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The selection kinetics of mixed states of quantum systems is investigated. Various selection modes 
are considered. Expressions have been found for the transverse magnetization and its flux density 
in the system. The effect of elastic collisions on these quantities is discussed. The phenomenon of 
population trapping in a three-level system is considered. It is shown that this causes a maximum 
transverse magnetization flux in the system. The effect of boundary conditions on selection 
efficiency is considered. The nature of spatial oscillations of transverse magnetization and the 
efficiency of various selection modes are discussed. 

1. INTRODUCTION 

In recent years, researchers have been paying much at- 
tention to optically stimulated drift (OSD) of gas'z2 in a 
coherent electromagnetic radiation field. OSD is caused by 
velocity-selective interaction of gas atoms (molecules) with 
the coherent field. 

An effect related to OSD is the spatial selection of quan- 
tum states (SQS) of atoms and molecules in a coherent elec- 
tromagnetic field.3,4 In both cases the effect is manifested by 
a macroscopic flow ofatoms. However, while OSD separates 
binary gas mixtures into their components through the dif- 
ferent scattering cross sections of active atoms in the ground 
and excited states, SQS is associated with spatial separation 
of active atoms by different quantum states3 or with the sepa- 
ration of an initially noncoherent mixture of quantum states 
into two coherent components that are opposite in phase.4 
Consequently, we can talk about the selection of pure states 
and the selection of mixed states. This paper describes the 
kinetics of the latter selection mode. 

The causes of spatial selection of pure states are 
known3: when a coherent electromagnetic field in the form 
of a traveling monochromatic wave is applied to a transition 
between levels m and n, the Maxwell velocity distributions of 
particles at these levels are deformed. The velocity-selective 
interaction of the atoms with the coherent electromagnetic 
field gives rise to an asymmetric Bennett structure of these 
distributions, which leads to transport of atoms with states 

I m > and In > in opposite directions. The atoms are spatial- 
ly separated by states in a bounded volume. The main condi- 
tion making SQS possible is a sufficient lifetime (T 2 s )  
in each of the separated states, to ensure that the magnitude 
of spatial separation I >  T v, is comparable to the character- 
istic dimension L of the volume occupied by the gas. 

The off-diagonal elementf"" of the density matrix (co- 
herence) of the active atoms is a dispersive function of veloc- 
 it^,^ in contrast to the populations of the states Im) and In), 
whose velocity dependence has the form of a Maxwell curve 
with Bennett holes. Therefore, while the transport of popu- 
lations and spatial selection of pure states are possible only 
off resonance, the transfer of coherence and selection of 
mixed states can occur and are maximal precisely at reso- 
nance-in the absence of particle flows in each state. A clear 
interpretation of this phenomenon can be easily provided in 
the case of transitions between Zeeman-structure leveh4 In 
a frame of reference rotating synchronously with the mag- 
netic-field vector of an electromagnetic wave, there is a pre- 

dominant orientation of transverse atomic spin moments 
along the magnetic-field-intensity vector of the wave, i.e., 
coherence is established in the spin system. The number of 
atoms traveling in the direction of the wave vector of the 
electromagnetic radiation is then equal at resonance to the 
number of atoms traveling in the opposite direction. How- 
ever, the atoms moving along the electromagnetic field inter- 
act coherently with the field for a longer time and, conse- 
quently, transfer a larger transverse angular momentum or 
coherence. In a limited volume, the macroscopic transfer of 
coherence leads to spatial separation of the mixture of quan- 
tum states I m) and In) into coherent components and can be 
observed by known methods.' 

2. RADIO-STIMULATEDTRANSPORT OF MIXED STATES 

Radio-stimulated transport (RST) of coherence is the 
first representative of a broad class of phenomena caused by 
the transfer of coherence from the electromagnetic field to 
an atomic (molecular) system and leading to spatial selec- 
tion of mixed states. 

