence of a system of twinning boundaries with local enhancement of superconducting 
pairing on the thermodynamic characteristics of the superconducting transition is examined. The 
temperature dependence of the specific heat of such a system is calculated. The results are 
compared to specific-heat measurements of single crystals of the high-temperature 
superconductor YBa,Cu307 - , . Josephson interaction of the superconducting twinning planes 
occurs above the bulk transition critical temperature. The behavior of the upper and lower critical 
fields is investigated in this region. The force of interaction between the superconducting vortex 
and the twinning plane is determined and the role of this interaction in vortex pinning is 
discussed. 

1. INTRODUCTION of the twins near the TP, and the thermodynamic properties 
A characteristic feature of YBa2Cu307 - , high-tern- of such a system will be identical to those in a model with a 

perature superconductors is a developed twinned structure 
with a ( 1 10) twinning plane. The twinning boundaries form 
a regular sequence with a characteristic interboundary dis- 
tance L-200 A-2000 A (see, for example, Refs. 1-3). 
Twinning is caused by a structural transition at -700 "C 
from the tetragonal to the orthorhombic phase. 

Clearly, specific conditions for the superconducting 
transition can arise near the twinning plane (TP): both local 
enhancement and suppression of superconductivity. The in- 
fluence of TP on the properties of regular superconductors 
has been noted already in Ref. 4. Experiments conducted by 
Khaikin and Khlyustikov5 have demonstrated that a twin- 
ning plane in tin will produce superconductivity with a criti- 
cal temperature T, higher than the bulk critical temperature 
T, localized at the TP. TP-enhanced superconductivity also 
occurs in and a number of other simple  metal^.^ A 
theory of twinning-plane superconductivity (TPS) based on 
a modified Ginzburg-Landau functional was developed in 
Refs. 8-10. This theory has made possible a rather compre- 
hensive description of the properties of TPS in simple met- 
als. A survey of experimental and theoretical research of this 
stage of investigation of TPS is given in Ref. 11. 

Evidently the presence of twinning planes in 
YBa2Cu,07 - , high-temperature superconductors can also 
lead to local superconductivity enhancement and to an in- 
crease of T, by a few degrees over C, ( T, - T, - 4-5 K ) .  
This is indicated by precision measurements of the specific 
heat of a YBa2Cu,07 -, single crystal,12 revealing two spe- 
cific-heat anomalies: a small anomaly at 93 K and a substan- 
tially greater anomaly at 89 K." Observation of the radical 
temperature dependence characteristic of TPS, of a critical 
field parallel to the twinning plane in oriented 
YBa2Cu307 - , crystals has also been reported.14 These re- 
sults are naturally explained within the framework of twin- 
ning-plane superconductivity. l5  

The nature of the boundary which is the twinning plane 
in high-temperature superconductors is not yet clear. In Ref. 
16 it is proposed that the TP has weak coupling properties, 
i.e., it is in fact an insulating interlayer making electron tran- 
sitions between the twins difficult. In this case, however, 
superconductivity enhancement can also occur within each 

superconductivity order parameter that is continuous at the 
TP.11.Z5 Finally, TP in high-temperature superconductors is 
also related to the interesting possibility of exotic supercon- 
ductivityZ7 where the phase of the order parameter changes 
by T in the transition through the TP. 

In the present study we assume for definiteness the local 
superconductivity enhancement occurs near the TP and that 
the order parameter is continuous at the TP. We also briefly 
discuss the situation when the TP is impermeable to elec- 
trons. 

In Sec. 2 is considered the temperature dependence of 
the specific heat for a twinning-boundary lattice. These re- 
sults were partially published in short form in Refs. 15 and 
18. 

Near T, the superconductivity is largely localized in the 
vicinity of the twinning planes, and their interaction is of a 
Josephson nature. This case is analyzed in Sec. 3 which also 
contains an exact calculation of the Josephson current 
between neighboring twinning planes. 

