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The quantum properties of compact Josephson tunnel junctions are investigated for the case 
where there are two types of quasiparticle dissipation caused by discrete electron tunnelling 
directly through the junction and by current flow through a shunting resistance. It is 
demonstrated that quasiparticle and Cooper pair tunnelling causes quantum diffusion of the 
quasicharge and increases the conductivity of the system in the case of weak currents. The 
influence of quasiparticle dissipation on the Coulomb tunnelling blockade and coherent voltage 
oscillations is investigated. The I-V characteristics is found for various combinations of the 
system parameters and the fixed voltage "steps" are investigated. The frequency of voltage 
oscillations is twice the frequency of the Bloch oscillations for moderate values of the 
quasiparticle conductivity 1/R of the tunnel junction. When Cooper pair tunnelling exists, 
such oscillations may occur with both large and small values of RT. It is demonstrated that 
various types of dissipative phase transitions exist due to linear and "cosine" energy dissipation, 
and the phase diagram of the system is investigated at various Josephson energy levels. 

1. INTRODUCTION 

Research on macroscopic quantum phenomena in com- 
pact Josephson weak links has been the subject of extensive 
interest in recent years. One of the most interesting cases 
from the physical viewpoint is the situation where the 
"quantumness" of the Josephson phase difference q? is most 
strongly manifested. This is the study of the quantum behav- 
ior of Josephson junctions at very low temperatures and very 
low external current values (or in the absence of such cur- 
rent). It has been determined that quantum fluctuations o f p  
are significant when dissipation is small and, consequently, 
the "classical" theory of Josephson effects is not applicable. 
It turned out that in this case the most important aspects 
were qualitatively new effects associated with the discrete 
nature of electron and Cooper pair tunnelling. It has been 
shown that coherent oscillations in the voltage Vmay occur 
when an external current flows through compact tunnel 
junctions. So-called Bloch voltage oscillations' are caused 
by the change in charge across the junction from successive 
Cooper pair tunnelling. The frequency of such oscillations is 
w, = ?TI /e, where I i s  the external current through the junc- 
tion and e is the electron charge. Such oscillations represent 
a "dual" effect to the well-known Josephson current oscilla- 
tion effect at the prescribed voltage. 

Coherent voltage oscillations in "ideal" tunnel junc- 
tions shunted by an ohmic resistance were considered in Ref. 
1. Quasiparticle tunnelling is not significant for such systems 
in the temperature and frequency range of interest to us 
(substantially below the superconducting gap), and the 
problem is reduced to describing quantum particle motion in 
the "wash-board" potential when linear (ohmic) dissipa- 
tion of particle energy is present. Such a system also has 
many other interesting quantum effects (in addition to those 
noted above) investigated in Refs. 4-14. 

From the physical viewpoint a very interesting case is 
the situation where quasiparticle (one-electron) tunnelling 
becomes significant and largely determines the low-tem- 
perature properties of compact tunnel junctions. The first 
important theoretical results relating to such a situation 
were obtained in Refs. 2, 3, 14. Specifically it was demon- 

strated that coherent voltage oscillations of frequency 
w, = 2w, are also related to single electron jumps across the 
barrier. It is important to emphasize that such single-elec- 
tron oscillations can, unlike Bloch oscillations, exist inde- 
pendently of superconductivity. 

The purpose of the present article is to provide a de- 
tailed description of the quantum dynamics of tunnel junc- 
tions in which discrete quasiparticle and Coulomb pair tun- 
nelling occurs simultaneously as well as a "continuous" 
charge transfer through the shunt. Quantum fluctuations 
are analyzed below and it is demonstrated that such fluctu- 
ations can partially eliminate the Coulomb tunnelling block- 
ade in the case of weak currents (see Ref. 3); moreover, 
coherent voltage oscillations are investigated and the I-V 
characteristics of tunnel junctions are determined for differ- 
ent Josephson energy values and a random ratio between the 
quasiparticle conductivities of the shunt and the tunnel junc- 
tion. 

2. GENERAL RELATIONS; QUANTUM FLUCTUATIONS IN THE 
CASE OF WEAK CURRENTS 

We will begin with the effective action for the tunnel 
junction-normal shunt system which takes the simplest 
form in the Mossbauer representation: 

+G= ( T - T f )  ( 1-COS ( ) )  ( 1 )  
2 

where T is temperature, Cis the capacitance of the junction, 
a, = RQ/R,, RQ = n-/2e2z6.5 k f l ,  R, is the shunt resis- 
tance. The expression for the effective action ( 1 ) derives 
directly from microscopic theory,lGi9 which states that in 
the adiabatic approximation we have 

U(cp) =-E, cos rp--Iv/2e, (2)  
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where a, = 4RQ/a2RT, r k w; I ,  w, is the characteristic 
cut-off frequency. Expression ( 3 )  is obtained assuming non- 
zero conductivity of the tunnel junction l /RT in a frequency 
and temperature range substantially below the supercon- 
ducting gap. Such a situation occurs either in conjunction 
with inelastic processes that "smear" the gap feature in the 
state density near the tunnel junction or when an additional 
normal junction is connected in parallel. Aside from the 
"gapless" contribution of ( 3 ) ,  GT also contains a term pro- 
portional to w2 at low frequencies. This term yields the famil- 
iar capacitance renormalization effect" and will be included 
in the quantity C henceforth. 