To describe the phenomenon, we consider low-density 
vapor of active material whose spectral transitions lie in the 
radio-frequency region of the spectum (o,, - lo6-1013 s- ). 
These transitions correspond to Zeeman levels sufficiently 
broadened by a constant magnetic field, to hyperfine and 
fine structure levels, and to transitions between rotational 
levels of molecules in the millimeter and centimeter bands. 
We assume a difference in the populations of states 11) and 
12), which is due to the Boltzmann factor exp( - +ka,,/T) 
(as in the case of thallium vapor), or is produced by nonco- 
herent optical pumping (as in the case of alkaline vapors). 
Quantum kinetic equations describing the density-matrix 
dynamics of active atoms are given for the latter case in Ref. 
3. Their stationary spatially homogeneous solution in a colli- 
sionless situation leads to the following expressions for the 
tranverse-magnetization flux density components: 

Here w is the pumping rate, y = T ;- ' and r = T; are 
axial and transverse relaxation rates, U = 2 1 U,, l/fi is the 
Rabi frequency determined by the matrix element U,, of the 
magnetic dipole interaction, R and k are the radiofrequency 
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detuning and the wave vector, ,u, is the Bohr magneton, 
+- 

70.' 

and d ( v )  is a Maxwell distribution. We assume that the z 
axis is parallel to the wave vector and they axis points along 
the rotating magnetic field intensity vector of the radio 
wave. We employ here the usual expressions for the specific 
magnetization m, and for the magnetization flux density j,, 
in terms of density-matrix componentsf"" (Ref. 6):  

- 

As discussed in the Introduction, j,, is the only non- 
zero flux component at resonance (a = 0). Figure 1 shows 
the transverse magnetization flux as a function of radiofre- 
quency detuning. It is convenient to characterize the magni- 
tude oftransverse magnetization flux by the value of velocity 
V = j,,/np,. For parameter values that are typical of opti- 
cal pumping experiments, y - J? - 10-10' s- ' and 

- 0 5  - l i - b  ' ,;Y ' ,;-z ' j ' 
P, Torr 

FIG. 1 .  Transverse magnetization flux in RST as a function of radiofre- 
quency detuning: U = w = 102y, ku, = 103y. FIG. 3. The amplitude of transverse magnetization flux as a function of 

buffer-gas pressure: U = w = 102y,,. 

FIG. 2. The effect of buffer gas pressure on the transverse magnetization 
flux in RST: U = w = lo2 y,,; 1-P = Torr, 2-P = lo-' Torr. 

w- U- lo4 s-', flux velocity is of the order of thermal ve- 
locity: V-0.4~1,. Thus, coherence transfer occurs over a 
macroscopic distance of the order of 

1-V/I'-lo2-W cm. 

Taking collisions of the active atoms with the buffer-gas 
atoms into account7 yields for the components of the trans- 
verse-magnetization flux-density tensor expressions that are 
considerably more complex than (2.1 ) : 

iz, ( Q )  =v (w+I'+v+aU) JtfM, ( Q )  
+ (QJtl-kJZ1) [vMx(Q) +a(vM, ( Q )  +wMo)] ,  

where 

is the vapor magnetization, M,=np,, a = U /  
( W  + y + v), and v is the gaskinetic frequency of elastic 
collisions of active atoms with buffer atoms (in the strong 
collisions model ) . 

The magnetization flux as a function of pressure (colli- 
sion frequency v) is illustrated in Figs. 2 and 3. 

In the limit of high collision frequencies, the expres- 
sions for the fluxes become simpler and assume the form 

Thus, the transverse-magnetization flux is inversely 
proportional to pressure. Nevertheless, the graph in Fig. 3 
shows that radio-stimulated coherence transfer still remains 
significant at collision frequencies v- lo7-lo8 s-', which 
correspond to pressures of the order of several torr. 

3. TRANSPORT OF MIXED STATES IN TWO-BEAM 
EXCITATION 

In this section we consider a more complex method of 
exciting coherence flows. However, as further discussion 
will show, the method will lead to a more complete spatial 
selection of mixed states. 

To be specific, we consider low-density vapor of an ac- 
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tive element, assuming that subject to separation are long- 
lived states 11) and 12), while the excited state 13) is short- 
lived. Coherent electromagnetic fields in the form of plane 
monochromatic waves with Rabi frequencies U, and U2 and 
detunings R1 = and R2 = w ~ - c B ~ ~  are applied to the 
adjacent transitions 1-3 and 2-3 respectively. 

