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A theory of the vibrational spectra of glasses, based on allowance for the statistical fluctuations of 
the local elastic constants, is proposed. The existence is established of two characteristic energies 
h, and h, , dividing the spectrum into regions of qualitatively different behavior of the density 
of states n ( h ) .  At low frequencices w 4 w, the increase of the density of states is determined by 
the additive contributions of phonons and mutually noninteracting quasilocal vibrations in 
random soft atomic potentials in the glass. In the intermediate region w , 5 w 5 w, the quasilocal 
vibrations interact strongly with phonons, and this makes their contributions superadditive. For 
w > w, the growth of n (h) slows down. As a result, n (h) increases at first more rapidly and 
then more slowly than the Debye density of states. An analytical expression for n (h) is obtained 
in the T-matrix formalism in the region w < a , ,  including the region of strong scattering. A 
numerical calculation of n (h) is performed in the coherent-potential approximation. The 
theory predicts qualitatively universal behavior of n (h) in different glasses. 

1. INTRODUCTION 

Experiments to measure the specific heat,'., neutron 
and Raman scattering of light6 provide evi- 

dence that the density of vibrational states n (h) of glasses 
behaves in a more or less universal manner, changing little 
from one material to another. However, it differs substan- 
tially from the density of states of crystals. In the region of 
the lowest energies fiw5 1 K the behavior n ( h )  zconst 
corresponds to the well known model of two-level systems 
(TLS) in two-well atomic However, at higher 
energies h k 10 K the behavior of n (h) is not described by 

brations of softening defects in crystals. The density n (h) 
corresponding to these states increases rapidly with energy. 
At sufficiently high energies there are so many states that 
they interact strongly and become collective. This change in 
the character of the states leads to a flattening of the depen- 
dence n ( h ) ,  which we associate with the upper part of the 
curve in Fig. 1. 

the TLS model. In this region the experimental data3-' dis- - 
play a complicated dependence n (h), which first increases , 
more sharply than the Debye density of states g ( # b )  a w Z  2- 
and then becomes less steep, with a tendency to subsequent 
decrease. This behavior is illustrated in Fig, la. 

In recent papers9'10 this behavior of n (tfo) has been ex- 
plained on the basis of the postulate that glasses have a frac- 
tal structure. It was assumed that excitations with wave- 
lengths A < L, called fractons, belong to a distinct fractal 
structure with correlation length L and small effective frac- 2 4 
ton dimension d z l .  The fracton density of states v ,  THz 
n ( h )  a wd- ' for w > s/L (s  is the velocity of sound) was 
associated with the gently sloping part of the dependence at n(hw),  rel. units 

high energies. In this approach the form of the density of 
states n ( h )  zconst at low energies remains unexplained. 8 
In addition, from our point of view, there are no physical 
grounds for the postulate that glasses contain a fractal struc- 
ture limiting the propagation of short-wavelength excita- 
tions. 

Y 
In the present paper we propose a different explanation / 

of the dependence n (h) in a broad range of energies, from 
the lowest (h 4 1 K)  up to energies comparable to the De- 
bye energy (h 5 h, ). Our explanation is based on , I ~ I , I ~  

allowance for fluctuations of the local elastic constants in the 0, Y 0.8 

disordered atomic system of the glass and reduces to the w /WD 

following statements. In the soft atomic potentials that arise FIG. 1.  a )  Frequency dependence of thedensity of states in vitreous SiO,, 
on account of the fluctuations. auasilocal vibrational states from Ref. 3. The dashed curve shows the Debve density of states. On the 

, . ~ ~ - -----. .  

with random parameters are realized. ~t low energies these Upper scale, for later comparison, we have plotted the relative energy 
values d m D ,  where fwD is the Debye energy; b) energy dependence of 

constitute two-1eve1 'ystems with (h)  zconst. the density of states as calculated in the coherent-potential approxima- 
States with high energies are similar in type to ordinary vi- tion. The dashed curve shows the Debye density of states. 