It is convenient to introduce, in addition to the phase 
difference, one additional variable q called the quasi- 
charge'.". The quantities p and q are analogs of the particle 
position and quasimomentum in the periodic potential, re- 
spectively". Reference 11 has demonstrated that in the ab- 
sence of quasiparticle tunnelling (a ,  = 0 )  the density ma- 
trix in the quasiparticle representation p,,. is discrete when 

where t is time. In this case the quantity q is an even multiple 
of the charge of the Cooper pair 2e. A direct generalization 
of calculations'' to the case a, $0 in the conditions of (4 )  
yields 

and makes it possible to find expressions for the diagonal 
elements of the density matrixp,, (t)". The physical mean- 
ing of the quantities p,, is rather simple: These determine 
the probability that k electrons will have tunnelled through 
the barrier by time t, i.e., that the quasicharge (although not 
the charge Q,) will have changed by ke. Theory".20 there- 
fore makes it possible to describe comprehensively quantum 
diffusion in the q-space attributable to Cooper pair and qua- 
siparticle tunnelling. Such diffusion effectively reduces the 
charge across the junction and consequently must be taken 
into account in determining the I-V characteristic of the sys- 
tem in the weak current range. 

It can be demonstrated (see Ref. 20) that the quasi- 
charge mobility p, = 2e(q)/I in the conditions of (4 )  is re- 
lated to the mobility in the p-space p, = 2e(@ ) / I  by the 
relation 

This formula was obtained previously in Ref. 11 in the par- 
ticular case a, = 0. If we take account of the obvious rela- 
tion for the quantum averages ( V )  = (2e) -'. (@ ) the mo- 
bility p, determines the effective resistance of the system: 
p, = 4e2R ... . Ignoring quantum tunnelling of the quasi- 
charge (p, = 01, we find R ... = R, , which corresponds to 
the conditions of the Coulomb tunnelling b l ~ c k a d e . ~  The 
jump of electrons across the tunnel barrier with small Tand I 
is not energy efficient, so charge transfer will run only 
through the shunting resistance R,. The quantum fluctu- 
ations in the tunnel junction-shunt system, i.e., the virtual 
jumps of the quasiparticles and Cooper pairs will serve to 
reduce the effective resistance R .,, compared to R, . In oth- 
er words the charge across the junction taking into account 
quantum corrections is equal to (Q  ) = Q,. ( 1 - pq / 
2e) < Q,, i.e., the Coulomb blockade is incomplete. 

As noted above quasicharge diffusion is caused by a 
combination of single electron and Cooper pair tunnelling. 
However in virtually every case only one of these mecha- 
nisms is significant. Tunnelling of single electrons is insigni- 
ficant for small a, and large E,, so it is possible to set 
a, = 0 in calculatingp, . We considered this case in Ref. 11. 
In the opposite case of large a, (small E,) Cooper pair 
tunnelling makes no noticeable contribution to quasicharge 
dynamics, and diffusion in the q-space is determined by qua- 
siparticle tunnelling. The expressions for the diagonal ele- 
ments of the density matrixp,, are represented as a series in 
powers of a, in the limit E, -0 in the conditions of (4) .  
Calculating the coefficients of this series is largely analogous 
to the calculation carried out in Ref. 1 1 in which the quantity 
EJ was the expansion parameter. The only important dif- 
ference in this case is that expression ( 1 ) contains the nonlo- 
cal kernel G, (7 - 7') of ( 3 )  which is equivalent to the exis- 
tence of an additional "attraction" between the trajectories 
corresponding to two successive jumps of single electrons 
across the barrier. If we take this into account, summation of 
the corresponding series for p,, is easily carried out. 

We will not present the final result here due to its un- 
wieldiness. We will simply provide expressions for the quasi- 
charge mobility that are easily solved by means of our ex- 
pressions forp,, ( t ) .  For EJ = 0 and condition ( 4 )  we have 

where T(x)  is the Euler gamma-function." The results in 
(7 )  were obtained for a, < 1, although with an arbitrary 
ratio between R, and R,. 

The quantitative conditions allowing determination of 
the most effective quasicharge transfer mechanism are easily 
determined by direct comparison of ( 7 )  to the expressions 
for p, found in Ref. 11. The condition limiting the applica- 
bility of (7 )  for T < I / e a ,  takes the form 

In the opposite limiting case quasicharge diffusion is caused 
by Cooper pair tunnelling.'' The results ( 7 )  were obtained 
in the limit of small quantum effects, i.e., p, <e. These for- 
mulae, however, allow estimation of the parameter values at 
which the Coulomb blockade will be broken down complete- 
ly by quantum fluctuations. It is necessary to set p, -e for 
such an estimate. In the particular case T-0, Ej -0 and 
a, 5 1 the Coulomb tunnelling blockade ceases to exist when 
a, k 1. 

