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A theory is developed of electronic-vibrational interaction in rare-earth (RE) semiconductors 
with stable and intermediate valencies. A microscopic substantiation is proposed for the model of 
adiabatic charge density deformations that are related to local excitations (excitons) in RE-ion f 
shells. It is shown that the strong softening of the modes by excitonic instability of RE 
semiconductors to a transition into a state with intermediate valency leads to a substantial 
renormalization and damping of the phonons in a phase with intermediate valency. The 
calculated dispersion of the renormalization and damping agrees well with experiment. 

1. INTRODUCTION 

Notwithstanding the noticeable progress in calcula- 
tions of the phonon spectra of crystals containing atoms with 
unfilled d and f shells (see, e.g., Ref. 1 ), the theory of elec- 
tron-phonon interaction in these systems is still quite far 
from completion. The difficulties encountered are due pri- 
marily to the dual role of the d V )  electrons in the formation 
of the phonon spectrum. On the one hand, these electrons 
can be regarded as belonging to the core and as such are 
described by different variants of the deformed-ion model2 
or by the deformed-cluster model.4 In theories of this type, 
which are as a rule phci omenological, it is assumed that the 
shell electrons become adiabatically attuned to the ion dis- 
placements, and the role of the "nonadiabatic" electron- 
phonon interaction in the formation of the phonon spectrum 
is small. On the other hand, the electron spectra of both 
metallic and nonmetallic compounds of d V) elements con- 
tain bands brought about by direct or indirect overlap of the 
d Cf) shells, and in many theories5s6 the contribution of 
these electrons to the formation of the phonon spectrum is 
described, in analogy with the contribution of normal elec- 
trons in wide bands, on the basis of the Frohlich Hamilto- 
nian for nonadiabatic electron-phonon interaction. Since the 
d V )  bands are frequently quite narrow, the logic of this ap- 
proach suggest a substantial nonadiabaticity of ion interac- 
tion with d and f electrons, and hence a large contribution of 
the electron-phonon interaction to the renormalization of 
the phonon spectrum. Both approaches, despite the evident 
disparity of the initial premises, yield in many cases a rela- 
tively fair description of the phonon spectra (if enough fit- 
ting parameters are used), so that the question of the role of 
electron-phonon interaction in the formation of the vibra- 
tional spectrum remains actually open. 

It must be added that the microscopic character of the 
description of the electron-phonon interaction with the aid 
of a Frohlich Hamiltonion is to a certain degree illusory. It is 
well known that the procedure of "derivation" of the Froh- 
lich Hamiltonian admits of a definite leeway in the choice of 
the bare phonons, and the prescription for a consistent de- 
scription of the electron-phonon interaction with the aid of 
this Hamiltonian, developed in its day for simple  metal^,"^ 
requires introduction into the Frohlich Hamiltonian of 
"adiabatic" phonons whose dynamic matrix contains an 
adiabatic part of the electron-phonon interaction. Only the 
slow electronic excitations, which take no part in the forma- 
tion of the adiabatic potential relief for the ion motion, con- 

tribute to the true electron-phonon interaction. Depending 
on the width of the d or f band, many various regimes of 
electron interaction with the ion subsystem are possible, 
ranging from almost adiabatic (for broad bands) to substan- 
tially retarded (for extremely narrow bands). In the latter 
case, however, the narrowness of the bands means strong 
localization of the d V) electrons in the atomic shells, and 
this leads in turn to replacement of the "fast" translational 
degrees of freedom typical of good metals by fast atomic 
excitations, as in nonconducting crystals with strongly po- 
larizable shells. 

The question of the degree of nonadiabaticity of the 
electron interaction is particularly pressing for systems with 
unstable valency of the d Cf) shells). The reason is that va- 
lency fluctuations, connected at first glance with intra-atom- 
ic degrees of freedom, are charactrized in these systems by 
times 10-'2-10-'3 s, close to the vibration period of the 
lattice ions. This suggests a strong nonadiabaticity of the 
electronic-vibrational system and an important role of po- 
laron effect in the very cause of the intermediate valency 
(see, e.g., the review by Khomskii9). Attempts were made in 
the theory of electron-phonon interaction in systems with 
intermediate valency (IV) to describe the phonon spectrum 
both in a phenomenological model of deformable clus- 
t e r ~ , ' ~ ~ "  and with the aid of a Frohlich Hamiltonian. '' The 
problem was solved in these papers, however, without 
allowance for the specific features of a semiconductor with 
IV and without an understanding of the nature of its ground 
state, in fact within the framework of a two-band model of 
the metal. 

In this paper we propose a procedure for a consistent 
separation of the adiabatic phonons in rare earth (RE) semi- 
conductors with unfilled cation f shells, present a micro- 
scopic substantiation of the model of deformed crystals as 
applied to these systems, and separate, on the basis of com- 
parison with experimental data, the adiabatic and non- 
adiabatic contributions of the f shells to the formation of the 
phonon spectrum of samarium sulfide in the normal semi- 
conducting state and in the intermediate valency phase. 