2386 Sov. Phys. JETP 67 (1 I), November 1988 0038-5646/88/112386-07$04.00 @ 1989 American Institute of Physics 2386 



In the formulation of the problem our approach is, to a 
certain extent, similar to the analysis of Montgomery," who 
showed that fluctuations of the elastic constants increase the 
density of the low-frequency vibrations. However, the analy- 
sis in Ref. 11 was performed with two strong restrictions. 
First, it was assumed that the fluctuations do not lead to the 
appearance of quasilocal vibrations. Second, the analysis in 
Ref. 11 was limited to the harmonic approximation. These 
restrictions are not fulfilled in the most interesting region of 
low frequencies, corresponding to strong local softening of 
the elastic constants. 

The approach proposed by us is free from these restric- 
tions. It takes into account both the presence of quasilocal 
vibrations and the effects of anharmonicity in the glass. Our 
approach makes it possible to take isotopic disorder into ac- 
count as well, when necessary. Its results are qualitatively 
independent of the type of disorder, thereby explaining the 
universal behavior of the density of states in glasses. 

The remainder of the article is organized as follows. 
First we consider the general problem of the density of vibra- 
tional states of an atomic system with uncorrelated random 
local perturbations. The results obtained express n (h) in 
terms of the parameters and bare density no (h) of isolated 
(not interacting with each other) random quasilocal states 
in an ideal lattice. We then concretize the density no (h) 
and the parameters of the isolated vibrations for a glass. The 
conclusions thus reached concerning the energy dependence 
of the density of states n ( h )  are then reinforced by a nu- 
merical calculation in the coherent-potential approxima- 
tion. 

2. VIBRATIONAL DENSITY OF STATES IN A RANDOM 
ATOMIC SYSTEM 

The problem of this section is formulated as follows. We 
assume that in an ordered atomic system we have a single 
defect, characterized by a site perturbation Uand leading to 
the appearance of a quasilocal state (on the background of 
the continuous spectrum). This state is characterized by en- 
ergy h and width T, which depend on the perturbation U 
and also on the density g ( h )  of the continuous spectrum of 
the ordered system. In the problem under consideration ran- 
dom uncorrelated perturbations are present at each site and 
are characterized by a probability distribution p ( U) . If the 
site quasilocal states did not interact with each other, the 
problem of determining the corresponding bare density of 
states no (h) for a given form of U,p( U), and g ( h )  could 
be solved trivially. The main difficulty lies in the determina- 
tion of the density n ( h )  when interaction between the 
states of individual sites is taken into account. 

Although the above problem is close in formulation to 
familiar problems concerning the density of the electron 
states of disordered systems (see, e.g., Ref. 12), it has a fea- 
ture specific to itself: The site perturbations under consider- 
ation here are not true potentials but pseudopotentials, i.e., 
depend themselves on the energy: U = U ( h ) .  This fact is 
well known in the theory of the vibrations of defects in crys- 
tals. For example, for an isotopic 

U = E A M ,  E-- (Am)'. (1)  

For a defect of the force constant x we can also introduce an 
effective local perturbation U, which appears in the equation 
for the spectrum of 1 - UGO, where Go is the Green function 

of the crystal. One can verify this by considering specific 
models of force-constant defects. '',I4 For considerable dis- 
tortions of the force constant one can write the explicit 
expres~ion'~ 

where Mis the mass of the atoms of the lattice. It is precisely 
the pseudopotential character of the site perturbations (in 
particular, the dependence U a  E for E-0) that ensures the 
existence of a boundary of the spectrum at E = 0 and the 
acoustic character of the spectrum in the limit of long wave- 
lengths for a disordered atomic system. 

The theory described below does not use an explicit 
form, of the type ( 1 ) or (2),  for the dependence U(E). How- 
ever, the existence of such dependences is manifested implic- 
itly in the energy dependences of the density no and widths T 
of the bare states, since the desired density of states is ex- 
pressed in terms of these quantities (see (22) below). 

We start from a qualitative analysis of the density of 
states. We assume that the bare distribution function 
no (&a) decreases rapidly with decrease of w as o -0 (a  de- 
tailed discussicon of the form of n, (h) is given in Sec. 3 ) .  
In the limit w-0 the bare density no turns out to be very 
small. The scattering of phonons by these states is corre- 
spondingly small. Therefore, we must expect that for w -0 
the density of states will be determined by additive contribu- 
tions from the quasilocal vibrations and the phonons: 

n (Am) =no ( A o )  + g ( A o )  (3)  
With increase of w the scattering of phonons by reso- 

nance quasilocal vibrations becomes considerably more in- 
tense because of the increase in the density n , ( h )  and 
width T ( h )  of the latter. The approximation (3)  fails 
completely when the corresponding mean free path I- (no 
r A 2 )  - '  becomes comparable to the wavelength A, i.e., 

The condition (4)  determines the characteristic energy h, , 
which is smaller than the Debye energy h,. 