In Sec. 4 is analyzed the vortex structure in a TP lattice 
in conditions of Josephson interaction, as are also the upper 
and lower critical fields of this system. 

Finally in Sec. 5 we investigate vortex interaction with 
the TP at a temperature below the bulk superconducting 
transition temperature T, . 

We note that our analysis also provides a description of 
superconducting super lattice^'^ fabricated by layered sput- 
tering of two superconductors when the thickness of the su- 
perconductor layers with the higher critical temperature is 
less than the superconductor correlation length lo yet the 
superlattice period exceeds go. 

2. TEMPERATURE DEPENDENCE OF THE SPECIFIC HEAT 
FOR A PERIODIC TWINNED STRUCTURE 

It is convenient to use for the description of TP super- 
conductivity the modified Ginzburg-Landau functional1' 
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thex axis is assumed to be perpendicular to the TP, a = r/q, 
T = ( T - Td )/Td and standard notation is employed. The 
ony terms requiring special mention are the 8-function terms 
describing superconductivity enhancement near the TP 
(x = nL, n = 0, f 1, f 2 ,... ). The coefficient y is directly 
related to the increasing critical temperature for a solitary 
TP (L = UJ): 

ro represents the characteristic dimensionless temperature 
for TPS, and hence it is convenient to introduce the variable 
t = T / T ~  = ( T  - Td )/( Tc - Td ) in place of temperature. 
t, = 1 corresponds to the transition temperature of a solitary 
TP, while the transition temperature for a periodic sequence 
of twinning planes is determined by the expression9." 

where { ( T ~ )  = (7/4mr0) 'I2 = fo/~0112 is the characteristic 
dimension of the region where superconductivity is localized 
near the TP. 

The characteristic order parameter for describing TPS 
is $o = ( ~ ~ / v b )  'I2 = y(m/b) 112." It is therefore conven- 
ient to use the dimensionless variables r' = r/f(ro) and 
$' = $/$o. We shall henceforth drop the primes. The equa- 
tion that follows for the order parameter from ( l )  takes in 
this notation the form 

It is necessary to limit the analysis of the specific heat of the 
TP system in this section to a solution of (4)  that depends 
only onx, $ = $(x), and to set A = 0. The solution $(x) is 
periodic and it is sufficient to consider the interval - z / 
2 g x ~ z  /2, where z = L /{(ro), and the role of the 8-func- 
tion in (4) reduces to the boundary condition $'I, = +, 

- $(O) ). The maximum order pa- = - $(0)($'lx= -,, - 
rameter $ = $,is achieved at a TP for x = 0, while the mini- 
mum order parameter $ = $, iz achieved halfway between 
the twinning planes, forx = + L /2. The first integral of Eq. 
(4) is 

and I is related to $o and 

Taking advantage of the fact that the solution of Eq. (4)  
satisfies the condition SF/S$ = 0, we can write the expres- 
sion for the specific heat of an inhomogeneous supercon- 
ducting system as 

where AC,, = 1/T, 76 is the jump of the specific heat in the 
transition to the superconducting state when T = T,  in a 
homogeneous superconductor (in the absence of TP). 

Knowledge of the first integral (5) makes it possible to 
find the solution for $ ( x )  by quadratures and to go from 
integration with respect to dx to integration with respect to 
d$. We then arrive at the equation set 

-- 
21 (To) - ?,' [ ($'-$?) (21;$+)1.) 1% ' 

It is also possible to write (8) in terms of the incomplete 
elliptic integrals F(p,k)  and E(p,k): 

The temperature dependences of the specific heat for various 
2: calculated by formulae (8)  are shown in Fig. 1. 