2. ELECTRON-PHONON INTERACTION IN RE 
SEMICONDUCTORS WITH STABLE VALENCY 

Rare-earth chalcogenides are systems for which the 
problems of the procedure of formation of adiabatic phon- 
ons, formulated in the Introduction, are fully relevant. In- 
deed, in these systems the RE f levels, which form the upper 
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very narrow valence band, land in the usual semiconductor 
gap between the valence band due to p-shells of the chalco- 
gen ions and the conduction band genetically related to the 
unfilled d shells of the RE ions. This narrow band can be 
located deep inside the gap (europium chalcogenides) or 
near the bottom of the conduction band (samarium chalco- 
genides). In the latter case, under pressure or when doped 
with trivalent RE elements, a phase transition from a normal 
semiconductor to a semiconductor with IV takes place (see 
Ref. 9). We have thus a standard system with extremely 
narrow filled f bands a broad band gap (for example, EuS), 
a narrow-band semiconductor with a narrow band gap (the 
"black" phase of SmS,,, ), and a semiconductor with ex- 
tremely narrow forbidden band (50-70 K)  and a valence 
band made up off-shells of RE ions in the IV state (the 
"gold" phase of SmS,,, ). Figure 1 shows schematically the 
electronic spectra of these systems, and Fig. 2 the corre- 
sponding phonon spectra.'' 

We see that the phonon spectrum differs substantially 
from the standard EuS spectrum even in the "black" 
SmS,,, ;the entire LO mode is substantially softened. The 
LO mode in the "gold" phase SmS,,, turns out to be lower 
than the TO mode in the entire Brillouin zone. In addition, 
the LA mode is substantially softened along [ 11 1 1. We shall 
attempt below to separate the adiabatic and nonadiabatic 
contributions to the renormalization of the phonon spectra 
of RE semiconductors with NaCl structure, by comparing 
the electron and phonon spectra shown in Fig. 1 and 2 with 
the present notions concerning the nature of the IV phase in 
samarium chalcogenide. 

Let us formulate the procedure of separating the adia- 

w ,  Thz 
r Eu 5 

FIG. 1. Electronic density of states 

batic phonons for systems in which there exist, beside the 
band degrees of freedom, also specific intra-atomic degrees 
connected with the virtual excitations in the unfilledf-shells 
of atoms of one of the sublattices. The traditional procedure 
of separating electronic and vibrational  variable^'.^ is imple- 
mented for the electron-ion Hamiltonian written in the form 

where {R) and {r) are the aggregates of the ion and electron 
coordinates. The wave function of the electron-ion system is 
expanded in the set of adiabatic basis functions 

where $p {r,R) is the wave function of the electron subsys- 
tem at fixed positions of the ions, and @,{R) is the wave 
function of the vibrational subsystem corresponding to a giv- 
en set p of electron quantum numbers. In the theory of sim- 
ple metals the basis qbP is chosen to be the Bloch wave func- 
tions of the conduction electrons. In the case of RE 
semiconductors it is necessary to include in the basis Ip), 
besides pairs comprising a conduction-band electron and a 
valence-band hole, also localizedf-shell excitations-states 
of the Frenkel-exciton type, which determine the polariza- 
bility of the RE ions. 

Expanding @, in (2.2) in terms of the adiabatic vibra- 
tional functions: 

FIG. 2. Phonon spectra. 
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we obtain an equation for the ground state of the system (cf. 
Ref. 7)  

where E ~ { R )  is the crystal energy in the ground state with a 
filled valence band described by the electronic wave function 
ICt,{r,R). The right-hand side of (2.4) contains corrections 
to the wave functions for the nonadiabaticity of the ground 
state whose operator is of the known form 

(the summation is over the lattice sites). The equation for 
the adiabatic-phonon spectrum is obtained by discarding the 
right-hand side of (2.4): 

where AEo is the electron-energy part that depends on the 
ion displacements u, = Rj - Rjo and determines the elec- 
tronic contribution to the strength matrix 

The matrix K has the standard adiabatic-theory form 4s8 

+ (,, 1 aHet ( r )  dHec (r') 
dRio x(r ,  r r ) -  dRlmo 10) . (2.8) 

where x(r , r l )  is the electronic-subsystem linear-response 
function and enters in the right-hand side of (2.7), while 10) 
is the ground state of the system. 

The non-adiabaticity of the electron-ion system leads to 
mixing of the adiabatic vibrational modes, and we obtain for 
the coefficients lpB in (2.3) the system of equations 

(E-Epaan) Epa = C ~ ~ ~ I P I ~  (2.9 
P ' B  

where CF; are matrix elements of the nonadiabaticity oper- 
ator: 

(see Ref. 7).  The corrections to the phonon energy are given 
in lowest-order perturbation theory by 

The contribution of these corrections to the phonon frequen- 
cies are known7 to be small in terms of the parameter [jtWph / 
(E ,  - E, )I2 compared with the contribution of (2.7). 