We note that, from its meaning, the condition (4)  can 
be represented in the form I m Z - h ,  where Z is the self- 
energy operator, whose imaginary part ImZ - no T/g de- 
scribes the scattering-related lifetime of the state. The quan- 
tity ImZ increases with increase of h. This 
energy-dependent broadening of the levels leads in an ob- 
vious way to "pumping" of some of the states from the high- 
frequency part of the spectrum into the low-frequency part. 
This implies that for w 2 w, (i.e., for ImZ 2 h, ) the density 
of states should increase more rapidly than by the law (3).  

The arguments given and the conclusion concerning the 
superadditivity of the densities of the quasilocal vibrations 
and phonons cease to be valid in the region of sufficiently 
high energies at which the quantity ImZ becomes compara- 
ble to the characteristic width h, of the spectrum, i.e., 

t ,=norlghmD-I.  (5) 

For the assumed sharp dependences no (h) and T ( h )  the 
characteristic energy h, defined by the condition (5) turns 
out to be smaller than h , .  It follows from this that the 
above-predicted rapid growth of the resultant density of 
states n ( f iw )  appears only for w 5 w,, while in the region w ,  
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< w < oD the dependence n (fiw ) should be qualitatively dif- 
ferent. Taking into account the normalization of the number 
of states: 

we can conclude that for o > o2 the dependence n ( fiw ) 
should be, on the average, at least weaker than the Debye 
dependence g a 02. As the final result we arrive at an energy 
dependence n (h) of the type depicted in Fig. la. 

We note here a further interpretation of the condition 
(5 ). In the strong-scattering region ImZ > fiw the role of the 
wavelength of an excitation is played by the quantity 
A - a h D  /ImZ = a/J2, where a is the lattice constant (in 
place of A -aoD/o for phonons) . Therefore, the condition 
g2 ( 1 corresponds to the long-wavelength approximation 
A$a, while the condition (5) corresponds to failure of this 
approximation. 

We turn to a quantitative treatment of the density of 
states. Let the Green function G L ,  where a and p are site 
indices, correspond to the ideal lattice. The standard expres- 
sion 

relates the Green function G,, of the system under consider- 
ation to G s  through the scattering matrix TUB, satisfying 
the equation 

where U, is the site perturbation. Introducing the t-matrix 
of an individual defect: 

we represent Eq. (8)  in the form 

- 
where the matrix FaB is related to TUB by TUB = t, Tag. 
Equation ( 10) is exact, and the second term in its right-hand 
side describes the interaction between individual quasilocal 
vibrations, the parameters of which are determined by the 
poles of the random amplitudes t,. 

If Eq. ( 10) has been solved, and the Green function Gap 
(7) thereby determined, the density of states can be found 
using the relation (see Ref. 14) 

Here and below we use the following representation, cus- 
tomary in the theory of vibrations: 

wih energy variables E = ( & o ) ~  and E, = (h, )2, where k is 
the quasi-wave-vector of a phonon of frequency w, (Refs. 13 
and 14). Then the site Green function is 

where R - ' (E) denotes the real part. 

We shall solve Eq. ( 10) in the long-wavelength approx- 
imation l2 4 1, which includes the regimes not only of weak 
(g, ( 1 ) but also of strong (5, 2 1 ) scattering of phonons. It 
turns out that for g2 (1 we can replace the quantity t, in 
(10) by its average value tm (t, ). This corresponds to the 
averaged-t-matrix approximation.12 In the Appendix it is 
shown that corrections to thesolution obtained by this meth- 
od in the given problem are small in the parameter 5,. Physi- 
cally, the possibility of replacing t, by t in conditions of 
strong scattering is due to the self-averaging of the ampli- 
tudes t, over large spatial scales A )a corresponding to reso- 
nance scattering of long-wavelength excitations. The self- 
averaging is associated with a specific feature of the problem 
under consideration, in which the concentration no r of res- 
onance quasilocal states increases sufficiently strongly with 
increase of energy. Because of this, a volume A3 (for ABa) 
contains a large number of scattering centers, and their am- 
plitudes t, undergo self-averaging. 

