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It is shown that a systematic theory of strong electron-phonon interaction that takes account of 
the formation of small polarons and bipolarons gives a satisfactory description of the basic 
properties of high-temperature metal-oxide superconductors. 

The discovery of high-temperature superconductors 
(HTS) Is' has given a powerful impetus to the creation of a 
large number of new theories of high-temperature supercon- 
ductivity. In this connection two very fundamental ques- 
tions have arisen: First, what type of theory (mean-field the- 
ory (BCS), or a theory of local bipolaron pairs3s4) describes 
the new HTS's most adequately, and, second, what interac- 
tion (Coulomb5 or electron-phonon) is responsible for the 
formation of the pairs? 

In this paper we consider a broad spectrum of experi- 
mental data that appear to confirm the applicability of the 
many-polaron theory of superconductors with strong cou- 
pling3s4 to the HTS's La-Ba-Cu-0, La-Sr-Cu-0, Y-Ba- 
Cu-0, and other metal oxides. 

Thus, Migdal's well known theorem is violated in the 
strong-coupling limit ( 1 ) (Ref. 8) .  The system turns out to 
be in the nonadiabatic regime: 

where E~ is the unrenormalized Fermi energy. 
As shown by the many-polaron theory, allowance for 

the polaron effect (3)  qualitatively changes the nature of the 
superconducting state: In the intermediate region A z 1 ordi- 
nary superconductivity of the BCS type gives way to po- 
laron4 and bipolaron superconductivity in the strong-cou- 
pling limit A 1 (Ref. 3 ) . 

For a polaron superconductor (PS) (Ref. 4), 

As noted earlier,6 the condition for strong electron- 
T . ~ I . I 4 W ( l - E / W 2 ) "  exp( - 

phonon coupling 2w ) (6) 
v , f  Z U , E ~ "  W 2  

practically coincides with the condition for the formation of 
a small-radius polaron 

fulfillment of which is accompanied by a substantial renor- 
malization of the electron spectrum, expressed in an expo- 
nential narrowing of the original electron band, with width 
20, to a very narrow polaron band, with half-width 

W=D exp ( - g 2 ) .  (3)  

Here f(z) = (22) "', z is the coordination number of the lat- 
tice, and 2 and w are the dimensionless electron-phonon 
coupling constant and the characteristic frequency of the 
vibrations, respectively, determined by the usual Frohlich 
Hamiltonian in the momentum representation or site repre- 
sentation: 

- [u ( q )  ezqnc.+c.dq+ H.c. 1, 
qn 

where v, and v ,  are the single-site and intersite polaron- 
polaron interactions of order g2w, due to the local deforma- 
tion of the lattice. 

For a bipolaron superconductor (BS) (Refs. 3 ,6,9) ,  

T,=f ( P I  lm". ( 7 )  

Here f (p) is a function of the carrier concentrationp: f (p) 
=: 3.3p2/3 for small values ofp; m** is the effective bipolaron 
mass: 

CX 

where T,,. -D is the initial hopping integral, m is the band 
mass in the rigid lattice, A =: 2g2w - V, is the binding energy 
of the bipolaron, and V, is the Coulomb repulsion of polar- 
ons at the same site or neighboring sites (depending on 
whether single-site or two-site bipolarons are formed). 

As a result, instead of the monotonic decrease of T,  
a A ' I 2  with increase of th? electron-phonon interaction, pre- 
dicted by the theory of Eliashberg, the polaron theory of 
superconductivity predicts a rather narrow maximum T r  in 
the dependence T, ( A )  (Fig. 1 ) . One can estimate T r  with 
the aid of Eqs. (6 )  and (2) :  

T,'-0.50. (9) 

w-g-'X wq-lu2(q) ; (4)  Thus, in the case of interaction with the high-frequency oxy- 
4 gen vibrational mode onecan obtain T,*=: 500 K. 

c, and d, are electron (hole) and phonon operators, respec- We shall consider the basic properties of HTS, taking 
tively, o, is the phonon frequency, and n is a translation into account the circumstance that a BS is similar to super- 
vector of the lattice. fluid 4He (Ref. 3 ) . 
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FIG. 1. 

1. HIGH T, 

Using Eq. (7)  with realistic values of 2 ~ 2 ,  T,,  , A, 
and w - 0.1 eV, we can estimate 

which gives Tc 2 100 K for p ~ ( 0 . 5 - 1 ) . 1 0 ~ ~  cm-3 (Hall 
measurements). 

2. THE LONDON PENETRATION DEPTH h,(T) 

With the same values of m** and p we obtain a huge 
depth of penetration of a magnetic field: 

which agrees with muon-spin relaxation data." 
For a charged Bose gas the dependence A, ( T) is de- 

scribed by the equation 

where f (E)  is the Bose distribution function. 
Using the excitation spectrum ~ ( p )  for a BS (Ref. 3), 

we can obtain a power dependence AH ( T )  for T 4  Tc : 

where 3/2 < a(4, which is characteristic of "1-2-3" com- 
pounds. 

