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An investigation is made of the screening of an external electric field in an intrinsic semiconductor 
as a function of the field intensity. Various approximations are used. It is shown that in the 
Hartree approximation only one transverse quantization subband exists in weak fields and only 
this band is filled. A second localized band drops out smoothly from the continuous spectrum and 
becomes filled as the field on the semiconductor surface is increased. The problem is solved 
semiclassically in the case of high fields when the number ofsubbands is N$1 and this gives the 
dependence of the number of subbands on the electric field N a F1l5 as well as an expression for the 
critical fields in which new localized subbands appear. The critical field F, corresponding to the 
appearance of the second localized subband is obtained in the Hartree approximation and it 
agrees well with the results of semiclassical calculations. Allowance for the excha,nge energy 
increases considerably F, (by about an order of magnitude) and results in a small jump in the 
occupancy of the second subband at F = F, . It is shown that the critical field F, can be deduced 
from an abrupt change in the lf capacitance of a metal-insulator-semiconductor structure. The 
Hartree approximation is used to show that the spectral dependence of the matrix element for 
transitions from a localized subband to a continuous spectrum is in the form of an asymmetric 
curve with a maximum and a characteristic energy which is proportional to F2/'and represents 
the fall at high frequencies. A determination is made of the range of positions of the Fermi level 
(in the bulk of the semiconductor) in which "overscreening" of the field occurs, i.e., the range of 
fields in which more electrons reach the surface of the semiconductor than the number required to 
screen the external field. 

1. INTRODUCTION 

The most frequently cited and fundamental papers on 
the theory of screening of an external field in accumulation 
layers in semiconductors are those of Refs. 1-4. However, 
the screening behavior patterns deduced from these papers 
are contradictory. In particular, Appelbaum and Baraff1'2 
do not explain the dependence of the number of subbands on 
the field intensity F,, at the surface of a semiconductor. 
Moreover, Ando4 referring to Refs. 1 and 2 and to his own 
work states that the Hartree approximation predicts the ex- 
istence of just one subband and only allowance for the ex- 
change and correlation energies increases the number of sub- 
bands. Pals3 follows the transition from one to two filled 
subbands as the field is increased. Formation of the second 
subband is deduced from the condition that the Fermi levelp 
on the surface merges with the continuous spectrum. A 
shared shortcoming of the cited papers is the absence of in- 
vestigations of the thermodynamic potential of the system 
and replacement of the matching of the Fermi levels on the 
surface and in the bulk of a semiconductor with the relation- 
ship between the field on the semiconductor surface F,, and 
the surface density of electrons n,: 

where E is the permittivity of the semiconductor. We shall 
show that a nonlinear self-consistent Schrodinger equation 
has a solution for an arbitrary number of filled levels and the 
selection between the various configurations is determined 
by a minimum of the thermodynamic potential. Strictly 
speaking, Eq. ( 1 ) is invalid. A deviation from this equation 
results in overscreening of the potential and the field inside 
the semiconductor reverses its sign, whereas the number N 
of the localized transverse quantization subbands increases 

monotonically with the field going over to a dependence 
~ c c  F,"' in strong fields. Rogachev et aL5 were the first to 
draw attention to the possibility of overscreening. They used 
the Hartree approximation and the variational method to 
solve the problem of the screening of a field by an accumula- 
tion layer in a semiconductor where the Fermi level coin- 
cides with the bottom of the conduction band. However, Ro- 
gachev et did not investigate the conditions for the 
appearance of overscreening and particularly the depen- 
dence of this effect on the Fermi level position. Moreover, 
description of an accumulation layer by a single filled sub- 
band used in Ref. 5 is valid, as shown below, only in the case 
of fields less than a certain critical value. 

We shall solve exactly the problem of the screening of 
the field in the case of one subband using the Hartree approx- 
imation. Moreover, we shall investigate the thermodynamic 
potential and find the critical field F, in which the second 
subband appears, and find the field dependences of the pa- 
rameters in the case of two subbands using the variational 
solution. We shall adopt the semiclassical description valid 
in the case of strong fields when the number of subbands is 
N >  1 and the potential becomes a monotonic function of the 
coordinate. We shall discuss the influence of the exchange 
energy in a system of this kind on the screening. We shall 
also suggest potential optical and capacitance measurements 
that can reveal the characteristics of the field screening in 
accumulation layers. We shall obtain numerical values of the 
parameters for the ( 100) surface of Si. 