In the averaged-t-matrix approximation Eq. ( 10) is 
easily solved: 

The calculation of the sums in the expression for the density 
of states ( 1 1 ) is again performed with allowance for the self- 
averaging property of the quantities t,. The result has the 
form 

where the self-energy part Z of the averaged Green function 
is 

The expression ( 15) contains the average values 

- lim d ~ p  (u) f( U) 
T-+n 1 -- U(E - iy)P(~ - iy) (17) 

where f( U) represents U, d U / d ~ ,  or 1. In the cases under 
consideration the real part of the integral ( 17) is determined 
mainly by the neighborhood of U = 0 (i.e., of the maximum 
ofp(  U) ), in which the difference of the denominator from 
unity can be negelcted. The imaginary part is determined by 
the pole of the integrand near the real axis. As a result, 

A[f(U)l=(f(U)>+in[p(U)f(U!Ul.=,, (18) 

where ( f( U) ) denotes the usual average. 
The quantities p (R ) and dU / d ~  I ,= , appearing in 

( 18) can be expressed in terms of the characteristics E, r (E), 
and no (E)  of isolated quasilocal vibrations. For this we con- 
sider an isolated quasilocal vibration generated by a site per- 
turbation U. We represent its energy variable in the form 
E + ir with r(& and write the equation determining the 
poles of the amplitude t (9): 

Separating the real and imaginary parts, we obtain 
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Equations (20) determine the position E and width r of an 
isolated vibration. The condition I? (E corresponds to low- 
frequency The density of such vibrations is 

With allowance for the expressions (18), (20), and 
(21), the formula ( 15) for the density of states takes the 
form 

We note that the definition (23) for 6, coincides with (5)  to 
within unimportant numerical factors. One can convince 
oneself of this using the Debye model, in which 

With the same accuracy the parameter {, from (4) can be 
represented in the form 

The parameters {, and 5, increase with increase of E, owing 
to the sharp dependences no ( E )  and r ( ~ )  (see Sec. 3). 

The expression (22) is equally applicable both to disor- 
der of the force constants and to isotopic disorder; the differ- 
ence between these cases reduces entirely to the appropriate 
choice of r in (22). In addition, the expression (22) is not 
restricted to the harmonic approximation: Allowance for 
anharmonicity affects only the form of P(E) and I?. The ap- 
plicability of the expression (22) is limited not only by the 
condition g2 4 1 but also to the comparatively low-frequency 
part of the spectrum (in practice, E 5 ED/3), in which the 
expressions (20) and (24) are valid. 

Upon analysis of the behavior of n (E)  (22) two charac- 
teristic values of E are revealed. The smaller of these, E , ,  
corresponds to the condition g, = 1 for which lImZl = E. 

For {, > 1 > 6, the density n (E)  increases somewhat faster 
than (3)  with increase of E, on account of both the strength- 
ening of the energy dependence P(E - 2 )  when lImBl> E 

and the term TR 2c : /T in (22). The increase of n (E) be- 
comes slower near another characteristic value E = E, > E,,  
corresponding to the condition 5, = 1 in (22). For g, % 1, 
i.e., for E > E ~ ,  we have the decreasing function 

R2g E d  
n ( e )  = - I m [ P ( e - R )  ] - 0.3 -. r r 

However, this dependence is realized outside the region 6, 
4 1 of applicability of the results obtained. We can give a 
rigorous argument for the weakening of the dependence 
n ( ~ )  for E 2 E~ only on the basis of the normalization condi- 
tion (6) .  These conclusions correspond to the qualitative 
arguments outlined at the beginning of this section, and con- 
firm the criteria (4)  and ( 5  ). The characteristic values of the 
variable are related to the characteristic energies introduced 
above: E,,, = (h,,, )'. 

3. ISOLATED QUASILOCAL VIBRATIONS 

A number of papers15-l8 are devoted to the examination 
of isolated vibrations in soft potentials of a glass, and our 
account will be brief. Its main purpose is to concretize the 
quantities no, g, , g2, and I? in the expression for the density 
of states. 