Let us thus consider the adiabatic contribution of the 
electronic states of an RE semiconductor to the renormaliza- 
tion of the phonon spectrum, choosing the states Jp) in (2.7) 
to be a continuum of free electron-hole pairs: 

and excitonic excitations that have in the general case an 
intermediate radius 

I B , ) = N - ' ~  z F (n) b ~ j + . b , j  1 0 )  exp ( iqRl ) .  (2.13) 
Im 

Here F ( m )  is the envelope of the exciton wave function, 
while b, and b, are the electron second-quantization opera- 
tors in the conduction and valence bands. 

Substituting (2.12) and (2.13) in (2.7) weobtainin the 
usual manner the contributions made to the renormalization 
of the vibrational energy by the band and excitonic excita- 
tions AE and AE 2): 

AEoa 
k q a '  Eoa-Ep,a* (k, q) ' 

where 

Pqa ( r )  = - blt-lh exp ( iqR,)  cQatV.V (r-Rn) , R.t=R,+pt, 

e:, are the phonon-polarization vectors, n,, are the phonon 
occupation numbers, and t is the sublattice index. For the 
exciton contribution we get 

The excited-state energies in the denominators of (2.14a) 
and (2.14b) are of the form 

Epa, ( k ,  q )  = ~ : + q - ~ k " * f i o q a + ~ o a ,  (2.18a) 

where E,, (q) is the exciton energy. Finally, varying (2.14a) 
and (2.14b) over the phonon occupation numbers, we ob- 
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tain expressions for the renormalization of the phonon 
modes: 

BeZ(Roqa) '  = -2.."(n2 ( Qqa (Rm)F(m) I "E, (q) 

m Ee,2 (Q) - ( f i ~ q a )  ' ' 

One of the tasks of the present paper is a microscopic 
substantiation of the choice of the adiabatic electronic vari- 
ables-local charge density distortions (CDD) for the mod- 
el of deformed  cluster^'^^; this is why we have changed over 
to the site representation in the matrix elements of (2.15). 
The excitonic excitations describe in our systems the contri- 
bution from the distortions of the RE-ion f shells, therefore 
their interaction with the normal lattice modes can be easily 
interpreted in terms of intraatomic transitions; a totally 
symmetric displacement T I  of the lattice atoms-the 
breathing mode-should correspond to monopoleff excita- 
tions of the RE-element shells, atomic transitions with 
A1 = 1 V-d transitions) determine the dipole response of the 
shells to displacements with point symmetry r,,, etc. The 
fact that the excitons actually have an intermediate radius 
(2.13) complicates the picture somewhat and, as will be 
shown below, leads to observable effects in the renormaliza- 
tion and damping of the phonons. The contribution from the 
interband transitions can also be reduced to local CDD, at 
least in the nearest-neighbor approximation for linear com- 
binations of the atomic orbitals. 

Returning to the question of the differences between the 
phonon spectra of EuS and SmS,,, , we see that for all the 
similarity of the properties of these systems they differ pre- 
cisely in the excitation energies of the electrons from the 
unfilled f shells. The optical spectra of the EuS and SmS,,, 
undergo transitions fy-  f "-'b,, with ionization of these 
shells when one of the electrons goes off to the conduction 
band, and also transitions f y -  f," - Idj with excitation of the 
f shells themselves. These transitions contribute to (2.18a) 
and (2.18b), respectively, the threshold energy A for a zero- 
phonon transition of type (2.18a) being 1.12 eV in EuS and 
0.23 eV in SmS,,, , while the energy Ee, (0)  of the optical 
transition of type (2.18b) is ~ 2 . 4  eV in EuS and 0.6-0.8 eV 
in SmS,,, .I6," 

These data suggest that the principal mechanism that 
softens the phonon spectrum of SmS,,, compared with EuS 
is connected with the increase of the adiabatic contribution 
of the dipole deformations of the RE-element electron shells. 
Let us find the corresponding contributions to the renorma- 
lizations of the longitudinal phonon modes. To this end we 
must know the form, in the site approximation, of the elec- 
tron wave functions in the conduction and valence bands. It 
is known that there is no direct overlap between the f shells of 
RE ions in sulfides, and the finite width of the valence band 
(Fig. lb) is due only to indirect overlap via the'd shells (con- 

duction-band states). It is convenient to take this overlap 
into account from the very  beginning,"^'^ choosing as the 
initial "atomic" functions linear combinations off and d 
orbitals which diagonalize the one-electron Hamiltonian of 
a self-consistent field with filled valence band and empty 
conduction band 

where 

bkeo=-bdko cos cp+blo sin cp ,  

cd is the conduction band without allowance for fd hybridi- 
zation, while bf, and bdk,  are the second-quantization oper- 
ators of the initial f and d states. The hybridization is charac- 
terized by a matrix element that is off-diagonal relative to the 
site 

