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A description is given of the van der Waals interaction between two thin filaments of condensed 
matter and of the interaction between an atom and a thin filament. A considerable difference 
between the interactions exhibited by insulator and metal filaments is due to a specific dispersion 
of one-dimensional electromagnetic excitations in the case of metal filaments. It is shown that in 
the case of strongly polar insulator filaments the nonadditive effects and the thermal contribution 
to the interaction are unusually large. In contrast to insulator filaments, the retardation and 
Casimir effects are negligible (even at low temperatures) for interacting metal filaments 
separated by a sufficiently large distance. The approximation of perfectly conducting filaments is 
invalid in this case, but the actual static conductivities are important. The results obtained by 
Nabutovskii, Belosludov, and Korotkikh [Sov. Phys. JETP 50,352 ( 1979) ] for the interaction of 
an atom with a thin filament apply only to an insulator. An analysis is made of the interaction of 
an atom with a metal filament. An earlier result ofzel'dovich [Zh. Eksp. Teor. Fiz. 5,22 ( 1935) ] 
is found to be valid (with logarithmic precision) in a wide range of distances. 

1. INTRODUCTION 

Much work has been done on the van der Waals interac- 
tion between two thin parallel long cylindrical filaments and 
between an atom and a filament (see for example, Refs. 1- 
13). The reason why these problems are of interest can also 
be found in the cited papers. For example, the solution of 
these problems can be important in discussing some proper- 
ties of quasi-one-dimensional systemsI4 as well as in applica- 
tions to and to capillary phenomena. l 3  

The published investigations can be divided in a natural 
manner into two groups. The results of one group are valid 
irrespective of the actual model microscopic description of 
the properties of the interacting bodies. In particular, the 
permittivities are not specified as a function of the frequen- 
cy. However, this approach has been used only to deal with 
the interaction between thin insulator  filament^.'^^^^^'^'^ 
When such results are applied to thin metal filaments, diver- 
gences are observed at low frequencies.'34.637.'3 

In the other group of investigations the treatment is 
based right from the beginning on a relatively simple model 
describing the behavior of filaments in an electromagnetic 
field. This is the approach adopted in all (known to us) 
treatments of the interaction between thin metal fila- 
ments.z.5.8-~2 Several important differences have been found 

between the behavior of the interaction potentials of two thin 
insulator filaments and two thin metal filaments considered 
as a function of the distance R between them. For example, if 
we ignore the retardation effects and the influence of tem- 
perature we find that the energy (per unit length) of the 
interaction between insulator filaments EL (R ) is propor- 
tional to R -'. The same behavior is predicted also by an 
additive approximation and the collective effects influence 
only the coefficient of proportionality. On the other hand, a 
model description developed in Refs. 2, 8, 9, and 11 shows 
that under similar conditions the energy of the interaction 
between two thin metal filaments decreases much more 
slowly with the distance, EL (R)  cc R -', which is accurate to 
within a logarithmic multiplier. This is due to the specific 
nature of an R-dependent dispersion of one-dimensional 

plasmons in interacting metal  filament^.^ Since interaction 
between metal filaments is governed primarily by the If col- 
lective effect, the additive approximation cannot be used 
even in rough qualitative estimates. 

A self-consistent description of the van der Waals inter- 
action between two thin filaments and between an atom and 
a filament is developed below using a general theory of the 
van der Waals forces. The general results obtained apply to 
arbitrary thin filaments of condensed matter, which may be 
made of an insulator or a metal. This not only allows us to 
determine the ranges of validity of the expressions used ear- 
lier, but also to obtain new results. In Sec. 2 we shall give the 
initial general relationships and discuss the interaction 
between insulator filaments. We shall show that in the case 
of filaments formed from a strongly polar insulator the non- 
additive effects and the thermal contribution to the interac- 
tion play an unusually important role at all distances. Cor- 
rections will be given to the expression for the interaction 
between thin insulator filaments as a result of the retardation 
effect. A description of the interaction between thin metal 
filaments is provided in Sec. 3. It is demonstrated there that 
the model treatment adopted in Refs. 2, 5, and 8-1 1 is valid 
only in a limited range of not-too-large distances. Expres- 
sions are obtained for the interaction of thin metal filaments 
separated by fairly large distances. It is interesting to note 
that in the case of this long-range interaction the influence of 
the retardation effect is always negligible. If metal filaments 
are sufficiently thin, the approximation of perfect conduc- 
tion is invalid for any distance R. Expressions describing the 
interaction between insulator and metal filaments obtained 
in Sec. 4 are also new. This section is concerned also with the 
interaction between an atom and a thin filament. 