In the case of a large distance between twinning planes 
L )  f (T,) and t4 1 we obtain by expanding all integrals in 
(8) ,  (9) in the parameter t /$q 4 1 

C (t=O) ( K - E )  '+E2 -- - 

K2 
= 0.61, 

ACo 

where the complete elliptic integrals are K = K(2-'I2) and 
E = E(2-'I2), and the result is satisfaction of the following 
universal relation: The specific heat of the system is 
C-0.61AC0 when T =  T,. When T =  T, the jump in spe- 
cific heat is not substantial: hC/ACo = 2g(.r0)/L. 

Experimental investigations of the specific heat of a 
YBa2Cu307 _ , single crystalI2 have revealed an anomalous 
temperature dependence C(T) similar to ours. A compari- 
son with experiment1' reveals that )C/ACo- 1/6 and there- 
fore the period L - 12f(.rO) - lo3 A. This corresponds to the 
period of the usually observed twinned structure in 
YBa2Cu,07 - The temperature dependence of the specific 
heat for L / 2 f ( ~ ~ )  = 6, calculated from (8),  is given togeth- 

FIG. 1.  Temperature dependences of the specific heat in the supercon- 
ducting phase for a periodic system of twinning boundaries for various 
distancesbetweentheTPL=L/l(~,), t =  ( T -  T , ) / ( T ,  - T , ) .  
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2) = fl is achieved between the twinning planes. Taking this 
into account, as well as the boundary condition on the TP, 
we write 

FIG. 2. Temperature dependence of the specific heat for a periodic TP 
system with L /&(r0)  = 12 together with measurement data on the specif- 
ic heat of a YBa,Cu,O, - single crystal1'; t = ( T - T, )/( T, - T, ). 

er with experimental data12 in Fig. 2. The experimental 
data12 clearly indicate that a small specific-heat peak occurs 
near T, and is apparently related to fluctuation effects ne- 
glected in our analysis. 

3. JOSEPHSON INTERACTION BETWEEN 
SUPERCONDUCTING TWINNING PLANES 

If the distance L between twinning planes exceeds the 
width of the localization region g(r0) of $(x) near the twin- 
ning plane neighboring planes will have little mutual influ- 
ence and the critical temperature will only slightly exceed 
the critical temperature of a solitary plane9: 

This formula is obtained from (3)  in the limit L /g(r0) ) 1. 
In this case Josephson interaction between neighboring 
twinning planes should occur at a temperature 0 < t < t,. Us- 
ing a description based on the functional ( 1 ) it is possible to 
obtain a complete solution to the problem of Josephson in- 
teraction of TP. 

We will find the critical current between neighboring 
twinning planes. Assume a zero phase of the superconduc- 
tivity parameter $ at one plane (x = 01, and a phase q, at a 
neighboring plane (x = L) .  We will write the order param- 
eter as $ ( x )  = feip, where f is the amplitude and q, the phase. 
Then the equations that follow from (4)  for f and q, take the 
form 

and f '  (x = + 0) = - f(0)  at the twinning plane, while the 
density of the current J flowing between the planes is 

Eliminating the phase q, from ( 12) we obtain an equation for 
f: 

-f" +j"f+tf+j"O, (14) 

which has a first integral 

The maximum value f(0) =f, of the order-parameter mod- 
ulus f is achieved at the TP, while the minimum value f(L / 

ft i" fl' 1" I , = ( t - i ) f o ' + - - - = t i : + - - - .  
2 f,2 2 f , "  

(16) 

Using the first integral ( 15) and relation ( 13 ) and going 
from integration with respect to x to integration with respect 
to the new variable u = f 2/f: we can obtain a solution to our 
problem by quadratures: 

(fJf,)l 

L 
-= 

du 

E(ro) { (u -1 )  ( t u + f ? ~ ( u + l ) / 2 + j ~ / f : ) ) ~  ' 
(17) 

In the case of Josephson interaction fo% fl and we break 
up the integration range in ( 17) into two ranges: from 1 to 
fo/fl and from fo/fl to ( f,/fl )2, where it is possible to ignore 
f: u (u + 1 )/2 in the radicand of the first integral, while in 
the second integral we assume f: u (u + 1 )/2 z f: u2/2 and 
ignore the contribution from j2/f ;. 