In the lowest order in V, the correct linear combinations of 
the f and d orbitals take the form 

Here A is a normalization factor defined in the nearest- 
neighbor approximation by the condition 
A + 121 VGoI2 = 1. The projection operators ~ ( m )  select 
linear neigboring-site wave-function combinations that cor- 
respond to a given point-group representation." In (2.23) 
are introduced the lattice Green's functions 

k 

which can be estimated at D - ' ln(D / A  1, where D is the width 
of the conduction band and A is the band gap for not too 
small A. 

To obtain the wave function of a "dipole" exciton with 
an electron in an excited state of point symmetry T,, it is 
necessary to take a linear combination of conduction-band 
orbitals (2.23b) with envelopes F(m) in (2.13). Under con- 
ditions of weak hybridization, however, it suffices to retain 
in it only the central term - F(0).  As a result, the contribu- 
tion from the dipole CDD of thef-shells to the renormaliza- 
tion of the phonon spectra takes the form 

s -2h2 I I ~ R ~ ' '  I ' rt8 
= ha Orxs (q, o q a ) .  (2.25) 

E:: ( 0 )  
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We have neglected in the last equation the dispersion of the 
exciton band and separated in the coupling constant the con- 
tribution of the "local" CDD I :;, which can be identified 
with the corresponding parameter of the dipole deformation 
of the shell in the Bilz-Allen adiabatic theory.334 We have 
also separated the additional factor R f"  connected with 
thenonfinite character of the interaction, i.e., with the spa- 
tial extent of the LCAO (2.23) that describe the states of the 
conduction and valence bands: 

inn) . . 

R?= ~ ( 0 )  [Az + (VG,)'S (q) I .  s (q) = cor q ~ . .  

The summation in the structure factor S(q)  is over the near- 
est neighbors in the cation sublattice. 

Thus, the phonon-spectrum renormalization disper- 
sion determined by the form factor Qr (q, w,, ) in (2.25), in 
which are gathered all the factors that depend on the wave 
vector q, is produced by the standard contribution @:of the 
the localized CDD model, a contribution that depends only 
on the type of lattice and symmetry of the mode T, and by the 
additional factor @: that modulates this dependence: 

In the specific case considered this dependence is due to the 
nonpointlike character of the CDD, and in the general case it 
can receive a substantial contribution also for the singulari- 
ties of the dispersion of the exciton or electron excitations in 
the denominators of expressions (2.19), for example the 
Kohn or Van Hove singularities in the band spectrum 
(2.19a). 

The standard form factors of the localized DCC model 
are analytically calculated in the Appendix for symmetric 
directions of the Brillouin zone. Also calculated there are the 
additional corrections for the non-pointlike character of the 
CDD. In SmS(,, , where the fd hybridization effects are 
weak, we have VG, - V/D g 1 and these corrections are in- 
significant. To the same accuracy, o ( V2 /D2), we can neglect 
also the band contribution (2.19a), which does not contain 
the terms with R, = R,. = 0 already accounted for in the 
form of localized exciton modes. The interband transitions 
that contribute to the phonon renormalizations are thus si- 
multaneously also nondiagonal with respect to the lattice 
sites. 

The form factor @:" (q,w,, ) for the CDD dipole mode, 
calculated from Eqs. (A.9), is shown in Fig. 3a. It is seen 
that the dipole contribution to A(t%uq,,, ) 2  can cause a no- 
ticeable renormalization of this mode near the points r and 
X, but vanish at the L-point. The corrections for the cova- 
lency, as already mentioned, are small and do not alter the 
phonon dispersion in symmetric directions (see Fig. 3b). We 
see thus that the experimentally observed softening of the 
LOmode along the r - L  line (Fig. 2)cannot be attributed to 
a single CDD dipole mode and it is necesary to take into 
account the contribution of the totally symmetric mode 
(Refs. 10, 11 ). 