We also note that results ( 6 ) ,  (7 )  given here cannot be 
obtained by means of the approach in Ref. 22. The perturba- 
tion theory developed in Ref. 22 is in fact effective only at 
rather large external current values and when EJ = 0, and 
does not allow description of the I-V characteristic of the 
system in the presence of the Coulomb blockade or coherent 
voltage oscillations. 
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3. COHERENT VOLTAGE OSCILLATIONS IN THE CASE OF 
SMALL E., and a, 

In the range of weak currents I /e 4 l /rs considered in 
the preceding section the quantum effects served to cause an 
effective drop in the junction resistance due to quantum tun- 
nelling in the quasicharge space. For large external current 
levels I /e 2 l/rs quantum diffusion no longer dominates but 
classical motion of the quasicharge through the Brillouin 
zone comes into play instead. Such motion is accompanied 
by coherent voltage oscillations across the that, 
as noted above, are caused by tunnelling jumps of single elec- 
trons and Cooper pairs across the barrier. Both of these 
charge transfer mechanisms are "responsible" for the coher- 
ent voltage oscillations at moderate values of I .  It is impor- 
tant to emphasize that such oscillations do not reduce to a 
simple superposition of the Bloch and one-electron oscilla- 
tions, since there is a strong correlation between quasiparti- 
cle and Cooper pair tunnelling. 

In this section we will consider the case of a small tun- 
nelling probability (small a, and Ej ) and a very large shunt 
resistance, since the times of interest to us satisfy the condi- 
tion t< r s  . In this case the term with a, in (1) can be 
dropped. With a fixed current the charge across the capaci- 
tor C, ignoring electron tunnelling, will have a linear time 
dependence. In this regard the statistical sum of the system 
(as is the case with any other equilibrium quantity) is not, 
strictly speaking, physically meaningful. Therefore in the 
spirit of Ref. 23 we will consider the statistical sum in the 
charge representation and will calculate the imaginary part 
of this quantity with a fixed charge value, and will then de- 
scribe the properties of the system in real time at a prescribed 
external current that adiabatically changes the charge across 
the junction. 

The statistical sum with a fixed Q, is equal to the matrix 
element 

where H is the Hamiltonian of the system to which the 
expression for the effective action ( 1 )-(3) corresponds. Ex- 
panding the Hamiltonian in powers of EJ and a, and repre- 
senting ZQo as a functional integral, we obtain (see also Ref. 
15) 

Here and henceforth H' implies summation over the neutral 
charge configurations {ui), ui = + 1, and 6 ( x )  is the 
Heaviside function. 

As we know the rate of decay I- of a state with a given Q, 
can be determined by the relation 

where F(Q,) = - Tln Za, is free energy. Initially let 
Ej = 0. Then the quantity F(Q,) is determined solely by the 
terms of the expansion of the statistical sum in powers of a,. 
As a result we obtain 

The formal expression for F( 1 1 ) diverges when 1 Q,J 
> e/2. However the imaginary part of the free energy is finite 
and can easily be calculated. The usual procedure for analyt- 
ic continuation of the expression for F(11) (see Refs. 
24, 25) yields (7, = R,C) 

IQol-e/2[ ( 
I ' (Qo>=-  1 -  exp - Q -  ) 

TT e CT 

It is interesting to note that T(Q,) ( 12) is independent 
of the cut-off parameter a,, which drops out upon analytic 
continuation. For Ej # O  the Coulomb pair tunnelling pro- 
cess also makes a contribution to the imaginary part of Z,, . 
However for T< Ej and I< EJ2/EQ (where EQ = e2/2c) 
such a contribution is significant only near the points q = ne, 
n = 0, f 1, ..., and corresponds to the passage of a single 
Cooper pair through the tunnel junction at each of the times 
when the quasicharge q( t)  is in the narrow vicinity of the 
points ne. Each such tunnelling event is accompanied by a 
voltage jump whose magnitude is equal to the population 
probability of the corresponding state in the quasicharge 
space multiplied by 2e/C. In these conditions the population 
probabilities w, ,w, of the two branches of the lower Bril- 
louin zone will be the only nonzero probabilities (see Fig. l ) . 
For T< EJ 4 EQ parts of these branches with E < e2/8C are 
stable, while with E > e2/8C they are unstable and decay at a 
rate r(Q,)  (12). 

Taking this into account as well as the fact that for 
(2n - l ) e  < q < (2n + 1)e, w, determines the probability of 
the state with charge Q, = q( t )  - 2ne, while for 
2ne < q < 2(n + 1 )e it is w, which determines the probabili- 
ty of state Q, = q(t)  - (2n + l)e,  it is easy to obtain the 
probability balance equations: 

W & + W B = I ,  

w a ( q )  =-r (q-2ne) w, ( q ) ,  e/2-1-2ne<q<3e/2+2ne, 
(13) 

wB(q)=-r  (q-  (2n-I-I) e )  w,(q) ,  2ne<q<2ne+e/2, 

3e/2+2ne<q<2 ( i z f  I) e, 

where r is determined by Eq. ( 12) in which it is necessary to 
set T-0. 