Carrying out the integrations, we obtain 

. exp (Ct'") 
jo=l F =  

2 
2f2Fzt'b ' 1+ (l+f,'/2t)'" ' 

(19') 

It is possible to extend integration in the integral ( 18) to co , 
and since the primary contribution comes from the region 
u eo/f, we can ignore f :u(u + 1 )/2. Integrating and tak- 
ing ( 19) into account we find that 

i.e., the superconducting current (in dimensionless units) is 

j=2f02Ft'" exp (-Et"*)sin cp, (21) 

I= 1, sin cp, I ,  = 
8$ozefo2t"' exp ( -L t  I > )  

mE(to) [ l+ ( l+ fo2 /2 t ) '" ]2  
(22) 

As regards f i ,  if follows from ( 16) and ( 19) that, it is possi- 
ble to assume f i  = 2(1 - t ) .  

The applicability condition of our approach is the re- 
quirement zt ' I2)  1 (L )C(T) ), since it is this requirement 
that will satisfy [see ( 19) 1 the inequality fo/f, ) 1, i.e., Jo- 
sephson interaction between the planes. As seen from (22), 
in the case of TPS the current and phase are related by the 
regular Josephson relation: a sinusoidal dependence of the 
current on the phase. 

A twinned structure of the type formed in 
YBa2Cu,0, -, therefore consists of a system of multiple Jo- 
sephson junctions whose critical current is determined by 
relation (22) when T, < T <  T,. 

When T <  T, the critical current will already be deter- 
mined by vortex-pinning effects. An entirely different tem- 
perature dependence of the critical current of the specimen 
can therefore be expected when T <  T, and T, < T < T,. 
Our analysis has focused on a critical current perpendicular 
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to the TP. An analysis of critical current along a TP is given 
in Ref. 1 1. An experimental analysis of the critical current of 
TP in single crystals is likely to encounter difficulties both 
due to the imperfection of the twinning planes themselves 
and due to twinning-boundary systems having two different 
orientations. 

4. THE MAGNETIC PROPERTIESOFA SYSTEM OF 
SUPERCONDUCTING TWINNING PLANES 

If we know the dependence of the current on the phase 
difference of the order parameter at neighboring planes it is 
possible to write the free-energy functional of our system for 
the case of Josephson interaction of layers: 

1 4t" exp (-Et'") +,I $n12- ( . ~ ~ $ ~ k + $ n ' % + A  (I+t'") 

where2' $n is the order parameter of the nth TP, while V, is 
the gradient in the yz plane. Josephson interaction is also 
possible in quasi-two-dimensional intercalated supercon- 
ductors. This situation was considered in Refs. 20-22 whose 
approach can also be used in describing the magnetic proper- 
ties of a TPS system. 

It is also interesting to consider the behavior of the up- 
per critical field H !, parallel to the TP (the case of a critical 
field perpendicular to the TP is trivial: the H i2 plot has the 
same slope as the case where there are no twinning planes, 
although it begins at T, rather than T, ). Selecting a field 
gauge in the form A - A ,  ( y)  = - HYl( r0 )  for thecaseH llz 
(the dimensionless variable y+y/l(r0)  is used fory, see Sec. 
2) and introducing into (23) in gauge-invariant form the 
vector potential 

we obtain the following linear equation for the order param- 
eter $, = $ (Ref. 20): 

(24) 
It follows from (24) that in the absence of a magnetic field 
the transition temperature is t, = 1 + 4 exp( - Z) ,  in com- 
plete agreement with ( 1 1 ) . The critical field is small in the 
immediate vicinity oft, and it is possible to expand the co- 
sine in (24). As a result we obtain for $ the usual oscillator 
equation 

dz$ - --- + 29 exp ( - E )  
dy2  

) = (t.t)$. (25) 

from which we find directly the temperature dependence of 
the parallel critical field as t + t,  : 

(DO exp (L l2 )  
H,," = (tc-t) .  