To separate this mode from the spectrum of the adiaba- 
tic electronic excitations we use the same procedure as in the 

FIG. 3. Dipole-mode form factors in relative units (Nis the scale factor): 
a) standard contribution QLn(q, o,, ) ( N ;  solid lines-a =LO,  N = 1; 
dashed-a =LA, N  = 5; b) correction IR :"I2 (A ' = 0.9). 

case of the T, mode, i.e., we describe the main contribution 
to the CDD in terms of exciton transitions. To describe the 
interaction with a totally symmetric vibration breathing 
mode we must construct a "monopole" exciton that has the 
same symmetry as the ground state and describes the totally 
symmetric deformations of the RE ion f shells. Clearly, it is 
utterly insufficient to take into account only the contribu- 
tion made to these deformations by the mono~ole intra- 
atomic transitions 4f "+nf, n = 5,6, ... in the Sm ion shells, 
since the corresponding excitations are too hard and hardly 
change insignificantly EuS to SmS,,, . As noted already by 
Steven~on,~' however, for an RE semiconductor with an 
electron spectrum of the type shown in Fig. 1 it is always 
possible to construct an exciton state having the same sym- 
metry as the ground state, in which one of the f-shell elec- 
trons goes over to a weakly bound orbit that captures the 
nearest coordination spheres. In the case of the Sm( f qF,, ) 
ion, the excited state can be represented in the form '9b 

where FYW2 (m) is the envelope of an exciton wave function 
whose symmetry properties are such that it generates a lin- 
ear combination of d-orbitals 6, that are transformed in ac- 
cordance with the irreducible representation y,,, of a binary 
rotation group, for which 

6H5,2 and ,FO are the atomic terms of the Sm ion in the 
respective configurations f and f 6; in the cubic group they 
go over into I?; and r:, so that y,,, should be transformed 
into the T,, state formed by the t,, and e,  orbitals of the 
conduction band. The term of (2.28) diagonal in m is, natu- 
rally, absent. 

Experimental observation of such monopole excitons is 
difficult, since the corresponding optical transition is forbid- 
den. If, however, they are regarded as intermediate-radius 
excit~ns, '~" the excitation energy for them should not differ 
noticeably from the energy of the edge of the f 6- f 'b,, inter- 
band transitions. The energy difference of monopole excita- 
tions in EuS and SmS,,, is then approximately equal to A, so 
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that a noticeable enhancement of the monopole mode is to be 
expected in SmS,,, . 

Monopole excitons in SmS,,, can be regarded as fast 
compared with the lattice vibrations, f5wLo/A,i ~ 0 . 1 5 ,  and 
their contribution to the phonon spectrum can be taken into 
account in the form of the renormalization (2.19b). The ex- 
citon-excitation matrix element contains then, in the case of 
monopole lattice distortion, only integrals that are off-diag- 
onal in lattice site, of form 

F (m) J d3r $: (r-Rj+m) Pqars (r-Ri+m) $c (r-R*). 

Substituting here $, and $, from (2.23) and putting approx- 
imately 

we obtain an equation similar to (2.25): 

15,,~* (Ao,,) = -2A2 I Zqart I ' I Rqrl 1 
= iur1 (q, oqa), 

Aex(0) 

where the covalent form factor is 

The form factors of this renormalization for the standard 
CDD model and the covalent corrections R are calculated 
in the Appendix [Eqs. (A.8) and (A. 10) ] and are shown in 
Fig. 4. 

A comparison of Figs. 3a and 4a shows that the mono- 
pole form factor 11;; ( is large precisely in those parts of the 
Brillouin zone in which the dipole form factor lILg12 is 
small, i.e., in the vicinity of the point L. The joint action of 
the modes J?: and r, ensures thus a renormalization of the 
LO mode of the spectrum in the entire Brillouin zone. 

Experiment (Fig. 2)  shows that the LA mode of the 
spectrum, in contrast to the LO mode in SmSo, is practical- 
ly not renormalized compared with EuS. The contribution 
of the CDD modes to the renormalization of the LA phonons 
in the vicinity of the L point on the face of the Brillouin zone 
is small from general considerations, since the phonons in 
question correspond to motion of the ions predominantly 
from the heavy-cation sublattice.13 Therefore the renormal- 
ization from the dipole distortions of the f shell of the Sm 
ions, whose form factor is large just in the vicinity of the L 
point (Fig. 3a), turns out to be small. As for the mode T,+, 
the maximum of the renormalization form factor, which is in 
the vicinity of the point [d,a,a] for the LA[g,l,l] photons, 
there exists here a specific mechanism for mutual cancella- 
tion of the monopole and dipole shell distortions. 

FIG. 4. Form factors of fully symmetric mode, in relative units (see Fig. 3 
for the symbols): a )  @:' (q, oq, )N; solid lines: a = LO, N = 1 ,  dashed- 
a = LA, N =  15; b) IR : ' I 2 .  

As shown in Ref. 2 1, the renormalization A r' ) 2  

is due primarily to the interaction of the Sm ion shells in the 
cation sublattice with the neighboring Sm ions in the same 
sublattice, the corresponding coupling constant being of the 
same sign, gog, > 0 (see Fig. 5 ). This is possible, for exam- 
ple, if it is assumed that the constant go describes an ion-shell 
interaction, and the constant g ,  a shell-shell interaction. 
Then, as seen from Fig. 5, when the nearest neighbor C, of a 
given cation Co is displaced, the contribution from the dis- 
placement of the C, ion to the monopole deformation of the 
C, ion is offset by the dipole distortion of the shell of this ion. 