2. THERMODYNAMIC POTENTIAL AND THE EQUATION OF 
STATE OF THE SYSTEM 

We shall consider the problem of the screening of an 
external field of intensity F,, applied along the z axis at right- 
angles to the surface of a semiconductor. We shall assume 
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that the semiconductor is of length L and that it is intrinsic; 
we shall also assume that the semiconductor is at a suffi- 
ciently low temperature, so that the Debye radius is greater 
than L. The Fermi level in the semiconductor is then deter- 
mined by the Fermi level in a metal electrode formed on one 
of the semiconductor surfaces (z = L) .  The action of the 
field on the semiconductor surface creates transverse quanti- 
zation subbands along the z axis and the number of these 
subbands is N. The wave function of the ith subband (where 
i = 1-N) is qi (z) and it is subject to zero boundary condi- 
tions at the ends of the semiconductor 
qi (Z = 0)  = Vli (Z = L )  = 0; it also satisfies the normaliza- 
tion condition. In a plane parallel to the surface the wave 
functions are proportional to exp(ik.r), where k and r are 
the quasimomentum and the radius vector in this plane. 

We shall write down the thermodynamic potential of 
the system: 

N L N 

Here, E and E :; are the kinetic energies of electrons in 
the ith subband in the plane of the semiconductor surface 
and along the z direction, respectively; 

ni is the surface density of electrons in the ith subband; 
No =g,mll /di2 is the two-dimensional density of states; 
mL,ll is the effective mass of an electron along thez axis and in 
a plane perpendicular to the semiconductor surface; g, is the 
valley degeneracy. The electric field in the semiconductor 
can be found by integrating the Poisson equation: 

We shall introduce the following notation: 

and adopt the dimensionless variables 

We note that v i  is the normalized density of electrons in the 
ith subband and that 17 = 1 corresponds to complete screen- 
ing of the external field by the surface electrons. 

Substituting the field intensity of Eq. ( 3 )  into the ther- 
modynamic potential, we obtain 

where the following notation is used: 

We now have an expression for the thermodynamic potential 
which contains 2N variables v i  and qi. The equations of 
state of the system can be found by minimalization of R 
relative to these variables: 

Using Eq. (4)  for 0, we obtain the following system of 2N 
equations: 

Here the potential is described by the expression 

where p ( z  = L )  = 0. 
An important feature is that the nonlinear Schrodinger 

equations of the type described by Eq. (7) ,  together with the 
potential (8)  do not contain an external field parameter, i.e., 
the system of equations (7)-(8) has solutions for an arbi- 
trary number of filled surface bands N with an arbitrary den- 
sity of electrons in each subband vi. The selection between 
the various occupancies and the numbers of subbands is 
made on the basis of the system of equations (6), which 
requires that the Fermi level in each surface subband should 
coincide with the Fermi level in the bulk of the semiconduc- 
tor. This corresponds to a minimum of the thermodynamic 
potential of Eq. (4) .  The additional condition that governs 
the number of the filled subbands N is the obvious require- 
ment v i  > 0. 

Multiplying Eq. (7) by Vi and integrating with respect 
to z, we can find the energies of the transverse quantization 
subbands: 

N 

The last term in the above expression represents the shift of 
the localized subbands because of partial penetration of the 
external field into the bulk of the semiconductor beyond the 
accumulation layer. This shift is found from the system of 
equations (6) ,  according to which the field in the bulk of the 
semiconductor is characterized by ( 1 - 7) a 1/L if L % li 
and tends to zero in the limit L + w . However, the displace- 
ment of the potential remains finite and it appears as a single 
energy shift of the levels (Fig. 1 ) . 
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FIG. 1. Qualitative distribution of the potential along the length of a 
sample; here, A is the overscreening potential. 

3. CASE OFONE FILLED SUBBAND 

We shall consider the situation when the screening is 
due to one transverse quantization subband so that N = 1 .  
We shall show that this is true of fields less than a certain 
critical value a, ( a  < a,) .  The potential drop in the bulk of 
the semiconductor Ap deduced from Eq. ( 6 )  is described by 
the expression 

We shall rewrite the Schrodinger equation of Eq. ( 7 )  by 
introducing E = El  + Ap and assuming that L + w : 

An analysis of this equation shows that its solution can be 
represented by an exponential series: 

where a ,  = 1 .  Substituting Eq. ( 12) into Eq. ( 1 1 ), we find 
that E = - A and for a, we obtain a recurrence relation- 
ship valid when n > 1 :  

m Here, A = a2/16/2 and Bm = 8, = , anam -, + , . It follows 
from this relationship that a, = a:A " - ', where a: is found 
from Eq. ( 13) by substituting A = 1. The convergence radi- 
us of this power series is given by the expansion 

Figure 2 shows the dependence of R, = Aa, /a,  + , on n. It is 
clear from this figure that the convergence radius is of the 
order of 7 .  