With a constant external current the quasicharge is lin- 
early dependent on time (dq/dt) =I) and Eqs. (13) are 
easily solved. This makes it possible to calculate the voltage 
averaged over the ensemble ( V(t) ) at any time. The func- 
tion (V(t))  is a periodic function of time with the period 
T, = e/I. We have 
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where x = e/81rT, 0 < t < T, , 7, = RTC. For this system 
the I-V characteristic is easily determined after time averag- 
ing of ( 14), which yields 

Here and yare the probability integral and the incomplete 
gamma-function, respe~tivel~.~ '  In the case of weak currents 
(x$ 1 ) the I-V characteristic is determined by one-electron 
oscillations3 

The I-V characteristic of the system was investigated 
numerically in Ref. 3 in the limit of strong current. Here we 
have found the analytic expression for the I-V characteristic 
with random x. In the particular case of strong currents 
( x < l )  we have from (15) 

Such an I-V characteristic is common to Bloch oscillations. ' 
It is, however, important to note that one-electron tunnell- 
ing is strongly manifested in the form of ( V(t) ). Consistent 
with ( 14) the frequency of oscillations ( V(t)) for x &  1 (as 
well as for x $1 ) is equal to the one-electron oscillation fre- 
quency 2 d / e ,  unlike the case a, = 0, when the analogous 
frequency is equal to TI /e.' On the other hand for x  & 1 co- 
herent oscillations will exist only when Ej #O, while the I-V 
characteristic of Eq. ( 16) is radically different from that 
found in Ref. 3 for the case x & 1, Ej = 0. Coherent voltage 
oscillations at strong currents x 5 1 are therefore attribut- 
able to both tunnelling mechanisms (Cooper pair and quasi- 
particle tunnelling) and cannot be described by the simple 
"superposition" of Bloch and one-electron oscillations. 

Now assume that the external current flowing through 
the junction is a sum of time-dependent and a.c. compo- 
nents: I ( t )  = I + I,cos at .  It is easily determined that for 
certain ratios between the frequencies w and w, = 2 ~ I / e  the 
alternating external current will cause voltage "steps" to ap- 
pear in the I-V characteristic. We now consider the most 
interesting limiting cases of small (x $1 ) and large (x & 1 ) 

FIG. 1 .  Lower Brillouin zone E ( q )  ( a ,  +O): a-Two 
branches A and B with the final population probability 
for E, gEQ,  a ,  (1; b--a, > 1 .  

values of the a.c. component of the external current I. In 
these cases the average value (v) ( 15 ) is small compared to 
e/c, while the relation ( V(q( t )  )) in the principal approxima- 
tion have a "sawtooth" character. In the one-electron oscil- 
lation range (x $ 1 ) we have 

( ~ ( q ) )  = ~ z  (-1) "-' sin ( 2 n n q / e )  
nC n-i 

n 

With an alternating external current the quasicharge value is 
determined by the obvious relation 

Ii e e  
q  ( t )  = I t  +-sin ot+q,, - - < q o < ~ .  

0 2  (18) 

Substituting ( 18) into ( 17) and after some simple transfor- 
mations we find 

where J,,, are the Bessel functions2'. It is clear that at cur- 
rents I = mew/2nn (i.e., when m/n = w,/w) a constant 
voltage component exists across the junction whose magni- 
tude is determined from ( 19). Specifically for the amplitude 
of the step corresponding to the fundamental w = w, we ob- 
tain 

Hence V, cc (I /I, ) ' I 2  for I,/z$ 1 and V, = I,/wCwhen 
I, <I. In the latter case the amplitude of steps V, for 
nw, = w are independent of n and are also equal to V, = I,/ 
w c .  

All these results remain valid in the range where the 
one-electron and the Bloch oscillations coexist (x & 1 ) . In 
this case we will also use Eq. ( 17), where it is necessary to 
carry out the substitution q+q + e/2, to describe how the 
voltage ( V) depends on quasicharge. Such a substitution 
will of course have no influence on the position or magnitude 
of the voltage steps which will still be determined by Eq. 
(19). The condition nw, = mw for such steps to appear 
differs from the analogous condition for the case of "pure" 
Bloch oscillations, mw = nw, =nw,/2.' It is also important 
that the validity of the analysis carried out in this section is 
limited to the condition a, 4 Ej 2/EQ2 at moderate external 
current values I 2  e/r,, which makes it possible to neglect 
the Zener tunnelling process. 
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4. INSTANTON GAS APPROXIMATION 

The other range of parameters in which it is possible to 
describe the quantum behavior of tunnel junctions is max 
{(E,/E~ ) '12,aT} ) 1. In this condition the p-representa- 
tion is more convenient for the statistical sum, and hence 
makes it possible to directly employ the saddle point method 
in calculating the functional integral for Z. 

We will initially consider the case (EJ/EQ ) I t 2  

)max{l,a,,a,). Non-trivial quantum fluctuations (in- 
stantons) describing the tunnelling of phase p between dif- 
ferent minima of the potential (2)  dominate at a sufficiently 
low temperature Tgw, = (8E,EQ)'l2 and I/egw,. The 
expression for Zis  a functional integral of exp ( - S) over p. 
Standard calculations of this integral using the well-known 
instanton solution @(T)  = 4 arctg (exp( - w , ~ ) )  yield 

sin nT(~i-z,) x z  (a8vcvj+aT ( - I )  '-') ln ( nTwi-l )+ hz%'<'Ci}* 
1.1=1 i-i 

Here A, = (32/fi)  (E, ) 3 / 4 ( ~ Q / 2 )  'I4exp[ - (8EJ/ 
EQ ) 1'2] is the peak-to-peak tunnelling amplitude between 
the nearest minima of potential (2) ,  and w, -w, is the cut- 
off frequency. 