2.2" n5 (to) I, 

The parallel critical field for a solitary twinning plane 
near the critical temperature t = 1 is" 

H !2 ( t )  will approach H:2 ( t )  with diminishing tempera- 
ture. Here, however, the magnetic field has already a sub- 
stantial effect on the distribution of the order parameter 
$(x) near the TP, and our approach based on the functional 
(23) becomes inapplicable. Nonetheless even a simple com- 
parison of relations (26) and (27) reveals that a segment of 
positive slope appears on the H !, ( t )  curve (see Fig. 3). We 
note that this region can be observed only for systems with a 
period L -{(r0) ( 100-200 for the YBa2Cu,0, - , com- 
pound), while the temperature interval ( l,t, ) where a posi- 
tive curvature already exists is exponentially small for 
La<(%) ,  and the square-root dependence (27) should in 
fact be observed. 

The weak Josephson current between the layers leads 
also to a specific feature of the magnetic-field screening in 
the TPS system. We will first consider the case of a parallel 
field B = B,. Maxwell's equations take here the form (using 
the regular dimensional coordinates x and y )  : 

where 

When the magnetic field varies slowly over the period of the 
system we can replace $'(x) in (28) with 

and in an approximation linear in the field we can expand the 
sine in (29). As a result we obtain 

FIG. 3. Schematic representation of the temperature dependence of the 
parallel upper critical field H,, 11 for a TP system, H,, is the critical field of 
an isolated TP; the dashed curve represents the H,, 11 ( t )  relation in the 
region where the approximation employed is not valid. 
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The equation for the field distribution of a vortex filament 

has the usual solutionz3 characterized solely by small scales 
on the x and y axes. The vortex is elliptical in shape and is 
strongly elongated along they axis: 

The core contribution to the vortex energy (core diame- 
ter - L )  is, as in the regular case, small and the parallel lower 
critical field isz0 

H ?, is exponentially small and its temperature dependence 
H 5 (T) is substantially nonlinear near T, due to the sharp 
reduction in the Josephson depth A, with diminishing tem- 
perature. 

As follows from (30) and (31), the screening of the 
weak magnetic field parallel to the TP along the x axis is 
characterized by the London depth A, [see (30) 1, while on 
they axis it is substantially weaker and is determined by the 
Josephson depth A, [see (31 ) 1, and A, )A. 

When the field is perpendicular to the TP and the dis- 
tance between the twinning planes is small compared to the 
characteristic scale of field variation, the field distribution is 
described by ordinary Maxwell equations for a supercon- 
ductor, where the London depth of penetration A, is deter- 
mined by the function m, i.e., A, = A [see (30) ]. The 
lower critical field in this case is given by the regular expres- 
sionZ3 

1 0 A 
H , ,  = ---In . 

4nhz 

The applicability condition of this expression is L<A, i.e., 
L<A 2(ro)/[g(ro)  ( 1 - t)  I .  We note that although super- 
conductivity actually breaks down between the twinning 
planes the vortices of the various layers interact through the 
magnetic field. 

In the inverse limiting case, 
L)A 2 ( r o ) / [ f ( ~ 0 ) ( 1  - t)  I ,  thevortexontheTPhasatwo- 
dimensional nature analogous to the case of a thin film,24 
while there is virtually no vortex interaction at the neighbor- 
ing twinning planes (this interaction is exponentially 
small). The effective London depth is here A,, = A  2(ro)/ 
[4g(r0) ( 1 - t I f 2 )  1, while we can easily determine the lower 
critical field as 

This expression for Hi, differs from ( 35 ) solely by the sub- 
stitution A -A,, under the logarithm sign. 