The van der Waals interaction of bodies with thin con- 
densed filaments is a rare example of a situation when not 
only the coefficients of proportionality but also exponents in 
the power laws describing the interaction may depend 
strongly on the actual properties of condensed bodies (even 
if we ignore the spatial dispersion of the permittivities of 
these bodies). We know ofjust one similar example and this 
is the interaction between bodies and thin condensed 
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In all other known cases the power exponents are 
independent of the actual properties of bodies. This is re- 
garded as normal, so that in some cases the expressions rep- 
resenting in fact only the interaction ofbodies with thin insu- 
lator filaments are presented by their authors without any 
qualifications as general expressions equally valid for any 
thin condensed filaments. This is often done even without 
mentioning that such expressions diverge in the If range 
when applied to metal filaments. For example, this is true of 
Eqs. (23) and (24) in Ref. 13, which describe the interaction 
of an atom with a thin filament. Our treatment is in fact the 
first self-consistent analysis of the van der Waals interaction 
of an atom with a thin metal filament. In the simplest case 
the potential of the interaction of an atom with a thin metal 
filament is proportional (apart from a logarithmic factor 
R - 4 )  and this is valid in a fairly wide range of distances. It is 
remarkable that precisely this behavior of the interaction of 
an atom with a thin metal filament was established over 50 
years ago by Zel'dovich [see Eq. (8)  in Ref. 12; determina- 
tion of the coefficient of proportionality was not part of the 
task undertaken in Ref. 121. In comments on Zel'dovich's 
paper,12 given in his collected works, it is pointed out that the 
results derived in Ref. 12 are valid only in the range of dis- 
tances in which the spatial dispersion of the permittivity of a 
metal is important. However, it must be stressed that this 
applies only to a bulk (three-dimensional) metal. The be- 
havior of the van der Waals interaction is affected directly 
not so much by the spatial dispersion of the permittivities of 
condensed bodies as by the dispersion of the eigenfrequen- 
cies of an electromagnetic field in the system, which depend 
on the distance between the bodies. In the case of thin metal 
filaments the specific dispersion of one-dimensional plas- 
mons is responsible for the approximate validity of the Ze1'- 
dovich's results also in the range of distances where the spa- 
tial dispersion of the permittivities can be ignored. 

2. GENERAL RELATIONSHIPS. INTERACTION BETWEEN 
TWO INSULATOR FILAMENTS 

We shall consider two long parallel circular cylinders 
which are in a condensed medium. For simplicity, we shall 
assume that all the media are isotropic. We shall use E,,, (w) 
and a,,, to denote the permittivities and radii of the first and 
second cylinders, respectively, and E, (w) for the permittivi- 
ty of the medium surrounding the cylinders. 

The free energy of the van der Waals interaction 
between cylinders (per unit length in contact) can in this 
case be represented by (see, for example, Ref. 16) 

Here, o, = 277n T/ f i  and the prime of the summation symbol 
means that the term with n = 0 is taken with half-weight. 
Integration in Eq. ( 1 ) is carried out with respect to a one- 
dimensional wave vector k, which is parallel to the cylinder 
axes. Zeros of the function D(w, k; R )  are all the eigenfre- 
quencies (generally complex) of an electromagnetic field in 
the system, dependent on the distance R between the cylin- 
der axes. Moreover, the function D(w, k; R ) is assumed to be 
normalized so that in the limit R -+ + we have D = 1. 