Expression (21 ) differs slightly from the analogous ex- 
pressions in Ref. 4,5 for the case of zero quasiparticle con- 
ductivity of the tunnel junction (a, = 0) .  The instantons 
experience logarithmic interaction for a, # 0 as is the case in 
Refs. 4, 5, although the sign of this interaction is determined 
not only by the signs of the topological charges v, , but also by 
their relative position. For sufficiently small a, this will not 
yield qualitatively new effects. For a, > a ,  the sign of the 
interaction between any nearest charges v ,  and v i  + , corre- 
sponds to attraction between them. When the interaction is 
sufficiently strong the instantons i and i + 1 may "stick", 
corresponding to formation of an instanton with twice the 
topological charge. Its dimensions 7; = IT, + - T , I  are de- 
termined by minimization of the instanton interaction: 

which yields 

A - I ,  

For a, - a, )L - '  fluctuations of TT are small and we find 
the following expression for the tunnelling amplitude be- 
tween the k- and k + 2-minima of potential (2)  

We will show that such instanton configurations may be sig- 
nificant in certain conditions. We will consider the simplest 
such case: + + - - . Its contribution is 

i / T  7s-TZm 

sin nT (rz-zi) (+)' dr, I dri exp{-gaor. In[ 
nTr,. 

0 0 

This expression coincides with the contribution of the con- 
figuration + - describing tunnelling between neighboring 
potential wells when the substitution A2+A,, 
4a, -a, + a,  is made. We therefore have a situation that is 
qualitatively analogous to our case in Sec. 2 in investigating 
diffusion in the q-space. Here we also have what appears to 
be two mechanisms of wave packet motion (but in p-space) 
attributable to jumps with a phase shift of 27r and 4n. The 
analysis of the general expression (21 ) therefore is substan- 
tially simplified, since only one of these mechanisms domi- 
nates in any case. With small T and I and moderate dissipa- 
tion, Josephson "particle" motion manifests a band 
character. The width of the band is given by the larger of the 
two quantities 

A direct comparison of the quantities in (23) demon- 
strates that for a, > a, + '/' the bandwidth is determined 
by tunnelling of p between even (odd) minima of the poten- 
tial (2)  and is equal to A,, . A phase transition occurs at the 
point a, + a, = 1 as T+O, I-0, causing total suppression 
of tunnel transitions between neighboring minima (see also 
Ref. 15), i.e., A,,  = 0 when a, +a, > 1. The effective po- 
tential is 4n-periodic when the condition a, < 1/4 is satisfied 
simultaneously, and the phase in such a potential is deloca- 
lized. Complete phase localization (A,, = A,, = 0)  occurs 
only for a, + a, > l,a, > 1/4. 

The instanton technique makes it possible to provide a 
quantitative solution of the problem in the limiting case 

uT>max { ( E I / E Q ) ' b ,  a,, 1) (24) 

as well. In this case the primary role is played by instanton 
solutions describing tunnelling between potential minima 
separated by one. Neglecting the Coulomb and Josephson 
terms in the effective action ( 1 )-(3 ) the exact solution ap- 
pears26 as @(T)  = 4 arctg(Rr) + p,, where R is the charac- 
teristic instanton frequency and po is random. Substituting 
this solution into (1)-(3),  we find as 1-0 and with suffi- 
ciently small a ,  ( p, g 1 ) 

The extreme values of p, and R = R,, are determined by 
minimization of (25), which yields p, = 0 and 
0, = (8EQ E, ) It '. We note, however, that the introduction 
of the quantity a, makes sense only when the fluctuations of 
R are small compared to the extreme value, i.e., for 
d 2S(R0)/dCi: )a; ', which is equivalent to the condition 
E j  , EQ . In the opposite limiting case E, EQ fluctuations 
of the instanton frequency are significant and must be taken 
into account in determining the preexponential factor in the 
expression for the tunnelling amplitude A2/2. 

This factor is determined by the eigenvalues of the oper- 
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A 

ator M = S2S/Sp on the extremum trajectory. There are 
three eigenfunctions of this operator with zero eigenvalues 
as E, -0, C+O: 

- % -I/* % Ti ('T)=~;"d@/at, (P~(T)=]Z , (P~(z)  = l a  - an' (26) 

Herep, and p, correspond to the shift of the instanton along 
the T and p axes, while p, corresponds to the change in the 
parameter R. Estimation of the normalizing factors in (26) 
yields J, = 8?rR, J, = T- ' ,  J, = 8?r/R3. Identifying the 
contribution of these modes and going over to integration 
with respect to the collective variables T, p,, and R, for A, we 
find 

(llJ21,K)" exp (-S[ql), 

whereK = det kO/det l  8 k  = ko - k ',and theoperator 
M 0  is calculated from the extremum @(T)  = 0, while the 
prime infers elimination of +e eigenvalues corresponding to 
modes (26). The operator M ' in the expression for K is de- 
termined by the square-law form 

((~iiQ"pJ =I drE,(l-cos@ (r))qi2(r)  

A 
The eigenfunctions and the eigenvalues of the operator 

M O are easily found (w, = 2?rTk, k is an integer) : 

and for the quantity K we obtain the expression 

K=hioh,ohh,o eerp [x (p2hi l ~ k o ) ) / h k o + ~  ( a  l )  ] 
Hence for T = 0 and the condition EJ/aT < R  <EQaT we 
find 

Kt/* =E '12 -A E, 16 n2a,2 
E ~ e x p [ ~ o  + --ln-] , (29) ' i-2 L2 na, 8EJEQ 

where Co = 0.577. Using expression (29) and evaluating the 
integrals with respect to p, and R in (27) we have 

A2=2a, (8EJEQ)'"Kl [n (8E,/EQ)":] exp (-n2a,i2+ C,), (30) 

where K, ( x )  is the modified Bessel function. The crossover 
of the coefficient for E, - EQ is related to the change in the 
type of R fluctuations. For E, )EQ the value of R experi- 
ences Gaussian fluctuations with respect to 
Ro = (8EJ EQ ) ' I 2 ,  while the fluctuations of R are essential- 
ly non-Gaussian for E, < EQ and are within an order of mag- 
nitude of Ro - E, . 