The foregoing calculation can be regarded as a micro- 
scopic confirmation of the applicability of the deformed- 
cluster model to the description of the semiconductor phase 
of narrow-band and narrow-gap RE semiconductors. It has 
been found that the contribution of the "exciton" degrees of 
freedom to the CDD explains the principal effect-the soft- 
ening of the longitudinal optical modes. The band compo- 
nent of the renormalization contributes to the dipole mode 
of the CDD. For the monopole mode, the band correction to 
the phonon frequencies, obtained under the same assump- 
tions as in (2.3 1 ), is of the form 

where 
Inn,  

/--\ 

/ ' \ 
\ 

/ \ 
,- FIG. 5. Displacements of the Sions (0) and Sm ions with 

deformed shell (0 with dashed oval) for LA[:,:,:]. 
\ / 
\ 
\ / 

/ 
.--A 
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The ratio of the band and exciton corrections is determined 
by the parameter A:; Go z AF;/D( 1, and the dispersion of 
the form factor R :band hardly differs from that of the exci- 
ton form factor. 

3. ELECTRON-PHONON INTERACTION IN RE 
SEMICONDUCTORS WITH INTERMEDIATE VALENCY 

In the description of the electronic contribution to the 
phonon spectrum of SmS,,, in the "normal" phase, the use 
of exciton variables can be regarded as a convenient method 
for a microscopic derivation of the CDD model parameters. 
When it comes to the "gold" phase SmS,,, with intermedi- 
ate valency, however, the exciton degrees of freedom assume 
the principal role. According to Refs. 19 and 20, the cause of 
the onset of IV is exciton instability, and the ground state of 
SmS(,, is the result of mixing of singlet states 'F, of Sm(f6) 
ions with exciton states of the same symmetry, i.e., precisely 
with those f 56 excitons (2.28) which are assumed in our 
theory to be responsible for the monopole relaxation of the 
samariumcation f shells. 

The main effect in the SmS,,, spectrum is the strong 
softening of the LA mode in the [ 11 1 ] direction and the 
abrupt increase of the phonon damping. l 4 3 l 5  In the vicinity of 
the point [$,$,A] the softening of the LA mode compared with 
SmS,,, is 15%, and thedampingincreases from 0.35 THz to 
0.55 THz. Interaction of the breathing mode with the mono- 
pole relaxation of the f shells is traditionally regarded to be 
the cause of phonon renormalization and damping,11s12 but 
in the microscopic approachI2 the authors start out from an 
EPI Hamiltonian of the Frohlich type with local valence 
fluctuations of the typefjd j+,  which agrees poorly with the 
assumed total symmetry of the phonon mode. A more rea- 
sonable explanation for Sm, - ,Y,S was offered in Ref. 2 l 
within the framework of a two-band metal, but the micro- 
scopic nature of the nonadiabatic EPI in the real supercon- 
ducting situation of SmS,,, remains unclear. 

Within the framework of the exciton CDD mechanism, 
a natural explanation is obtained both for the enhancement 
of the contribution of the totally symetric mode T; to the 
renormalization of the LA phonons, and for the increase of 
the electron-ion interaction adiabaticity responsible for their 
damping. The wave function of an Sm ion in a site m and in 
an IV state is 

$,,,,# = cos 0  I fms, 'Fo> + sin 0  1 fm5 (6Hs,2) b:,,.,-, ?FO), (3.1) 

where the symbol b & ,m denotes a combination of electron- 

hole pairs centered on the site m, in (2.28), and 8 is a vari- 
ational parameter that determines the intermediate valency, 
sin20z0.7 for SmS,,, . Clearly for such a ground state we 
can construct an exciton of the same symmetry-the anti- 
binding combination 

It appears that just these states were recorded asff transi- 
tions of 20 meV energy in the optical measurements of 
Trawaglini and W a ~ h t e r . ~ ~  This assumption is in accord 
with both the anomalous smallness of the transition energy 
on the scale of intracenter atomic terms, and the giant oscil- 
lator strength for this transition, which exceeds by 6 orders 
the usual value for intra-atomic f-f transitions.It seems natu- 
ral to relate the enhancement of the renormalization of the 

FIG. 6. Form factors of "gold" phase: a )  covalent form factor lR :;I2 for 
A = 0.8 (dahsedcurve) a n d A Z  = 0.6 (solidline); h)  shiftofthesquared 
phonon frequencies: experiment (solid line, CDD model (dotted) and 
CDD model with allowance for R :; (dashed). 

LA-phonon mode in SmS,,, compared with SmS,,, precise- 
ly with these RE-cation valence-shell monople excitations 
that are features of the IV phase. 