Velocity selection of the interactions with coherent 
fields leads to a Bennett deformation of the Maxwell distri- 
butions of the particles at levels 1 and 2 and to the spatial 
transport of pure quantum  state^.^ As indicated in Ref. 3, 
spatial selection of pure states is most effective when the 
wave vectors and field detuning meet the following condi- 
tions: 

k, is collinear with k,, 

a,=-Q, sign (k,, k,) . 
Another aspect of the described phenomenon consists 

in the transfer of coherence of the electromagnetic fields to 
the atomic system and in the appearance of a macroscopic 
flow oflow-frequency coherence f 12. The transitions 1-3 and 
2-3 and the transition 1-2 may lie in different regions of the 
spectrum, for example in the optical and radiofrequency 
bands, respectively. In that case, the coherent optical fields 
U ,  and U, will excite a macroscopic flow of radiofrequency 
coherence. To be specific, we will consider just these fre- 
quency ranges in the following discussion, although the 
qualitative aspect of the phenomenon does not depend on 
such a choice. A system of quantum kinetic equations for the 
density matrix of active atoms, corresponding to the case 
under consideration, is given in Ref. 3. 

As we have found in considering RST, the collisions of 
active atoms with buffer atoms decrease the efficiency of 
SQS by reducing the degree to which the density matrix of 
the active gas deviates from equilibrium. Therefore we shall 
consider from now on only the most interesting situation, in 
which we can neglect relaxation via collsions of the above 
type. 

Let, as before, Ai = Ri - ki*v; the quantities 

have the meaning of coherent-excitation rates that depend 
on the detuning R, of the employed radiations and on the 
velocities v of the active atoms. Even though the general 
spatially homogeneous stationary solution can be written for 
any Rabi frequency, we present expressions for specific mag- 
netizations only for the case of not too high Rabi frequencies. 
This option has been dictated by both the complexity of the 
expression for m(v)  in general, and by the not unimportant 
consideration that, according to analysis, the optimal (for 
the production of largest macroscopic magnetization fluxes) 
Rabi frequencies lie in the region where the characteristic 
rates W, of coherent excitation are small in comparison to 
rate A of spontaneous relaxation from the excited state 13). 

For the above limitations, we find (for the case 
U, = U2= U) 

m, = 
n(Qm,+Qm~)  +wEmo 

EZ+d" 9 

where m,=np,.A(v,), E = W +  y, E =  w + r ,  and 
= (E ' + Q 'E / E )  'I2. Here we designate = A1 - A', 

w = ( w1 + W')/2, w = ( w, - W2)/2, 
Q = ( W,Al + W2A2)/A, and @ = ( W,Al - W2A2)/A. 

In contrast to the RST case discussed above, the low- 
frequency coherence f '' and the corresponding transverse 
magnetization m- = - np, f '' appear here because the 
atomic system is acted upon not by a single coherent field on 
the low-frequency transition 1-2, but by two fields applied to 
adjacent optical transitions 1-3 and 2-3. The frequencies of 
these fields are much higher than that of the 1-2 transition, 
so that the excitation of transverse magnetization can be in- 
terpreted as a transfer, to the atomic system, of the coher- 
ence of a combined electromagnetic field at the frequency 
W1 - W'. 

Analysis shows that the described two-frequency exci- 
tation of transverse magnetization is most efficient with par- 
allel pumping beams (klllk2) that satisfy the synchronism 
condition: 

In this case, there exists a region of optimal pumping 
rates that increase the transverse and axial magnetizations to 
values comparable to m,, and provide transverse-magnetiza- 
tion fluxes of considerable magnitude. The optimality condi- 
tions depend on the relation between the detunings. When 
one wing of the Maxwell rate distribution the populations of 
states 11) and 12) is excited (R,  = R,), the optimal Rabi 
frequencies of the optical field are of the order of U- (q/ 
k )  ' 1 2 ~  ( k 2 z k l  - k, q = kl - k2<k).  However, when the 
fields simultaneously deform both wings of the distribution 
(R ,  = - R2-R), the optimal Rabi frequencies are 
U -  (0 '  + q2A '/k ') ' I2.  

We must emphasize that in the case of oppositely direct- 
ed beams there are no optimal frequencies and the specific 
magnetizations are always small in comparison to the quasi- 
equilibrium magnetization. Therefore, from now on, we con- 
sider only parallel beams. 

Satisfaction of the synchronism (3.3) and optimality 
conditions considerably simplifies the general expressions 
(3.2) for the specific magnetization. If the detuning does not 

FIG. 4. Frequency dependence of transverse magnetization under two- 
beam excitation: U = A /4.5 = 2.  102qvT, Y = 3 X lOp3qvT.  
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FIG. 5. Frequency dependence of transverse magnetization flux under 
two-beam excitation: U =  A/4.5 = 2.10' qu,, y = 3.10-"uT. 

exceed the width of the excited state, we can write these 
expressions in the form 

- 
Here ,A = -qv ,  for pumping in one wing and - 
A = 2R - qv, for pumping in different wings; 
A =  (R,  + R , ) / 2 -  ku,. 