In general, the function D(iw,,, k; R )  is very cumber- 
some. We shall consider only thin cylinders (filaments) with 

radii much less than the distances between them: 

The filaments are then regarded as essentially one-dimen- 
sional. In fact, in the case of the van der Waals interaction it 
is important to consider the range k S R  - ' and Eq. ( 2 )  
shows that k a , ,  4 1. In this limiting case both plasma and 
other electromagnetic excitations in the filaments are of spe- 
cial one-dimensional nature. Consequently, in the case de- 
fined by Eq. (2). the collective effects have the greatest influ- 
ence on the dependence of the van der Waals interaction on 
the distance. In particular, the additive approximation is al- 
together invalid in the case of metal filaments. It should be 
stressed that the condition of Eq. (2),  which allows us to 
speak of thin (one-dimensional) filaments, imposes limita- 
tions only on the ratio a,,,/R and not on the thickness of the 
filaments as such. The thickness of the filaments may range 
from a 2 5 A to fully macroscopic values such as a - lo3 A. 
The upper limit on a,,, is determined if we allow for Eq. (2) 
and the experimental facilities. 

A standard electromagnetic calculation shows that if 
the condition (2)  is obeyed, the function D(iw,, k; R )  is of 
the form D = Dl D, , where 

Here, KO ( x ) ,  K, (x) ,  and K, (x)  are modified Bessel func- 
tions and q2(iw, ,k) = k + w;~,(iw, ) / c2 .  The following 
notation is used in the system (3  ) : 

All the permittivities in Eqs. (4)-(7) depend on the argu- 
ment iw, . 

After substitution of the system ( 3 )  into Eq. (1)  we 
find that an analysis of Eq. ( 1 ) shows that the behavior of 
the quantity FL ( R )  as a function of the distance depends 
strongly on the values of two dimensionless parameters: 

where w, is the value of the frequency typical of the van der 
Waals interaction between filaments. 

If E,,, (iwE ) 5&,(iwc ), we find that Eqs. (2)  and (8)  
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yield 

In the case of insulator filaments the inequality of Eq. (9)  is 
valid throughout the investigated range of distances defined 
by Eq. (2), with one exception which will be discussed at the 
end of the present section. The condition (9)  allows us to 
neglect those terms in the denominators of Eqs. (4 )  and (5)  
which contain the function KO (a,,,q). Consequently, it fol- 
lows from Eqs. ( 1 )-(9) that the following description of an 
interaction between two insulator filaments is possible in the 
simplest limiting cases. 

The role of the characteristic frequency w, may be 
played by three dimensional parameters: a , ,  c/E:~R, and 
2rT/fi. The frequency w, is related, as usual, only to the 
absorption spectra of condensed media (compare with Refs. 
17 and 18). When thecondition 2.rrT/fi<min(w,,~/&:$~R) is 
satisfied, the influence of thermal fluctuations on the inter- 
action can be ignored. Then, in the range of distances 
a,,, g R gc/w0~:g2, where w, = w, and the retardation effect 
can be ignored, we find that the free energy per unit length is 

All the permittivities depend now on the argument iw. Equa- 
tion ( 10) agrees with the results of Refs. 3,4, and 6. 

Next, for distances a,., ,c/w,E:~ <R gCli/2.rrT we can 
assume that w, = c/&:i2R. The retardation effect is then 
particularly important and the results can be represented as 
follows: 

FL ( R )  = - 

The numerical factors in the above expression do not agree 
with those obtained in Ref. 6, which we regard as due to the 
inaccuracy of the calculations reported in Ref. 6. In the 
limiting case of low-density insulator filaments in vacuum, 
we find that Eq. ( 1 1 ) agrees-in contrast to the expression 
obtained in Ref. &with the results of summation of the 
Casimir-Polder pair interactions beween atoms in the fila- 
ments. 

The contribution of thermal fluctuations can be de- 
scribed, in those cases when it is large, by a term with n = 0 
in the sum of frequencies in Eq. ( 1 ) . If the condition (9)  is 
obeyed, we obtain 

The role of thermal fluctuations may be important if, 
for example, the medium surrounding the filaments is a po- 
lar insulator (for example, water) and the filaments repre- 
sent a nonpolar insulator. Then, the hf permittivities (on the 
upper imaginary frequency semiaxis) of polar and nonpolar 
insulators are frequently sufficiently close so that the quanti- 
ty described by Eq. ( 10) is relatively small. There is also a 
considerable reduction in the value of the characteristic fre- 
quency w,. Equation ( 12) describes then a quantity which is 
usually of the same order of magnitude as that given by Eq. 
( l o ) ,  but now at distances R<c/w,c:c. The free energy 
FL (R)  can then be represented as a sum of the expressions 
(10) and (12). 