The boundary condition for the wave function on the 
semiconductor surface (z = 0 )  

FIG. 2. Dependence of R, = Aa, /a,  + , on n. 

FIG. 3. Wave function of the ground state on the surface of a semiconduc- 
tor Y, ( z  = 0) plotted as a function of the parameter A = a2/16A4. 

allows us to find A.  The condition of normalization of Y 
yields A: 

Figure 3 shows the results of a calculation of Y, ( z  = 0 )  on A. 
It is clear from this figure that there is a root at A ,  = 5.074 
which corresponds to the ground state with an energy 
E = - A :  = - (0.5087)2 = 0.2588 and the value 
a = 2.332. The number of terms in the expansion of Eq. ( 12) 
is limited to 100, which ensures that the calculations of Y are 
accurate to within 

This solution makes it possible to calculate the coordi- 
nate dependence of the potential V ( z )  = p ( z )  - Ap: 

m 

and also the quantities occurring in the thermodynamic po- 
tential: 

a, n- i  

This gives I, = 2.2535, I , ,  = 1.5982, and K ,  = 0.39658. We 
shall compare these values with the results of variational 

FIG. 4. Coordinate dependences of the wave function and of the potential 
obtained by exact (curves 1 and 3 )  and variational (curves 2 and 4) calcu- 
lations. 
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calculations for a wave function of the form Y = (b  3/ 

2 ) " ' ~  exp ( - bz/2): b = (33 /16)" '~  1.273, 1, = 2.357, 
I,, = 1.620, K, = 0.405. We can see that the precision of the 
variational calculation is within the range 1 . 4 4 6 % .  Figure 
4 shows the dependences V(z) and Y (z) obtained as a result 
of the exact and variational calculations. The errors in V, 
and E obtained by the variational calculations are 4.6 and 
28.2%, respectively. 

Turning back to Eq. ( lo ) ,  we find that, depending on 
the position of the Fermi level in the semiconductor, we can 
expect both overscreening ( q  > 1 ) and underscreening of the 
field on the semiconductor surface ( q  < 1 ) . The overscreen- 
ing condition can be rewritten in the form 

Having determined the maximum value of the left-hand side 
of the inequality with respect to a we can substitute this 
value into the inequality and thus find the overscreening 
condition: 

In the most commonly discussed case when p = 0 
(Refs. 3 and 5),  we find that Eq. (20) yields a relationship 
for the critical field a, in which the overscreening of the 
system with one filled subband disappears: 

Knowing the potential V(z) governed by Eq. (16) we can 
find whether there are additional localized subbands in this 
potential. We used the Runge-Kutta method to calculate 
numerically the Schrodinger equation (7)  with a potential 
described by Eq. ( 16) and we found that there were no addi- 
tional localized subbands. 

We shall now obtain the wave functions Y, in a contin- 
uous spectrum characterized by energies E = k > 0. It fol- 
lows from the Schrodinger equation ( 1 1 ) with V(z) de- 
scribed by Eq. ( 16) and from conditions of normalization of 
Yk and the absence of charge transfer that 

rn 

Here, D ,i = 1, a, = 0. The relationship (D  ,+ ) *  = D ; is 
obeyed also when n>2: 

where a, = tanP'[k/A, (n - I ) ] .  The condition 
Yk (Z = 0) = 0, written in the form 

allows us to find a ( k  '). ?he results of the calculations are 
given in Fig. 5. 

a, rad 

FIG. 5. Dependence of the phase of a wave function in the continuous 
spectrum on the normalized energy. 

4. SCREENING BY TWO FILLED SUBBANDS 

We shall assume that screening of the external field in 
an accumulation layer creates two transverse quantization 
subbands ( N  = 2). We shall also assume that L + UJ and, 
consequently, q ,  + q2 = 1. From this last relationship and 
the two equations in the system (6),  we find the occupancy 
of the second subband: 

M0"'/2+K,-K,+llt-2, ,  
q z  = 

Mo'~+111-2112+122 (26) 

We can easily see that if the denominator of the above frac- 
tion is positive, whereas the numerator may be negative if the 
field a is sufficiently weak and, consequently, the second 
subband does not appear. Substituting Eq. (26) into Eqs. 
(4 )  and (6),  we can rewrite the thermodynamic potential 
and the overscreening potential in the form 

It is clear from Eq. (27) that the appearance of the second 
band is favored, provided the condition 7, > 0 is satisfied. 