The difference between Eq. (30) and the result from 
Ref. 26 (after recovering the correct dimensionality) is due 
to the fact that the anharmonic effects considered above 
were neglected by Ref. 26 for E, <EQ, while in the case 
E, BEQ this study evidently improperly accounted for the 
contribution of modes with frequencies w 4 R. The instanton 
presence is not significant at times r-wA-')R-' and 
T <  R- I ,  and the eigenvalues of the operator M in the princi- 
pal approximation aAe identical to (28). On the other hand 
the eigenvalues of M (in the limit E, -0, EQ -+ co found 

yactly in Ref. 26) are also identical with the eigenvalues of 
M O (28) for E,/a, (a (a,EQ. These inequalities heavily 
overlap for the instanton frequencies R - no that are impor- 
tant here. This suggests that the eigenvalues R (28) in the 
~rincipal approximation are the eigenvalues of the operaior 
M with all values of a, and that perturbation theory in M ' 
can be used to calculate the corrections to R :. When the 
strong inequality T<R holds, such perturbation theory is 
valid for all frequencies w, . We also note that for a, - (E;/ 
EQ ) 1 the expressions derived by various means for A, 
(22) and (30) transform into one another. 

The interaction between the instantons considered here 
is inversely proportional to the square of the distance be- 
tween them ( a T-,) (Ref. 26) as I-0, a ,  -0, and is small 
when ROr) 1. The average "distance" between the instan- 
tons is T- A; and thus for 

the noninteracting instanton gas approximation holds. The 
range of applicability of expression (30) is limited by condi- 
tions (24),(31) for A,. 

An important consequence of the results obtained here 
is the possibility of establishing an interface a*, (E, ) be- 
tween the ordered ( (cos q, /2 > #0) and disordered 
( (cos q, /2) = 0)  phases in the range of small E, . We have 
a*,= 1 -a, fora, < 1 a n d a s E J + ~ . F o r E , < E Q  thenec- 
essary condition for the existence of the ordered phase is that 
the A, bandwidth be small compared to E,. In the opposite 
case A, > E, the energy of the system may exceed the Jo- 
sephson interaction EJ, so that transitions between the 
states q, and p + 2?r become possible. In this situation the 
translational symmetry of the system in p-space can be 
caused only by the symmetry of the Josephson term 
p-q, + 277, i.e., the system has an equal probability ofbeing 
in the states p and p + 2?r, which corresponds to the disor- 
dered phase (cos q, /2) = 0. Thus, the interface a*,(E, ) is 
determined from the condition A, - E, for E, < EQ and 
a, ) 1, which yields 

The existence of external current and ohmic dissipation 
causes additional instanton and anti-instanton interaction: 

With small I, Tand a, < 1/4 the Josephson "particle" expe- 
riences band motion, while the effective band width A,, is 
determined by Eq. (23); it is necessary to substitute A, from 
(30) into this formula. In this case the quantity a*,(EJ ) is 
also found from condition (32). The translational symmetry 
p -p + 4 ~ r  is broken for a, > 1/4, a, > a*, and as T- 0, and 
tunnelling between the even (or odd) minima is suppressed, 
and A,, = 0. 

5. QUANTUM DIFFUSION OF PHASE AND VOLTAGE 
OSCILLATIONS 

With sufficiently large values of Tand (or) I diffusion- 
type motion replaces the band nature of charge carrier mo- 
tion. The quantum diffusion of p also exists at any small 
values of T and I in the rane a, + a, > 1, a, > 1/4. In the 
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case of linear dissipation for Ej )EQ diffusive motion is 
caused by incoherent tunnelling between the nearest poten- 
tial minima and has been investigated in considerable detail 
in Refs. 7, 9-1 1. The calculations have been carried out en- 
tirely analogously to the case in Refs. 7,9-11 for a, # 0. As a 
result for (EJ/E, ) ' I 2 )  max{l,a, + a,) we have 

As discussed above, in this case where the quasiparticle 
conductivity of the tunnel junction is nonzero there is one 
additional quantum diffusion mechanism of the Josephson 
phase related to direct tunnelling between the states q, and 
q, + 4 ~ .  In certain conditions the mobility p, attributable to 
this mechanism exceeds p , .  We will calculate p, assuming 
that this mechanism dominates, and we will then determine 
the applicability conditions of this assumption based on a 
comparison ofp, andp,. For incoherent tunnelling between 
even (or odd) potential minima the probabilities of the Jo- 
sephson "particle" being near such minima of W, ( t )  obey 
the simple equations 

where k = 2n (or k = 2n + 1 ), while r2 are equal to 

Here A, for (EJ/EQ ) ' I 2  % max{l,a, + a,) is determined 
by Eq. (22), while for a, >max{EJ/EQ )'I2, a, ,  In(aTEQ/  
EJ )) it is determined by Eq. (30). 