Following Refs. 15-18, we can write soft potentials us- 
ing a single-mode expansion 

Here O -MsZ- 10 eV is an energy on the atomic scale, a, 
- 1 A is a characteristic atomic size, and q and tare random 
quantities with di~tr ibut ion '~"~ 

P ( q ,  t )  = 171 Po(rl,t) for 171 41, (28) 

where Po (q,t) is a smooth function finite at q = 0. For soft 
potentials the distribution P(q,t) has a rapidly decreasing 
tail at 171 ( 1. The potentials (27) can be either one-well or 
two-well potentials. 

The analysis in Refs. 15 and 16 of the dynamics of an 
atomic particle in the potential (30) displays the character- 
istic parameter 

the meaning of which is that the energy gaps E(q,t) between 
the levels in the potential (27) are changed by an amount of 
the order of the levels themselves when the parameter q is 
changed by q, or the parameter t is changed by q;',. This 
makes it possible to set Po (q,t) = const in the calculation of 
the density of states 

n o ( t i o ) = ( G ( f i o - E ( q ,  t )  )) 

in sufficiently soft potentials, since the characteristic scales 
Sq and St of the attenuation of the distribution Po (q,t) in the 
variables q and t are large in the sense that Sq > qL and 
St > q;'2 (in reality, St 2 Sq 2 0.1 (Refs. 15, 16) ). 

The main results are the following. There exists a char- 
acteristic energy 

~ = 8 ~ ~ ~ " h ~ D ( h o D / 8 ) ' ~ - ~ 0  H, (30) 

with respect to which the excitations are classified. For 
fiw ( w the excitations represent a TLS in the two-well poten- 
tials (27) with no(&) = const. The density no(&) in- 
creases appreciably at energies & 2 w corresponding to ex- 
citations in one-well soft potentials. Excitations with energy 
fiw%w are realized in almost harmonic potentials (27). 
Their density l7  can be expressed in terms of the variable 
E = (&)' as follows: 

where no is the density of states of the TLS, and is known 
from experiments. If the quantity E is sufficiently large that, 
for the parameter values corresponding to it ( q  5 E / E ~  and t2 
S; E / E ~  ), we can no longer set Po (q,t) = const, the depen- 
dence no (E)  turns out to be sharper than (3 1 ) . 

The features of interest to us in the behavior of n  (h) 
lie at energies greater than or of the order of several tens of 
degrees Kelvin (see Fig. la), i.e., appreciably greater than 
the energy w (30). Therefore, in the following estimates we 
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use for no the formula (3 1) (taking into account the remark method an effective potential a(&) is assigned to each site of 
that follows it). the system, so that the role of the site perturbations is played 

Another quantity that we need-the width T of a quasi- by the quantities U, - a. The self-consistent condition for 
local state in a soft potential-has in the harmonic approxi- the determination of a(&) is that the ensemble-average value 
mation the well known of the t-matrix (9) is equal to zero: 

(32) 
U,-0 

r-neZg (E) <t)  = (36) 

(to avoid confusion we stress that we are concerned with the 
property at zero temperature). ~ ~ h ~ ~ ~ ~ ~ i ~ i ~ ~  effects in- i.e., the system behaves as effectively coherent (with charac- 

crease T. Their influence can be estimated by the method of teristics depending On the energy 

Ref. 16, if we take into account that the potential (37) is The site Green function 

written in the noninertial reference frame moving with the 
long-wavelength displacements u of the oscillating medium. 
Because of this, in an inertial reference frame there appears 
an interaction with the displacements: 

where F, is a dimensionless vector characterizing the spatial 
orientation of the quasilocal mode. The absolute value o f f  
depends on the concrete structure of the center and can take 
values in the range 1-10. The term linear in xu in (33) corre- 
sponds to the harmonic approximation (32). Parametrically- 
it is the principal term: All the other terms give contribu- 
tions proportional to w2/& < 1 or to higher powers of this 
ratio. However, the anharmonic contributions contain large 
numerical coefficients. In addition, besides (33) there are 
anharmonic contributions from the interaction with the di- 
latation, of the form 

which also contain w2/&. As a result, for E of the order of a 
few w2 the anharmonic contributions can still significantly 
exceed (32), and we must regard (32) as a strong underesti- 
mate of T. 