The transition from a system of weakly coupled super- 
conducting twinning planes to three-dimensional supercon- 
ductivity occurs at T=. T,, which should be manifested as a 
sharp change in the nature of the temperature dependence of 
the field H,, . 

The onset of a system of Josephson junctions due to the 
twinned structure for T, < T< T, could also be manifested 
as a nonstationary Josephson effect: generation of an alter- 

nating current and radiation of characteristic frequency 
w ~ 2 e U / ( a / L ) ,  where U is the dc voltage applied to the 
specimen, while a is its thickness. 

5. VORTEX PINNING AT THE TWINNING PLANES 

Local superconductivity enhancement near the TP can 
cause a specific vortex pinning mechanism to appear at the 
TP lattice below the bulk critical temperature T,. We will 
therefore consider the interaction of an Abrikosov vortex 
with the TP in a superconductor with X) 1. In addition to 
the dimensionless variables r + r/f(ro) and $+ intro- 
duced in Sec. 2 we define also a dimensionless magnetic field 
B+B / ( 2 1 f 2 ~ , )  and a vector potential A + A / ( ~ ' / ~ A , ) ,  
where H, = H, ( - T,) = ( 2 7 ~ ~ )  ( ~ / b )  and 
A,  = H,,A(r,) = X Y ( ~ / b ) ' / 2 .  

In these variables the equations for the order parameter 
and the field take in our case the form 

f2 rot rot A = - v,, 
x 2  

where v, = V - A and the field B = - x curl v, . We will 
assume that the vortex axis coincides with the z axis while 
the twinning plane corresponds to the x = D plane, i.e., it is 
located at a distance D from the vortex. 

In a zero magnetic field Eq. (37) for f (x)  has an exact 
solution also for t < 0 ( T< T ,  ) 

In the presence of a vortex parallel to the TP the magnetic- 
field-induced change in f will be small everywhere aside from 
the vortex core and expression (39) can be used forf. We 
will consider the case D) It I - ' I2  when the distance from the 
vortex to the TP is large compared to the superconducting 
correlation length, and vortex interaction with the TP will 
occur solely through the magnetic field. The contribution of 
the vortex to the free energy takes the 

Integration in (40) is carried out over the region outside the 
vortex base. Transforming volume integral (40) into an inte- 
gral over the surface of the vortex base in the standard man- 
ner using equation ( 38 ), we write 

Ho2 A F = ---- t3 ( 
4n 

T.) x2$ [rot v.r,]dS, 

where d S = ndS, while n is the outward normal to the base 
surface. The presence of TP alters v, : 

V , = V , ( ~ ) + V , ( ~ ) ,  (42) 

where vjO' is the velocity distribution in the absence of TP2? 
v:" = ( If I 1/2/X) Kl  (It 1 112P/X) and US" <v:" (the criterion 
for satisfaction of this condition will be given below). The 
force of interaction between the vortex and the TP is deter- 
mined by the contribution made to free energy and depen- 
dent on the vortex position with respect to theTP. The corre- 
sponding contribution in first approximation, is equal to 
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xZHoZ ' 
AFi = - g3(rO) ${[rot V.'~'V.'~~] + [rot V.'~'V:~'])~S. 

4n 

We can assume f = It I far from the TP (aside from the 
vortex base region), and, subject to (38), the following esti- 
mate is valid for the terms in the integrand of (43) : 

Here B"' is the supplementary magnetic field that arises near 
the vortex base due to TP presence, whilep- l/lt 1 'I2. The 
characteristic scale of variation of B "' is the London depth 
x / J t  1 'I2 or the distance D (if D<x/l t  1 ' I 2 )  and hence 
[curl B"'I - ~ " ' l t  1 112/X or B(~'/D and the second term in 
(43) can be ignored in terms of the parameter 1/x or 1/ 
D It 1 'I2. As a result 

- xw: -- g3 (ro) [rot V, ] p=O $ [,,!') ass] =xLH'Z"rO) B, (0). 
4n 2 

(44) 
Here I is the vortex length (in dimensionless units). An ex- 
plicit form of the expression for vjO' was used in obtaining 
(44). 