However, the conditions in the interaction between thin 
filaments can be such that the thermal contribution to the 
interaction is large throughout the full range of distances 
even if there is no hf screening of the interaction between the 
filaments and the ambient medium. Let us consider, for ex- 
ample, filaments made from a polar insulator and located in 
vacuum or in a nonpolar insulator (E,,-E,,$E,,). We must 
note that the thermal contribution of Eq. ( 12) to this inter- 
action rises rapidly on increase in the ratios E ,,/E,, and &,,/ 
E,,. On the other hand, the dispersion contribution of Eq. 
( 10) hardly changes because of the small spectral interval of 
low frequencies where the permittivities of polar insulators 
are high. In the case of insulators the main contribution to 
the frequency integral in Eq. ( 10) comes from frequencies 
w - loL6 S-I. A considerable increase in the thermal contri- 
bution is a special feature of the interaction between thin 
strongly polar filaments. A similar behavior is exhibited only 
in the problem of the interaction of thin films. However, 
when bulk (three-dimensional) bodies of this kind interact, 
there is no increase in the thermal contribution. 

When the ratios E, , /E~,  and E~,/E,, are sufficiently 
long, the inequality of Eq. (9)  can naturally prevail in a 
certain range of distances satisfying the condition of Eq. (2) .  
Then, the thermal contribution to the interaction is de- 
scribed in general by a cumbersome equation which can be 
simplified only in the limit x ,,, $1: 

The condition x,,, $ 1 together with the inequality (2) 
impose very serious restrictions. For example, in the case of 
identical filaments when R = 10a it follows form x$ 1 that 

= E ~ , $  8 7 ~ ~ " .  We shall be interested in the case when 
x - 1 (E,, = E,,=: 87&,,, a ,  = a, = a ) .  The corresponding 
thermal contribution is within an interval set by the limits 
that follow from Eqs. ( 12) and ( 13). At room temperature, 
we find from Eq. ( 12) that F,,, =, (R)  = 7 x 1 0 1 6  erg/R. 
Then, Eq. (13) and the same conditions as before yield 
F,,, =, ( R )  = 30X 1 0 1 6  erg/R. The disperse contribution 
can be estimated by substituting E, = 1 into Eq. ( 10): 

Next, integrating with respect to the frequency and as- 
suming that w, z 2 X  1016 s -  ' and Q 2 z  1.4w,, we obtain 
FL (R ) -- 1.3 X 1 0  l 6  erg/R for the case under discussion 
(R = 10a). It is therefore clear that if the filaments consist 
of a strongly polar insulator, then because of the nonadditive 
effects the room-temperature thermal contribution to the in- 
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teraction is at least comparable with the dispersion contribu- 
tion and can exceed the latter throughout the full range of 
distances R )a ,,, . 

The expression ( 13) for the thermal contribution had 
been found earlier in Ref. 19 (compare also with Refs. 8 and 
10) using a model analysis of the interaction between metal 
filaments. Consequently, the result in question is attributed 
in these treatments to If fluctuations in conducting media. In 
fact, the form of Eq. ( 13) is unrelated to any specific If prop- 
erties of thin metal filaments. This expression describes the 
thermal (entropy) contribution to the interaction if the stat- 
ic permittivities of the filaments are sufficiently high and the 
condition x,,, % 1 is satisfied at a distance that obeys the in- 
equality of Eq. (2).  

3. INTERACTION OF TWO METAL FILAMENTS 

In the case of metal filaments we find that Eqs. ( 10)- 
( 12) give infinite values because of unrestricted rise of the 
permittivity of a metal on reduction in the frequency. Conse- 
quently, in the case of metal filaments Eq. (9)  is not obeyed 
at any distance R. It also follows from Eqs. (2)  and (8)  that 
in the range of characteristic imaginary frequencies the per- 
mittivity of metal filaments assumes very large values, as 
expected at moderately high frequencies. A self-consistent 
analysis of the general expressions ( 1)-(7) confirms this. 