In the zeroth approximation in the nonadiabaticity op- 
erator we obtain from (2.14b) the already known expression 
(2.19b) for the renormalization of a spectrum in which the 
covalent form factor changes: 

sin 20 
R?'' = F . ' ( I ~ - S ( ~ ) ) { A  -+- 

2 
A'VJGocos20 

F ,  

+ (VG.)' ~ ( q )  sin 0  cos 0 ) .  (3.3) 

Figure 6a shows the calculated R :' ' for the [ 1 1 1 ] direc- 
tion. In the calculation we have approximately assumed the 
exciton wave function to be localized on the nearest sites, F, 
=: 1/2/ 12, thereby simplifying greatly the calculations while 
retaining the main qualitative features of the renormaliza- 
tion dispersion. The value sin28 = 0.7 corresponds to the ex- 
perimental valence of SmS,,, . The deviation ofA2 from uni- 
ty is determined by the fd-hybridization degree, which is 
larger in SmS,,, than in SmS,,, . However, band calcula- 
tions for the "metallic" state of SmS,,,, carried out without 
allowance for multiparticle effects,24 show that even in 
SmS,,, the factor A2 does not differ too much from unity. 
Figure 6a shows form factors calculated for A2 = 0.6 and 

0.8. It can be seen that the collective factor R 1'' serves to 
shift the maximum of the LA-phonon renormalization fre- 
quency away from the middle of the r L  line towards larger 

q. The total form factor Qr" '  (q,~,,,,) (2.27) for the 
"gold" phase is shown in Fig. 6b together with the experi- 
mental phonon-frequency shifts determined from the data of 
Ref. 14 by separating the contribution of the hard ions 
(A.6). It is assumed here that the entire renormalization is 
connected with the CDD by the T,+ mode. Allowance for 
the renormalization simplifies substantially the agreement 
with experiment compared with the standard form factor 
Q:' (A.9), whose contribution to the renormalization is 
shown by the dotted line. In principle, the shift of the renor- 
malization maximum of the SmS,,, LA phonons can be ob- 
tained also by adding the dipole CDD mode T, (Ref. 11). 
This procedure, however, yields a 15% softening of the spec- 
trum also at the L point (see Fig. 3 of Ref. 11 ), contrary to 
experiment. 
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The dispersion of the damping of the LA phonons in the 
[ 11 11 direction is usually attributed to a nonadiabatic con- 
tribution from electronic deformation modes.10321 In our 
model, the damping is, of course, explained by the nonadia- 
baticity of the exciton renormalization and by the substan- 
tial role of the covalent form factor R i' '. With allowance 
for the nonadiabatic corrections (2.11 ), the covalent form 
factor becomes 

(cf. Ref. 7).  The damping y at finite temperatures is con- 
trolled by the same symmetry factors and agrees well with 
experiment. lo 

It was noted in Ref. 10 that dipole processes are faster 
than monopole ones, although no phenomenological expla- 
nation could be given for this circumstance. From our point 
of view, there are actually no grounds for assuming that the 
interaction of the phonons with the I7, mode becomes adia- 
batic in the "gold" phase. While some softening of the dipole 

exciton mode A,':; compared with SmS,,, can be expected, 
as well as its smearing by the increased exciton dispersion, 
no anomalously soft dipole excitation seems to occur in 
SmS,,, . Judging from optical reflection data,22 the main fd 
transitions occur in the 0.1-1 eV range. 

It is difficult to calculate the contribution of the inter- 
band transitions to the "gold" phase SmS,., , since the struc- 
ture of the one-electron elementary excitations in the IV 
state has hardly been investigated. It is clear, however, from 
general symmetry considerations that the most "dangerous" 
f - f transitions through a spectrum microgap of width 
A -7 70 meV (Ref. 24) make no contribution to the phonon 
spectra, since they correspond to q = ( 2 d a )  [ 1,0,0], and 
the form factor Qrl  (q)  is zero at the X point of the Brillouin 
band (Fig. 4a). We see that for a classical explanation of the 
dispersion of the SmS,., phonon spectrum it suffices to take 
only the exciton contribution into account. It is easy to verify 
[see (2.34) ] that the form factors for the contribution from 
the interband transitions differ little from the exciton form 
factors, so that their separation in experiment is problemat- 
ic, and a theoretical calculation calls for an improvement of 
the very theory of the "gold" phase of a semiconductor with 
IV. 