The integrated magnetization (the magnetic moment 
per unit volume of gas) is computed from formula (2.5). 
The results of the computation are shown in Fig. 4. Note that 
transverse magnetization is a maximum when the conditions 
for two-photon and two-steps resonances are simultaneously 
met (i.e. in the case of parallel beams with R, = 0, = 0). 
Here we have coherent trapping of the  population^,^ i.e., the 
capture of active atoms into a coherent superposition, not 
connected to the optical level 3, of lower states 11)  and 12). 
Coherent population trapping strongly suppresses the atom- 
ic system's ability to emit or absorb photons. This is achieved 
at the price of inducing a maximum possible transverse mag- 
netization in the system. 

The distribution of the specific magnetization in veloc- 
ity is asymmetric by virtue of the selective nature of interac- 
tion of atoms with coherent radiation, as discussed in the 
Introduction. The asymmetry gives rise to a macroscopic 
magnetization flux along the pumping beam. In this process, 
one of the flux-density components ( j,, ) is different from 
zero even at resonance. Figure 5 shows its dependence on the 
detuning for R ,  = R-R, computed from Eqs. (2.3) and 
(3.2).  This dependence is qualitatively in agreement with 
the results of the corresponding computations made for the 
case of radio-stimulated transport. 

4. MAGNETIZATION WAVES IN GASES 

The wave nature of low-lying energy states in ordered 
spin systems has been known for a long time and is well 
understood. Less obvious is the fact that spin-wave states 
can be observed in disordered systems and even in a gas at 

temperatures far from degeneracy. We will demonstrate this 
fact in the concrete case of a radio-optical resonance in rar- 
efied vapor of an alkaline element. 

As shown in Ref. 7, kinetic quantum equations for the 
density matrix of active atoms can be written in this case in 
the form of equations for the specific magnetization m  (t,r,v) 
in a rotating coordinate frame 

h 

where r is the diagonal relaxation tensor, S is the collision 
operator, 0 = Uey + Ae, is the generalized Rabi frequency, 
M, = np, e, , and e, = k / k .  

In the presence of relaxation, spin-wave states are sub- 
ject to damping and are well defiend only for the case of 
small decrements. Therefore, limiting the example to the 
collisionless case and assuming that all relaxation processes 
can be neglected, we write the equations for the spin-wave 
perturbation Sm in the form 

The solutions in the form of plane waves S m a  
ei(qT - m t )  correspond to dispersion laws 

which determine the possible oscillation modes. 
Of interest is the evolution of the initial perturbation. In 

the general case, propagation of perturbations of any polar- 
ization excites typically not one but all three oscillation 
modes. Only spin waves with a definite polarization are ele- 
mentary waves, i.e, waves obeying a definite dispersion law. 

An arbitrary initial perturbation of magnetization 
evolves in time in the form of the following superposition of 
elementary spin waves: 

where we have introduced two mutually orthogonal unit 
vectors e ,  = a- '0 and eA = [ e ,  x ex 1 .  The coefficients M I  
and M .  are determined by the initial conditions. Equations 
(4.4) show that the oscillations w ,  are polarized along the 
vector e ,  , while the two modes w +  and w -  have polariza- 
tions along e -  = eA - ie, and e+ = eA + ie, respectively. 
Thus, there is a rigid bond between the polarization of spin 
waves and the dispersion law. 

In addition, it follows from Eq. (4.4) that a particular 
polarization possessed by an initial perturbation is preserved 
throughout the process, and that the perturbation evolves as 
an elementary spin wave without exciting other modes of 
magnetization oscillations. At the same time, the initial 
magnetization perturbation, which is a mixture of oscilla- 
tions with various polarizations, continues to be a mixture of 
the same polarizations. 

As in the case of electromagnetic waves, magnetization 
waves are subject to interference and diffraction. However, 
their analysis is made significantly more complex by the fact 
that magnetization waves have three elementary polariza- 
tions (and not two, as do electromagnetic waves). We shall 
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consider some consequences of this interference in the next 
section. 

5. SPATIAL SELECTION OF MIXED STATES 

In this section we present the quantitative description of 
SQS methods discussed above. We shall first turn to the RST 
phenomenon. Consider a gas cell filled with the vapor of an 
active element whose atoms interact with coherent electro- 
magnetic radiation of frequency w = a +  w,,. The initial 
population inversion of the 1-2 transition is ensured by the 
Boltzmann factor or by noncoherent optical pumping. In the 
latter case, the determination of the spatial distribution of 
transverse magnetization (of the radiofrequency coherence) 
reduces to the solution of quantum kinetic equations3 under 
appropriate boundary conditions on the cell walls. 