3. THE UPPER CRITICAL FIELD He (T) 

Small bipolarons are heavy interacting charged bosons. 
The upper critical field of a charged Bose gas has the form 

H,, (T) =H,, (I-t") "It (14) 

in the "clean" limit," and 

H,, (T) =Hd(I-t")"lt" (15) 

in the "dirty" limit.6 Here 

H,,=0.18@,m"T,1~'~, 

Hd=0.24$,1-" (m"T,)" 

are temperature-independent constants determined by the 
mean free path of the bosons, 4, = r / e ,  q is the gas param- 

eter for a weakly interacting Bose gas, and 1 is the mean free 
path for scattering by impurities. 

Equations ( 14) and ( 15) both predict nonlinear behav- 
ior of Hc, near Tc : 

which agrees well with the experimental data for 
YBa, Cu, 0, - , single crystals in a wide range of tempera- 
tures.I3 

4.THE SPECIFIC HEAT 

The first experimentsI4 gave a rather low value of the 
Sommerfeld constant in the normal phase: 

It is now clearI5 that the low value ( 16) of y was due to an 
error in the determination of the slope [dHc2 ( T)/dT ] Tc as 
a consequence of the nonlinear dependence Hc, ( T), and to 
an overestimated value of the resistivityp in the first ceramic 
samples. 

It has been found that the new HTS have a large value of 
y (Refs. 15, 16): 

which is of the same order as (and even higher than) the 
value in A-1 5 superconductors. 

Taking into account that y-p"3m** (Ref. 6) and A H  
-p-'I2(m** 'I2, and using ( 11 and ( 17), we obtain 

which agrees with the estimate ( 10) and with the Hall mea- 
surements. 

One of the most surprising properties of the new HTS is 
the huge discontinuity of the specific heat in single crystals 
at T = Tc (Ref. 17). The specific heat per carrier is 

where k, is the Boltzmann constant. The value ( 19) is evi- 
dence that all the carriers take part in the formation of the 
condensate (as in liquid 4He), and not just a small fraction of 
them (as follows from BCS theory 1. Near T, the C( T) de- 
pendence should be as in 4He, and this, apparently, is ob- 
served in "1-2-3" compounds. l8 

5. THE ISOTOPE EFFECT 

The first measurements gave the value 

where m is the mass of the oxygen atom. In the framework of 
BCS theory the rather low value (20) of a can be explained 
by the anharmonicity of the oxygen modes, and also by Cou- 
lomb effects. 

The polaron theory gives a zero isotope effect at the 
maximum of the curve Tc ( A )  (Fig. 1 ). On the other hand, 
bipolaron limit (A, 1 ) one can obtain a huge isotope effect 
a > 0.5 by assuming that high-frequency modes with 
,-M -112 give the main contribution to g2 (4) .  

In this case, using (7) and taking (8)  into account, we 
obtain 
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where 

is a smooth function varying from F( co , y )  = 2 to 
F(0,y) = 1, and M(a,c,z) is a confluent hypergeometric 
function. 

Thus, 2 =: 2 gives a > 2, and this explains the surprising 
result from the Los Alamos laboratory.19 

6. THE X-RAY-EMISSION SPECTRA AND THE SPECTRA OF 
INELASTIC ELECTRON SCATTERING 

These spectra make it possible to suggest that HTS 
based on cuprates have an energy structure (Fig. 2) in which 
the 0 2p band lies in the Coulomb gap U >  eV between two 
Cu 3d Hubbard sub-bands. It is in this rather narrow 0 2p 
band that the small polarons and bipolarons are formed. 

To summarize, one can give an answer to the most im- 
portant questions: 

1 ) The metal-oxide HTS such as LBCO, LSCO, YBCO, 
Bi-Sr-Ca-Cu-0, T1-Ba-Ca-Cu-0, SrTiO,, Ba-Pb-Bi-0, 
LiTiO,, K-Ba-Bi-0, etc. are bipolaron superconductors that 
can be described by the polaron theory of superconductivi- 
ty.3,4 

2)  The measured isotope effect (20), tunneling spec- 
troscopy, band calculations, and certain other experiments 
provide evidence in favor of an electron-phonon mechanism 

FIG. 2. 

of the interaction in HTS. In conclusion, we note that the 
polaron theory of HTS explains the high values of T, exclu- 
sively as the result of an appropriate combination of the ini- 
tial electron bandwidth D and the electron-phonon coupling 
constant 2 (Fig. 1). Therefore, neither the complex struc- 
ture nor the presence of copper is very important for the high 
values of T, . 
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