Equations analogous to (35 ) describing incoherent 
tunnelling between the nearest potential wells were initially 
postulated in Ref. 7 for the case of ohmic dissipation. A strict 
derivation of these equations by means of an analysis of the 
contributions of all instanton configurations and their appli- 
cability conditions were given in Ref. 11. The derivation of 
(35),(36) was entirely analogous to Ref. 11. The descrip- 
tion of quantum diffusion of q, by means of ( 35 ), ( 36) is quite 
adequate for max ( T / I  /e) &w2, while for a ,  < 1/4 theauxil- 
iary condition (T,I/e) )a, A,, must also be satisfied. 

The averages (q, ( t ) ) and (q, ( t)  ) are easily calculated 
by means of relatins (35), (36). Specifically for the mobility 
p, we have 

which, subject to (36) yields 

We recall that the average voltage across the junction 
( V )  = (@ )/2e in the diffusion approximation can also be 

determined by p, ,  so in the general casep, = max@,,p,). 
Direct comparison of (34) and (38)  reveals that in the case 
(Ej/EQ ) ' I 2  %max( l,a, ,aT ) and when the condition 

is satisfied (the numerical factor x is expressed through the 
combination of gamma-function) the second incoherent 
tunnelling mechanism under consideration dominates, i.e., 
pP = p,, and, consequently, the effective potential in which 
the diffusion of q, occurs is a 4~-periodic potential. The effec- 
tive potential in the opposite (quasicharge) space in this case 
is e-periodic, and the mobility of the quasichargep, consis- 
tent with (6) and (38) is p, ~ 2 e  and this implies that the 
coherent voltage oscillations ( V(t)) for a, < 1/4 and sufi- 
ciently small T have the frequency w, = 2 ~ I / e  (since the 
quasicharge "passes through" period e in q-space over time 
Te = e/I). 

In these conditions, as in the preceding case of small E; 
and a,, the Bloch and one-electron voltage oscillations 
coexist, while the I-V characteristic of the system F= p21/ 
4e2 is determined by the first relation of (38) for a, < 1/4. In 
the limit opposite (39), p, = p l ,  i.e., incoherent tunnelling 
between the nearest minima of the 2~-periodic potential 
makes the primary contribution. This means that in this case 
the quasicharge "moving" with the external current 
"senses" solely the 2e-periodic potential relief, while the co- 
herent voltage oscillations have a frequency wB = TI /e, i.e., 
they are purely Bloch oscillations. Such oscillations occur 
for a, + a, < 1, while the I-V characteristic of the system in 
such oscillatory conditions is determined by one of the ex- 
pressions ( 34). 

With large values of 

the I-V characteristic in the diffusion approximation is de- 
termined by pcL, = p,. Specifically, for I /e) T from (38) we 
have 

where A, is determined in (30). We note that expression 
(40) holds for virtually any (including small) values of Ej /  
EQ at currents I less than and not too close to the Josephson 
critical current 2eEJ. The classical dynamics of the Joseph- 
son phase become significant for I? 2eEJ, so that in the case 
I) eEJ and a,, 1 the I-V characteristic in the principal ap- 
proximation is described by Ohm's Law. It is also necessary 
to take account of the auxiliary condition guaranteeing va- 
lidity of (40) for a, < 1/4: ea, A,, 41. As a result we find 
that with small E; ,a, 3 1 and a, < 1/4 the following condi- 
tion must be satisfied in order to achieve quantum diffusion 
of q, and quantum voltage oscillations: 

As before the Brillouin zone is e-periodic, while the frequen- 
cy of oscillations (V(t))  is equal to w,. 

A Coulomb tunnelling blockade can develop for small I 
and T. Specifically, for a > a*, and a, < 1/4 it can occur 
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when Z<ea, A,,. It is easily demonstrated that the I-V char- 
acteristic of the system in such conditions is ohmic with an 
effective resistance R EFF = R , .  In the limit a ,  -0 and 
a ,  < 1 the initial section of the I-V characteristic with both 
small and large2' values of EJ takes the form characteristic -k I I \ of one-electron oscillations. I 1' 1 - 

0 0.25 I a, I - a ,  
6. DISCUSSION OF RESULTS 

Quantum effects therefore have a significant influence FIG. 3. a-Phase diagram for T-0, I - 0  and E,/EQ , 1. Regions I and I' 
correspond to the disordered phase (cos q, /2) = 0, in regions I1 and I11 

On the behavior of 'Ompact Josephson junctions at (cos q, 12) ,I. The Josephson phase is localized in region 111, where 
sufficientl~ low temVeratureS and produce a number of clual- (0 2, 4 1. In regions I, I' and I1 the macroscopic phase coherence is broken 
itatively new effects. An important role is played by disiipa- dbwn by phas;fluctuations and (q, 2, - m . - c ~ h a s e  diagram for T-0, 

tion which in our most general case is caused by both the I-+O,anda,  < 1. InphaseA (cos q,/2) #O,inphaseB (cos p / 2 )  = O.The 
interface between the phases A and B for a,, 1 is determined by relation 

nonzero quasiparticle conductivity of the tunnel junction (32).  In phase for a,  < 1/4, (q, 2, - m ,  while for 1/4 < a,  < 1 the average 
and by the presence of a shunting resistance. In a weak exter- 
nal current and (or) temperature the quantum fluctuations 
in the tunnel junction-shunt system lead to virtual tunnell- 
ing of single electrons and Cooper pairs as well as the asso- 
ciated quantum diffusion in the quasicharge space. As a re- 
sult for small a ,  the Coulomb tunnelling blockade breaks 
down to some degree, while the charge and effective resis- 
tance drop below their classical values due to the quantum 
corrections. The Coulomb blockade breaks down entirely 
for a ,  2 1 and EJ = 0. The Coulomb blockade exists with 
any a ,  at nonzero (and even small) values of EJ and a, #0, 
while the initial section of the I-V characteristic corresponds 
to the resistive state with R .,, = R ,  . 