We consider a cell of length 2L. We assume that a trav- 
eling electromagnetic wave propagates parallel to the z axis, 
so that the specific-magnetization components m, and m- 
vary only along z. We choose "specularly-noncoherent" re- 
flection boundary conditions: 

corresponding, at the tube wall, to a fully relaxed transverse 
moment and a conserved axial moment of the active atom. 
As a result, for the components of the integrated transverse 
magnetization 

M- (z) ='I, (M,-iM,) = (5.2) 

we obtain in the stationary case 

z6+ zs+ + e-ez~Q (f2+ sin - - fa+ cos - ) 
uz v z  

26- 26- 
- eezlnz (f.- sin - +fa- cos -)I , 

V' v z  

A+ z6+ zs+ f,+ - - (f2+ cos - + f3+ sin -) } 
U Vz v z  

U z6- 
A- V Z  f,- sin *)}I. V Z  

The notation, as well as the expressions for the coeffi- 
cients f' , are the same here as in Ref. (3  ) . 

It is natural to expect that in the case of boundary con- 
ditions of "specularly-coherent" reflection from the cell 
walls 

which correspond to conservation of both the axial and 
transverse moments of the active atoms colliding with a wall 
provided with a protective coating, one can obtain a large 
transverse-magnetization amplitude. Calculations confirm 
this expectation. The resulting expressions for the trans- 

FIG. 6. Selection of mixed states in RST: 2L = /2 / 2 ;  1- 
U =  4w = 2oy,2--U= w = 5y, 3-U= w = y. 

verse-magnetization components have the form (5.3) given 
above, albeit with somewhat different expressions for the 
coefficients f ,* (Ref. 7).  

Since the distinctive features of the spatial distribution 
of the transverse magnetization, described below, are most 
pronounced in the case of "specularly-coherent" reflection 
of the atoms from the walls, we cite the results of numerical 
computation using Eq. (5.3) for this case. Figures 6-8 show 
the transverse magnetization as a function ofz for the case of 
resonance (a = 0) of the electromagnetic field at the transi- 
tion 11)-12). In this case, components j,, andj,, of the mac- 
roscopic magnetization flux are absent, so that the axial 
magnetization M, and the transverse magnetization M, are 
constant over the length of the cell. At the same time, the 
component j,, reaches a maximum at resonance, which is 
the main reason why My depends strongly on the spatial 
coordinate. 

First of all, the function My (z) is odd. This function is 
typically monotonic so long as not more than one half-wave 
fits within the length of the cell. We can speak here of separa- 
tion of mixed states into two components opposed in phase. 
In such a case, the left and right halves of the cell turn out to 
be oppositely magnetized in the transverse direction. The 
maximum possible magnetization increase as both L / A  and 
W/ U increase. 

As soon as more than two half-waves can fit within the 
length of the cell, the spatial dependence of the transverse 
magnetization becomes much more complex. The gas vol- 

FIG. 7. Spatial oscillations of transverse magnetization in RST: w = y, 
U =  4w; 1-2L = A ,  2-2L = 4A. 
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FIG. 8. Magnetization oscillation damping in the field of a strong electro- 
magnetic wave: 2L = 4 4  w = y; 1 - 4 7  = 4w, 2-U = 8 .  103w. 

ume breaks up into alternating oppositely magnetized lay- 
ers. The thickness of each layer and its average magnetiza- 
tion increase with distance from the center of the cell. This 
pattern of transverse magnetization oscillations is deter- 
mined by the presence of a reverse magnetization flux from 
the cell walls. We can point to two mechanisms responsible 
for the onset of radiofrequency-coherence (or transverse- 
magnetization) oscillations. The first is that the radiofre- 
quency electromagnetic field imposes phases upon the trans- 
verse moments of individual atoms. If this mechanism were 
the sole determinant of the phase of the transverse magneti- 
zation, the nodes and antinodes of My would correspond 
precisely to the nodes and antinodes of the radiofrequency 
field and would be equidistant. However, the reverse magne- 
tization flux from the tube walls causes interference between 
the forward and reverse spin waves. This interference repre- 
sents an additional mechanism determining the coherence 
phase; it makes the locations of the nodes of My dependent 
on the dimensions of the cell. We must also take it into ac- 
count that the spin waves under consideration are damped. 
This is manifested by the uneven distribution of the trans- 