The dependence of the van der Waals interaction 
between metal filaments on the distance between them is 

It is important to note that the frequencies Z,,, associated 
with characteristics of metal filaments depend also on the 
distance R  between the filaments. This is the main qualita- 
tive difference from the case of two insulator filaments when 
the characteristic frequency w, associated with the proper- 
ties of the filaments is independent of R (Sec. 2). This cir- 
cumstance is closely related to the specific nature of the dis- 
persion of long-wavelength electromagnetic excitations in 
one-dimensional metals. For example, the first expression in 
the braces in Eq. ( 15) represents exactly the frequencies of 
one-dimensional plasmons 

ol,z(k)=kal,zQl,zKo"(kal,2)l ( 2 ~ ~ 0 ) "  

in each ofthe filaments on condition that w ,,, >) v,,, when the 
wave vectors are k -  R - '. The second expression represents 
strongly damped excitations in the frequency range w (v,,, 
when k - R  -'. 

The characteristic frequencies i3 ,,, are small compared 
with the corresponding frequency w,  in the case of insulator 
filaments (on condition that the medium surrounding the 
insulator filaments does not screen too greatly their interac- 
tion). In fact, in rough estimates we can usually assume that 
w, -al,, and it follows from Eqs. (2)  and ( 15) that 

more complex and it differs considerably from the corre- 5 1 , 2  <a1,2. 
sponding dependence in the case of insulator filaments. It is We then find from Eqs. ( 14) and ( 15) that 
determined by the specific form of the frequency dispersion R &SO 

of the permittivities of metals at moderately high frequen- e 1 2 i z  ( I n  ( ~ l ~ , , , )  > &SO, (16) 
cies. We shall describe this dispersion by the simple and fa- 
miliar expression which-subject to Eq. (8 )-yields 

fitz - ~ ~ ( J I , Z V I , Z  
(17) 

e I , z ( i o )  - - 
6.) ( @ + ~ 1 , 2 )  w ( ~ + v I . z )  ( 14) throughout the investigated range of distances. The inequal- 

ity ( 16) allows us to simplify Eq. (3)  by neglecting the con- - -  - 

Moreover, we shall assume that metal filaments are sur- tribution of the function D,, the last two terms in the expres- 
rounded by an insulating medium and that in the character- sion for D l ,  and the second term in Eq. (4) for the coefficient 
istic frequency range we can assume approximately that the A. It follows from Eq. ( 17) that the denominator of Eq. (4) 
permittivity E,  (iw) assumes its static value E,, . should include terms containing K, ( a  ,,, q).  Consequently, 

In addition to the dimensional parameters 2.rrT/fi and Eqs. ( 1 )-(4), (8) ,  ( 16), and ( 17) yield the free energy of 
c/&ii2R the following characteristic frequencies are encoun- the interaction of two metal filaments per unit length in con- 
tered: tact: 

Equation ( 18) simplifies in several limiting cases of in- When the conditions ( 19) and (20) are satisfied, we obtain 
terest. For example, in the range of distances approximately from Eq. ( 18) 

(19) F ,  ( R )  = - 
f i  (QT) 

8n (2eJo) '"R2 In'" (Rla , )  In'" (Rla,) , 
(21) 

we can ignore the influence of collisions. The contribution of 
thermal fluctuations is small at temperatures where 

cf i  . (20) 
- 21hcx1~ ,  (1+x1xz) 

< - in{(%) (Qa)  = 
R 2n(2~ , , ) '"  a  2ne,,'"R ( x , f x , )  (Rla , )  In'" (Rla,)  ' 

42 Sov. Phys. JETP 68 ( I ) ,  January 1989 Yu. S. Barash and A. A. Kyasov 42 



The role of the retardation effect is described by the 
following dimensionless parameter: 

In the case of suficiently thin filaments with radii a ,,, 5 20 
.& we find that simple estimates show that the inequality y,,, 
4 1 is obeyed practically throughout the range of distances 
defined by Eq. ( 19). If y,,, 4 1, we can ignore the retardation 
effect and then Eqs. (22) and (23) yield 

- a,a2QlQ2 
(Qa) = 

a,Q, In'" (Rla,)  +a,Q2 In" (Rla,) ' 

In the case of identical filaments, Eqs. (2 1 ) and (25) 
give 

hQa 
FL(R)= - 

16n (213,~) '"R2 Ina1' (Rla)  ' 

This simplest example can be used conveniently to identify 
the nature of the approximations used throughout in calcu- 
lation of the interaction between metal filaments. 