Coherent voltage oscillations represent a very specific 
manifestation of the quantum nature of the Josephson phase 
difference. When quasiparticle and Cooper pair tunnelling 
exist simultaneously, these oscillations are substantially 
modified compared to the case of purely one-electron2a3 or 
purely Bloch' oscillations. For moderately small values of 
a ,  the frequency of the coherent voltage oscillations is twice 
the Bloch oscillation frequency. We emphasize that such os- 
cillations should not be interpreted as purely one-electron 
oscillations (i.e., independent of Cooper pair tunnelling), in 
spite of the fact that their frequency coincides with the one- 
electron oscillation frequency a,. 

The important role of Josephson tunnelling becomes 
particularly clear in the case a, > 1. In this case the Cou- 
lomb blockade and coherent oscillations are completely sup- 
pressed for EJ = 0, while the I-V characteristic is near-oh- 
mic. The situation, however, changes radically with nonzero 
EJ : The coherent effects are recovered, and the I-V charac- 
teristic in the range of rather weak currents acquires its char- 
acteristic form (Fig. 2) and is substantially different from 
ohmic form. It is also important to call attention to the dif- 

FIG. 2. Typical I-V characteristic for a ,  < 1/4 and T-0: a-For a ,  < I/ 
8, &for 1/8 < a ,  < 1/4. The initial segment of the characteristic 141cR 
corresponds to the Coulomb tunnelling blockade, while the region I %  I,, 
corresponds to coherent voltage oscillations. For A,, 2 A , ,  the crossover 
between these two conditions is characterized by the parameters 
I,, -ea,A,,, VCR - A2,/e. 

value (q, ') is finite. 

ference between dissipation attributable to quasiparticle 
tunnelling and ohmic dissipation: For a ,  2 1 quantum co- 
herent effects break down entirely, while for sufficiently 
small a, these effects are not suppressed even for a ,  $1. 

All these differences can be attributed to the physical 
differences between the three charge transport mechanisms 
under analysis: Nondissipative Cooper pair tunnelling, dis- 
sipative quasiparticle tunnelling and continuous normal 
electron transport through the ohmic shunt. These differ- 
ences are manifested in particular in the different transla- 
tional symmetry of the terms in action (1)-(3), which in 
turn influences the specific nature of the dissipative phase 
transitions in this system (T-0, I -0 ) .  For EJ/EQ 9 1 
spontaneous translational symmetry breaking2' p + p + 2 a  
occurs at the point a ,  + a ,  = 1, so that for a ,  + a ,  > 1 the 
average (cos q, /2) becomes nonzero. The translational sym- 
metry p-p + 4 ~ ,  which breaks down for a ,  > 1/4 (region 
I11 in Fig. 3, a )  is implemented here for a,  < 1/4 (region I1 
in Fig. 3,  a) ,  and this symmetry breaking causes localization 
of p. The phase transition at the point a, = 1/4 is in fact a 
dissipative Schmid phase transition4-' in the 4~-periodic po- 
tential and occurs only for a, + a ,  > l .  We note that the 
order parameter (cos p /2) does not change in such a phase 
transition, while the phase localization and, consequently, 
the classical Josephson effect will occur only in region 111. In 
regions I, I' and I1 ( p  2,  + CC, the quasicharge is localized, 
and the initial segment of the I-V characteristic corresponds 
to the resistive state. 

For EJ/EQ g 1 and a,  < 1 the phase with broken sym- 
metry p-p + 277 is implemented for a ,  > a*,(EJ ), where 
a*, is determined by relation (32). As is the case with large 
E, in this phase for a, < 1/4 the average value ( p  ') di- 
verges, while for 1 >a,  > 1/4 the phase p is localized. The 
Josephson phase is localized for a,  > 1 for any a,, and the 
phase diagram in Fig. 3 b is meaningless. 

The authors are grateful to K. K. Likharev for useful 
discussion of the results of this study. 

"We note that in investigating the quantum properties of the system the 
states q, and q, + 277 should be considered nonequivalent states (see also 
Ref. 1) .  The validity of this statement is obvious for I #O. In the case 
I = 0 these states are experimentally distinguishable at any level of weak 
interaction of the coordinate q, with the "external medium", a role that 
can be played by either the shunt or an external circuit. We also note that 
in virtually any experimental situation the charge of the superconduct- 
ing electrons is not quantized in the scale e, which also suggests that the 
states q, and q, + 277 are not identical. 
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''Regarding translational symmetry we are in all cases referring to the 
symmetry of the effective action (or the effective Hamiltonian) but not 
of the quantum-mechanical state space of the entire system. 
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