verse-magnetization nodes along the cell axis. 
With increasing Rabi frequency, the frequencjl of the 

oscillations increases but their amplitude decreases. There- 
fore, the breakdown into alternating layers vanishes at Rabi 
frequencies that exceed the Doppler width of the 1-2 transi- 
tions (Fig. 8).  Instead, a monotonic magnetization distribu- 
tion is set up in the cell, corresponding to the separation of 
the initially noncoherent mixture of quantum states into two 
coherent components which are, on the average, in counter- 
phase. 

We turn now to the spatial distribution of mixed states 
in the case of two-beam excitation. The solution of the quan- 
tum kinetic equations3 describing the reaction of an atomic 
system to interaction with coherent optical fields at the adja- 
cent transitions 1-3 and 2-3 leads to the following expres- 
sions for transverse-magnetization components under the 
conditions of two-step resonance (i.e., for R,  = fl, = 0):  

6 6  (1-exp (-2eL/v,) ) m,,-Q2 sin (26Wv.) exp (-2eWv.) m,, 
m =  

6'- (A2+Qa cos (26L/vz) )  exp (-2eWv.) 9 

where S = (Q + a2) ' I 2 .  

Here, Moi are components of the spatially-homoge- 
neous magnetization distribution determined by relations 
(3.2) and (3.4), while the coefficients mi depend on the 
nature of the interaction betweeen the active atoms and the 
cell walls. Thus, in the case of "specularly-noncoherent" re- 
flection from the walls we have 

a 
m,+im, = - -(m+imO,) exp {- (e-i6)  Llv,) ,  

6 
(5.6) 

m a - ( 6  - m-mo,) .XP ( - E L / v , ) ,  

where 

and m,, are the magnetization components in the spatially 
homogeneous case, given by (3.2). 

For "specularly-coherent" reflection of active atoms 
from the cell walls, the expressions for the coefficients m, are 
somewhat simplified: 

d sin6LlvZ a cos 6L/v ,  
m, = - m,, m,= - -m , ,  

6 sh eLlu, ' 6 ch eLlv, ' 

m,=O. (5.7) 

Figures 9 and 10 illustrate the spatial variation of the 
transverse magnetization in "specularly-coherent" re- FIG. 9. Spatial dependence of magnetization under two-beam excitation 
flection. The component j,, of the magnetization flux-den- by parallel beams: U ,  = U, = A  /50; 1 - 2 ~  = ~ / q ;  2 - 2 ~  = 4n/q. 

51 Sov. Phys. JETP 68 ( I ) ,  January 1989 Agan'ev eta/. 51 



FIG. 10. Spatial oscillations of magnetization under two-beam excitation 
by parallel beams: U, = U, = A  /50; 1-2L = 3n-/q; 2-2L = 8n-/q. 

sity tensor is maximum at exact resonance. This is why the 
corresponding My component undergoes a considerable 
change along the cell axis when a, = a, = 0. At the same 
time, the transport of other magnetization components 
reaches a minimum at resonance (or vanishes altogether in 
the spatially homogeneous case), so that M, and M, are 
constant along the cell. 

Let us consider the case of parallel beams. The function 
My (2) is odd. It is monotonic so long as not more than two 
half-waves of the combined frequency a,, fit within the 
length of the cell. Increasing the length of the cell breaks up 
the gas volume into alternating magnetization layers of op- 
posite sign. Thus, we observe the same picture of SQS as in 
the case of RST. However, the values of transverse magneti- 
zation achievable in two-beam excitation are much higher 

than in RST. Therefore, two-beam excitation provides a 
higher degree of separation of the mixture of states 11) and 
12) into coherent components. 

In the case of opposed beams, we have the same oscilla- 
tory My (z) dependence, but with a very small oscillation 
period (of the order of A = 2?r/k). 

In conclusion, we note that the onset of a macroscopic 
flux of transverse magnetization under conditions of two- 
photon resonance and coherent population trapping can be 
utilized to stabilize the frequency of laser emission by micro- 
wave-spectroscopy methods. The physical problems in 
which the effects investigated in this paper must be taken 
into account include the problem of the nonlinear intra- 
Doppler structure of hyperfine transitions of alkaline atoms 
and the problem of coherent population trapping in a cell of 
finite optical thickness. 
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