Applying the curl operation to Eq. (38) describing the 
magnetic field distribution, we obtain 

Using the Green's function 

satisfying theequation AG - ( It IX2)G = 8( p )  we write the 
solution of (45) : 

It is possible to use the known expression for v:" in place of 
v, in (46), i.e., to consider v~ ')<vjO).  Analysis reveals that 
this is valid for t < 0 across virtually the entire range of appli- 
cability of the approach based on Ginzburg-Landau theory, 
at least when It I > 1/x2. 

The f peak near the TP appears at a distance of the order 
of the correlation length l/lt 1"'. At the same time, we are 
interested in B,(O) on the axis of the vortex at a distance 
D) 1//t I ' I2 from'the TP, it is possible to carry out a separate 
integration of the function ( f '(x') - It I ) in (46), which is 
essentially a 8-function near the TP, and in the remaining 
integrand we can set x' = D. Bl (0)  is given by the second 
term in (46). As a result we have the following representa- 
tion for the energy A14; 

When D<x / [ t  1 ' I2 (but D% 1/Jt 1 'I2) the repulsive force of 
the vortex from the TP 

is given by the expression 

When D%xl t  ( 'IZ the repulsive force'is exponentially small: 

The maximum repulsive force is achieved when the vortex 
reaches a distance of the order of the correlation length 1/ 
It 1 'I2 to the TP. The change in the condensation energy in 
the vortex base due to the presence of the TP already plays an 
important role here. 

Especially strong pinning will occur near T, . A special 
situation occurs as t-0: In this case the order parameter at 
the TP is finite and f ' ( x  = D)  -2, whereas f ' = It I in the 
bulk and is close to zero. In this case the local London 
screening length near the TP A,,,, -X/2112 and does not 
tend to infinity as t-0. Therefore the superconductivity is 
effectively of type-I near the TP. As a result anomalously 
strong vortex pinning will be observed as t - 0. The change in 
the condensation energy A& as the vortex core reaches the 
TP is within an order of magnitude of H ~ ~ 3 ( ~ o ) 1 / l t  11/', 
while the pinning force fpi, -A&/((t) -H ;( 2(~0)1.  We 
note that the pinning force remains constant with increasing 
temperature (T-  T,, but It I ) 1/X2). 

If fpi, is known it is possible to estimate the critical cur- 
rent density j,. If we consider the external field to be suffi- 
ciently weak to allow neglecting the vortex interaction, we 
can obtain the vortex equilibrium condition as equality of 
the Lorentz force f, to the pinning force f,,, acting on the 
vortex. Since f, =: Q0c- 'j, I((%) 26 where cPo = &/e is the 
flux quantum, we obtain 

in the most favorable case when the vortex filaments are 
parallel to the c axis (and to the TP), and current flows in the 
ab plane parallel to the TP. However the vortices are hardly 
likely to remain parallel to the TP. It is more likely that 
vortex transit through the TP will begin at one of the ends of 
the boundary of the specimen; the curved segment will then 
travel along the vortex, causing a drop in the critical current. 
A system of parallel twinning planes in high-temperature 
superconductors should cause the vortices to end up 
between the twinning planes. Since the distance between the 
twinning boundaries is less than A,, the dependence of vor- 
tex energy on the core coordinate is easily determined by 
using expression (48) for the force of interaction between 
the vortex and the twinning planes. 

This specific vortex pinning mechanism at TP is, natu- 
rally, most effective when the vortices are oriented parallel 
to the TP and vanishes in the case of perpendicular orienta- 
tion. This is consistent with the results of Ref. 27 where ob- 
servation of strong pinning anisotroy in YBa2CU,0, -, sin- 
gle crystals was reported. 