Equations ( 18)-(20) yield for the free energy of the 
interaction between identical filaments an expression which 
is more accurate than Eq. (26) : 

F L  ( R )  = - 
I d x x K t ( x )  

8n (2es0) 'IaR2 , KO" (axlR) (27) 

If cj0 = 1, the above expression is identical with the corre- 
sponding results reported in Refs. 2 and 11. The integral in 
Eq. ,(27) is dominated by the contribution from the range 
x 5 1. Therefore, using the condition of Eq. (2) ,  we find that 
the function in the denominator of the integral in Eq. (27) 
can be described by an asymptotic expression valid at low 
values of the argument: 

K 2  ( ax/R) wln " (Rlax) . 

Equation (26) is "logarithmically" correct, compared with 
Eq. (27). The former is obtained ifx = 1 is substituted in the 
argument of the logarithmic function and this function is 
taken outside the integral. It should be noted that in Ref. 2 a 
similar procedure is used and x = 1/2 is substituted. The 
integral occurring in Eq. (27) is interpolated in Ref. 11 in 
the range of distances considered there and this is done using 
(a/R)O.'. 

If y,,, g 1, when the retardation is particularly impor- 
tant, it follows from Eqs. (21) and (22) that 

c ii 
FL ( R )  = - 

8neso'"R2 ln(R/a,)  ln (Rla,) ' (28) 

This expression describes the Casimir effect in the case of 
two perfectly conducting filaments. Under real conditions 
the limiting case y g  1 is difficult to achieve but the condition 
y - 1 can be satisfied (for example, this condition is satisfied 
ifa = 100 .&, R = lo3 .&and Q z 2 ~  1016 s-I). Similarly, it 
is difficult to investigate experimentally the interaction of 
metal filaments when the inequality opposite to that of Eq. 
(20) is satisfied and Eq. ( 13) is valid. However, we can satis- 

fy the relation 

(for example, this condition can be satisfied if 
R = 30a(10-4 cm, Q - 2 x  1016 s-', and T=.300 K). The 
interaction then is described approximately by the sum of 
Eqs. (21) and (13). 

In the case of distances large compared with those de- 
fined in Eq. ( 19), i.e., when 

we have GI,, <y,,, and, therefore, the interaction between 
metal filaments is due to their If conducting properties. The 
role of thermal fluctuations is then small if 

It is interesting to note that the retardation effect can be 
significant only if the distances are not too large, 

provided that y,,, g 1, which ensures compatibility of Eqs. 
(29) and (31). Therefore, if y,,, 41,  the retardation effect 
has no influence whatever on the interaction between metal 
filaments for any distance between them. Moreover, in the 
case of distances 

In ( ~ l a , , , ) / c e ; / ~  

satisfying also Eqs. (29) and (30), we find from Eq. (18) 
that 

FL ( R )  - nnuiu2a,k [u2a: ln (c) - ula: ln(:)] -* 
32es0R3 

for arbitrary y,,, . 
If the filaments are identical, we obtain from the above 

expressions 

niiua2 
FL ( R )  = - 32es0R3ln(Rla) ' 

The conditions under which Eqs. (32) and (33) are valid 
should be supplemented by the requirement which allows us 
to neglect the anomalous skin effect. In the simplest case this 
results in an inequality 

(Rla)  B2noh ln'" (Rla)  , 

where A is the mean free path of electrons. 