From (23), (25), (3  1 ), and (32) follow the expressions 

from which it can be seen that an extended region of strong 
scattering (6, k 1 ) exists and is described in the framework 
of our theory (6, & 1 ) when y % 1. The values of the param- 
eters in the expression for y (31) differ comparatively little 
for different glasses. Taking as typical parameters those of a- 
SiO,: a'- cm3, hD -340 K (Ref. 20), and iio- 
erg-' cm-3 (Refs. 1,2), and setting w- 10 K in accordance 
with (30), we find y- 100. Then the characteristic energies 
defined by the conditions (4) and (5): 

are h, --0.3hD and iim, z 0 . 4 h D .  It can be seen that on 
the frequency scale the strong-scattering region w , < w < w, 
described by the theory turns out to be not too broad (al- 
though the parameters l ,  and l, of the theory vary within 
broad limits). We note that when the remarks made above 
are taken into account the estimates (35) for h, and fiw, 
must be regarded as slight overestimates. 

4. THE COHERENT-POTENTIAL APPROXIMATION. 
NUMERICAL CALCULATION 

At the present time it is considered that the best approx- 
imation for the spectral characteristics of a disordered sys- 
tem is given by the coherent-potential m e t h ~ d . ' ~ , ~ '  In this 

appearing in (36), in turn, contains a .  Therefore, the expres- 
sions (36) and (37) actually represent asystem offour equa- 
tions (two equations for the real parts and two equations for 
the imaginary parts) with unknown quantities Rea, Ima, 
Rep, and Imp to be determined for each value of E .  This 
system of integral equations has been solved numerically (by 
the gradient method; see, e.g., Ref. 22) for a potential U of 
the form (2)  with bare distribution no (E)  (3  1 ) and the De- 
bye density of states g ( ~ )  (24) of the coherent medium. The 
solutions were found for 100 values of the energy variable 
E = 0 . 0 l N ~ ~  ( N  = 1,2, ..., 100). The relative error of the cal- 
culations did not exceed 10% at any of the energies 

To calculate the density of states we used the expression 

which follows from ( 1 1 ) with allowance for the condition 
(36). In Fig. lb the calculated density of states is depicted in 
the form ofthe dependence of n (h) = n [ ~ ( h )  ] d ~ / d ( h )  
on the phonon energy fiw = 

It can be seen that the dependence n ( h )  found con- 
firms the conclusions of the analytical analysis of Secs. 2 and 
3. It also agrees qualitatively with the experimental curve in 
Fig. la. At the same time, there are noticeable differences 
between the dependences in Fig. la and Fig. lb. In this con- 
nection we point out that the potential (2)  used in the calcu- 
lation performed corresponds to the harmonic approxima- 
tion for the spectrum of an isolated defect. Allowance for 
anharmonicity and for the difference of no ( E )  from the de- 
pendence (3  1 ) should shift the peak on the curve of n (h) to 
lower energies (see Sec. 3). This could improve somewhat 
the agreement between the curves in Fig. la and Fig. lb. 

5. CONCLUSION 

The results obtained have a qualitative character. For 
systems with fluctuating elastic constants the theory estab- 
lishes the existence of characteristic energies h, and h, 
separating the vibrational spectrum into regions of different 
characters. For w & w, the scattering of phonons by quasilo- 
cal states is weak and phonons are well defined excitations. 
In the strong-scattering region w R w , phonon states attenu- 
ate over scales A smaller than the phonon wavelength, and A 
decreases rapidly with increase of w. At w-w, the attenu- 
ation length A is comparable to the lattice constant. 

The results obtained lead to the following conclusions 
about the energy dependence of the density of vibrational 
states in typical glasses. For &&w- 10 K the density 
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n ( h )  zconst is due to TLS" in the two-well potentials 
(27). For h 2 w the increase of n (&I) corresponds to the 
increase of the density no (h) of isolated vibrations in the 
soft one-well potentials (27). This section extends to h, 
- 100 K. In the interval between &I, and h, the theory 
predicts a certain strengthening of the dependence n(&I).  
However, this interval turns out to be so narrow that the 
predicted strengthening is not manifested in practice. For 
w 2 0, the dependence n (h) flattens out, and then begins 
to decrease. This behavior is in qualitative agreement with 
the data of Fig. la. The approximate character of the theory 
means that we cannot count on quantitative agreement. An- 
other reason for the discrepancies may be hidden in the spa- 
tial correlation of the site perturbations, which has not been 
taken into account by us at all. 