We have thus shown that the contribution of the elec- 
trons to the softening of the phonon spectra of RE semicon- 
ductors can be explained within the framework of the adia- 
batic model of deformed clusters, the microscopic 
justification of which leads to the Anderson lattice Hamilto- 
nian.18"9 In a semiconductor phase with IV, the main contri- 
bution to the charge deformation modes is made by mono- 
pole excitation of exciton type, which are specific for IV, 
although one cannot exclude also an interband contribution 
to the phonon renormalization. The close values of the char- 
acteristic times of valence fluctuations and lattice vibrations 
suggests a strong interaction between these excitations. 
However, notwithstanding the lack of formal smallness of 
the parameter +imp, /A,, , where A,, is the characteristic en- 
ergy of the valence fluctuations, the nonadiabatic coupling 
constant may turn out to be small enough, since fast local 
electron-density deformations of like symmetry screen the 
ion displacement to a considerable degree. We have in mind 

the screening of the band TI,  corrections by dipole localized 
adiabatic electrons. Nonetheless, there are apparently 
grounds for ascribing a nondispersive mode to the phonon 
spectrum of Sm, _ ,R,S, where R are trivalent RE ions that 
replace Sm, to a resonance between the valence fluctuations 
and the lattice  vibration^.^^ 

APPENDIX 

Calculation of renormalization form factors and of phonon 
damping 

Let us calculate the formfactors for the adiabatic model 
of deformable shells26v2 in an NaCl lattice. The equations of 
motion of this model are, in matrix form, 

Here DR is the contribution to the dynamic matrix from the 
hard ions, D ~ J  is the contribution from the deformation of 
the charge density of point symmetry T j ,  in which the de- 
pendence on q is incorporated in the factor s ~ J ( ~ ) .  Let us 
consider the renormalizations connected with the CDD by 
modes of symmetry I?: and T, in the nearest-neighbor 
approximation. For longitudinal modes in symmetric direc- 
tions, the dynamic matrix reduces to the form 26,27 

where 1 and 2 are the indices of the cation and anion sublat- 
tices, 

3  - 3 ~ 0 s  q 

-3 cos q 3  cos2 q 

3  -1-2 cos q 

= ~ - - 1 - 2 c o s q c o s ' p + ~ i z ( l + c o s q ~ '  I T  

In the matrix (A.3) the vector q is made nondimensional by 
the Brillouin-zone vector, so that 0 < q < z7/2 in the [ 11 1 ] 
direction and 0 < q < n in the [ 1101 and [ 1001 directions; for 
these directions n = 3, 2, and 1, respectively. Substituting 
(A.2) in (A. 1) we obtain the solutions of the secular equa- 
tion 

where 

U , ~ = D ~ / M ~ * D , / M , ,  u=LO, LA, TO, T A , .  . . . (A.5) 

In first order i n F  r' we obtain for the renormalization of the 
phonons from the totally symmetric mode 

a=LO, LA, (A.6) 

where a,,, are the frequencies calculated in the hard-ions 
approximation. 

Since vibrations at the L points of the Brillouin zone for 
an LA(L0) mode corresponds to S (Sm) atoms at rest in an 
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NaCl lattice, the dynamic matrix off-diagonal elements are 
DR = 0 for the [ 11 1 ] direction, so that the limiting acoustic 
and optical frequencies on these faces of the Brillouin zone 
are determined only by the diagonal elements of the dynamic 
matrix of the hard-ion model 

From this we get for the polarization contribution of the 
CDD breathing mode (A.6) 

drL' o:qa-~LA2 [ 11 I ] 
Ar,+(uqaI2 = -- sin2 g ,  a=LO, LA. 

Mz 20tsqa - w + ~  

A similar calculation for the CDD dipole mode yields for 
opposite renormalization directions the following result: for 
[I111 

for [llO] 

3 e 2 0  (1+2 cos q )  \ + --[oo,q,-oL,"llll I - 
Mi MlM2 ' 

and for [ 1001 

Note that on the Brillouin-zone face at the L point we have 

It is seen from (A.8) that for a totally symmetric mode 
the dependence of the renormalization on the wave vector 
(the form factor) of the LA mode is determined mainly by 
the function sin2q and by the numerator in the fraction, since 
the latter vanishes at the points L and at points close to 
q = 7~/2 in the [ 1 101 and [ 1001 directions. For the LO mode 
it is determined by the function sin2 q, since the dispersion of 
the LO mode is small. Calculation in the neutral nearest- 
neighbor approximation yields for the contribution from the 
totally symmetric (T:) and the dipole (T,) CDD 
modes the form factors shown in Figs. 4a and 3a, respective- 
ly. 

We calculate now the contribution made to the form 
factor by the covalent additions to the dynamic matrix and 
due to fd mixing. In the renormalization (3.13 ) from the 
CDD r, mode, the corresponding dependence is contained 

in the factor (R l 2  (2.26b), while in the renormalization 
from the CDD I?: mode this dependence is determined by 

the factor (R i' I 2  (2.32). From this we get for the CDD 
dipole mode in symmetric directions the form factors 

=A2+2(VG)2(l+co~ 2q+4 cos q ) ,  
(A.11) 

Rr,,(qOO) =AZ+4(VG)z(1+2 cos q), 

and for the totally symmetric CDD mode 

Rr,(qOO) =8 (1-cos q ) .  

The covariant increments to the form factor are shown in 
Figs. 3b and 4b, respectively. 
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