4. INTERACTION OF AN ATOM WITH A FILAMENT 

The general expressions for the interaction of an impu- 
rity atom in a liquid with a thin filament located at a distance 
R )a  in the same liquid can be obtained from Eqs. ( 1 ) - ( 6 )  
which describe the interaction of two filaments in a liquid. It 
is sufficient to regard one of the filaments as a dilute solution 
of impurity atoms by assuming that 
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where N is a low volume density of the number of impurity 
atoms. We then have 

where U(R) is the free energy (potential) of the interaction 
of one impurity atom with a filament and N, = mi N is the 
linear density of impurity atoms. This is in many respects 
analogous to the conclusion reached by Pitaevski'i in Ref. 20 
for the interaction of two impurity atoms in a homogeneous 
liquid. For brevity we shall consider only the case when an 
atom and a filament are in vacuum and we shall use the 
simplest expressions describing the interaction of two thin 
filaments, one of which is an insulator. 

The expressions for the interaction of an atom with a 
thin insulator filament follow directly from Eqs. ( lo)-( 12): 

u(R)= -- gnu' f d o  a ( i w )  
(e  (io) -1) ( e  (io) +7) 

128R5 e (im) + I  7 

9naZT a, (&,-I)  (eo+7) 
U,=, ( R )  = - - 

128R5 eo+l 

A different method was used to obtain the same expres- 
sions in Ref. 13. The discrepancy between the numerical co- 
efficients in Eq. (35) given above and Eq. (23) in Ref. 13 is 
to the best of our knowledge due to a misprint in Ref. 13. It 
should be stressed that Eqs. (34)-(36) apply only to an in- 
sulator filament and that in the case of metals these equa- 
tions yield infinite values. 

Before we determine the interaction of an atom with a 
metal filament, we shall consider the interaction of an insu- 
lator filament with a metal one. The relevant calculation is in 
many respects analogous to that given in the preceding sec- 
tion. In the range of distances defined by Eq. ( 19) and at 
temperatures described by Eq. (20) we find [in this case 
Eqs. (19) and (20) should apply naturally only to a metal 
filament] 

h ~ , a , a , " ( ~ ~ ~ - - e ~ ~ )  { ~ ~ ~ + ~ ~ ~ [ 5 - 4 y ~  ( ( I + ~ t ~ ) ' ~ - y i )  I )  
FA=- 

241/Znes2 ( ~ ~ ~ + & 3 ~ )  ( I f  y i 2 )  "R4 In'" (Rla,)  
(37) 

The dimensionless parameter y, is given by Eq. (24). 
Next, in the case when Eqs. (29) and (30) and the in- 

equality R )~Pu,Q: In [ (R /al )/c&:G2] are obeyed, we find 
that 

Finally the thermal contribution to the interaction of 
insulator and metal filaments is described by the expression 

We shall now substitute&, = 1 in Eqs. (37)-(39), con- 
sider the limit of a low-density insulator filament 

(taO =. 1 + 4?rNa0), and use the relationship 

Consequently, we find from Eqs. (37)-(39) the following 
expressions for the interaction of an atom with a metal fila- 
ment: 

fiQaao [3-2y ( ( l + y a )  "'-7) l 
U ( H ) =  - 

61.2n (I+~')'''R' ln* ( fZ /aYT 
(40) 

U,,, ( R )  = - 
n a J  

8R3 1n (Rla)  

The interaction of an atom with a metal filament is 
characterized by the same main features as the interaction 
between two metal filaments. Worth pointing out, in partic- 
ular, are a slow fall of the interaction with distance [com- 
pared with the case of an insulator filament-see Eqs. (34)- 
(36) 1, a very small role of the retardation effect throughout 
the investigated range of distances on condition that y 4  1, 
and a possible significant thermal contribution to the inter- 
action even at relatively short distances. In the limit y<  1, 
when the retardation effect can be ignored, we find from Eq. 
(40) that 

fiQaa, 
U ( R ) =  - 

2"nR4 In'" (Rla)  ' 

As mentioned above, the U(R ) a R - 4  behavior of the inter- 
action of an atom with a metal filament under similar condi- 
tions had long ago been predicted by Zel'dovich. l 2  In the 
other limit of y) 1, we find from Eqs. (40) and (24) that 

ficao 
U ( R ) =  - 

3n R q n  (Rla)  ' 

which corresponds to the Casimir force between an atom 
and a perfectly conducting filament. It should be stressed in 
this connection that at sufficiently large distances and low 
temperatures the interaction of an atom with a metal fila- 
ment is described by Eq. (41 ) and we cannot regard a fila- 
ment as perfectly conducting. 
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