The theory described leads to the conclusion that the 
behavior of n (h) has a qualitatively universal character, of 
the type depicted in Fig. 1, for noncrystalline systems. It is 
evident that the most reliable test of this conclusion would be 
a systematic investigation of inelastic neutron scattering. 
Such data are available, as yet, for not very many noncrystal- 
line systems: SiO, (Ref. 3) ,   polymer^,^*^ and metallic 
glasses.24 

We are grateful to V. L. Gurevich, S. V. Maleev, D. A. 
Parshin, and B. L. Al'tshuler for useful discussions of the 
results of the paper. 

APPENDIX 

To analyze the corrections to the averaged-t-matrix ap- 
proximation it is convenient to represent the t-matrix of the 
defect in the form t, = t + T, with (T, ) = 0, and also to go 
over to Fourier components using the formula 

a, = z A (k, q) exp (ill,-iqr.) . 

Expanding the solution of Eq. ( 10) in powers of T, , we ob- 
tain the following expression for a general term of the expan- 
sion: 

(k, q) = 3 (k) -T (k-s) F7) (s ,  q),  (A.2) 

where 3 (k )  = g ( k ) / ( l  - tg(k)) ,  in whichg(k) is a Four- 
ier component of the quantity GO,, ( 1 - S,, ). Taking into 
account that 

we find that each term of the series can be represented in the 
form of a diagram of the type depicted in Fig. 2a. Here, each 
line corresponds to a propagator 9 (k),the circle on the 
right corresponds to the quantity g - ' (q) ,  and a cross corre- 
sponds to a Fourier component r ( k i  - ki + , ) of the random 
t-matrix. Here it is necessary to sum over all the internal 
momenta. 

For concreteness we shall estimate that part of the cor- 

a 
FIG. 2. 

rection to the density of states which is described by the 
imaginary part of SpG[ = T ~ G ] .  It is not difficult to convince 
oneself that 

where SG = G - G". We have also taken into account that 
after averaging over the ensemble of oscillators the quantity 
(TUB ) can depend only on the difference r, --rp. Taking 
into account the relationship between TUB and TaB , we find 
that the correction to the bare density of states is given by a 
sum of two average values: 

The two terms are estimated in a similar manner, and there- 
fore we shall consider the graphs for the first term. An nth 
order graph contains the general factor t$'(q)/g(q) and a 
part containing n crosses and n - 1 propagators that depend 
on the intermediate momenta over which it is necessary to 
integrate. This quantity must be averaged over the ensemble 
of the random quantities T. The averaging procedure can be 
depicted by linking the crosses into bundles. Each bundle 
contains more than one cross ( (T) = 0). In addition, a bun- 
dle corresponds to momentum conservation, eliminating 
one integration over the intermediate momenta. The aver- 
aged-t-matrix approximation that we have used contains one 
cross, and the lowest correction to it is depicted by the graph 
of Fig. 2b. 

Because of the point character of the scattering it is 
natural to regard the quantities T as independent of the mo- 
mentum transfer. As a result, the ratio of the given correc- 
tion to that which has been taken into account amounts to 

Assuming that ( r2)  - t2 and taking into account the expres- 
sion for 2, we arrive at the conclusion that the correction 
(A.3) is small for l2 4 1. Analysis of the next orders of per- 
turbation theory shows that for {, 4 1 the main role is played 
by graphs with nonintersecting bundles and with the small- 
est number of crosses in a bundle. Such graphs contain the 
smallest number of integrations, and 9 ( k )  for small k has 
the form 9 (k )  = (E - E~ - t)  I .  From this it is easy to see 
that the higher corrections are small in the parameter (A.3). 

If, however, g, 2 1, all graphs, with an arbitrary num- 
ber of bundles, are of the same order and the theory con- 
structed no longer works. Thus, the condition for applicabil- 
ity of the theory constructed is the inequality 6, < 1 (which 
does not exclude the region {, $1 ). 
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