We have considered the case where the electrons in fact 
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freely penetrate the TP. Another situation is also possible, as 
noted in Sec. 1, when the twinning plane is impermeable to 
electrons. In this case the nature of interaction between the 
vortex and the TP changes: the vortex is attracted to the 
boundary which in this case coincides with the twinning 
plane (in analogy with the problem of the Bean-Livingston 
surface barrierz6). In order to calculate the force acting on 
the vortex we will use formula (41), where integration is 
now carried out not only over the surface of the vortex base 
but also over the twinning plane. Since the TP is now an 
insulating interlayer, while the current j- f 'v,, the compo- 
nent of v, normal to the twinning plane vanishes on the twin- 
ning plane. This condition can be satisfied if we add to the 
vortex its mirror image with respect to the TP with opposite 
current and field direction. Since in this case the magnetic 
field B = - x curl v, = 0 at the TP, due to symmetry, the 
integral over the TP drops out of (41). Consequently the 
vortex interaction with the TP is described by Eq. (44) in 
which B,(O) can be represented as the sum of the field 
- ( It I/x)Ko(21t 1'I2D /x) generated by the vortex-image 

ignoring superconductivity enhancement near the TP and 
the term associated with the increase in f near the TP. This 
latter term is given by the second term in formula (46), in 
which we assume B'O' and v:" to be the sums of the corre- 
sponding quantities for the vortex and its image. It then 
turns out that when l/l t 1 'I2 4 D ( ~ / I  t I ' I2  the force repelling 
the vortex away from the region near the TP with the larger 
value off is proportional to D -' and is given by Eq. (48), 
while the attractive force due to the image is inversely pro- 
portional to the distance: f, = H,26 2(r0)1 It 1/20. Conse- 
quently the equilibrium position of the vortex is localized 
near the TP. The vortex will be at a distance D--,2c(ro)/1t I 
from the TP in immediate proximity to the transition tem- 
perature T, (for ( t  I 4 1) while at lower T the equilibrium 
position virtually coincides with the TP. 

It is possible that the finite transparency of the TP leads 
to the result of Ref. 28, where the decoration technique was 
used to record vortex chains along the TP with a preferred 
orientation of the vortices along the plane at T = 4.2 K in a 
YBazCu,07 -, single crystal. In this connection we empha- 
size that the actual localization of the vortices near the TPZ8 
in no way excludes the local superconductivity enhancement 
near the plane but rather suggests insufficient transparency 
of the boundary, which is the twinning plane, to the elec- 
trons. At the same time it is necessary to take into account 
the dynamics of formation of the vortex state in analyzing 
the experimental re~u1t.s.~' Indeed, the existence of an energy 
barrier to the vortex in the case of a transparent twinned 
boundary impedes its motion through the specimen and may 
cause localization of the vortices near the TP. It would be 
interesting to investigate the change in the nature of vortex 
distribution as the temperature is raised to T, . 

CONCLUSION 

The existence of twinning boundaries in YBazCu,07 - , 
high-temperature superconductors may, similar to the situa- 
tion in tin and niobium, lead to superconductivity localized 
at the TP. A number of experiments attest to the appearance 
of superconductivity in twinning planes in YBazCu,07 _ , at 
a temperature 3-5 K above the critical bulk temperature 
T, .'2,'4 AS demonstrated in the present study, the thermo- 

dynamic and magnetic properties of high-temperature su- 
perconductors in which a regular twinned structure has been 
observed is characterized by a number of anomalies in the 
vicinity of T,  . Precision magnetic and calorimetric mea- 
surements on YBa,Cu,O, - , single crystals with simulta- 
neous control of the period of the twinned structure is of 
interest in this connection. 

In conclusion we emphasize that these results can also 
be used to describe superconducting superlattices obtained 
by layered sputtering of various superconductors. 

The authors wish to express their gratitude to S. V. Po- 
lonskiT for his assistance with the numerical calculations. 
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