The Schrodinger equation (7)  can also be solved as in 
the preceding section, using an exponential expansion 

However, this increases greatly the volume of the calcula- 
tions, so that ,we shall obtain a variational solution. The 
orthonormalized wave functions will be described by 

where b, and 6 ,  are the variational parameters. Using these 
functions, we can calculate the quantities occurring in the 
thermodynamic potential: 
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is accompanied by the appearance of the overscreening po- 
tential of Eq. ( 3 5 ) .  Second vanishing of Aq, on increase in 
the field corresponds to the appearance of the third subband, 
and so on. 

It should be pointed out that an analytic solution of b ,  , 
6,  , and 7 ,  given by Eqs. ( 3  1 ) - (33)  agrees, to within a few 
percent, with the results of numerical minimization of the 
thermodynamic potential in the region of existence of two 
subbancis. 

5. SEMICLASSICAL SCREENING 

We shall now consider screening in the case of a large 
number of subbands when N )  1 .  We can then use the semi- 
classical description in which the wave functions are given 
by6 I 

CE . YE = - sin [ I  p d z ]  , 
P'" 0 

where 
ZE FIG. 6. Changes in the overscreening potential ( a )  and in the subband 

energy (b)  with the field on the surface. Here, 4, and 6, are separated by 
10Ap. 

the turning point z ,  is defined by p ( z ,  ) = - E, and the 
momentum p is normalized to 2u1l3 (m, E, ) ' I 2 .  The sub- 
band energies are deduced using the Bohr-Sommerfeld con- 
dition 

= m 

which yields also the separation between the levels6: 
1 Substituting these values in Eq. ( 2 7 ) ,  we shall minimize the 

thermodynamic potential with respect to b ,  and 6 , .  This 
gives the results presented in Fig. 6. At the moment of ap- 
pearance of the second subband we can obtain the following 
analytic results if we utilize the fact that the population of 
this subband is low ( 7 , g  1 ) : 

Using Eq. ( 3 9 )  and going over in the coordinate dependence 
of the charge 

from summation with respect to the energy to integration, 
we obtain the Poisson equation in the form 

subject to the boundary conditions 
where 6 = ~ o " ~ / 2  and 6 = M O ; ' ~ / ~ .  We recall that o, is 
the critical field in which the overscreening disappears 
(cl = I ,  - 1, - K 1  ) in the one-level solution when p = 0. 
Substituting Eqs. (31) - (33)  into Eqs. ( 1 7 ) ,  ( 2 8 ) ,  and ( 9 ) ,  
we obtain the potential on the surface and the overscreening 
as well as the subband energies: 

Solving this equation in the case when p = 0 ,  we obtain 

where the potential on the surface is q,, = ( 6 0 ~ 6 ) ~ ' ~ /  
4 ~ 2 . 0 3 6  2 1 5 .  Therefore, in the semiclassical approximation 
the potential q, (z) varies monotonically with the coordinate 
and there is no overscreening. The solution p ( z )  and Eq. 
( 3 9 )  allow us to calculate the number of transverse quanti- 
zation subbands: 

'F, $ 8  i, 

Therefore, when the overscreening potential vanishes a 
second localized subband of Eq. ( 35 ) separates smoothly 
from the continuous spectrum as the field is increased. This Integration with respect to the coordinate gives 
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where 5 = arccos(E / 4 p 0 ) ;  ~ ( 5 , f i / 2 )  and F ( g , f i / 2 )  are 
incomplete elliptical integrals of the first and second kinds, 
respectively. Estimating the expression in the braces at the 
maximum of the integrand function ( f i ~ ( n - / 2 , f i / 2 )  
- ( f i / 2 )  ~ ( ~ / 2 , f i / 2 )  zz 0.29 ), we find that the number of 

subbands is given by 

Therefore, the number of subbands increases monotonically 
on increase of the field. If we assume that N = 2, we find that 
Eq. ( 4 4 )  yields a critical field in which the second localized 
subband appears in the semiclassical approximation: 
f ,  = 0.28. This value is practically identical with the exact 
value 5, = 0.259, whereas the variational calculations indi- 
cate that f ,  = 0.33 1. The third band appears when f ,  = 0.55 
according to the semiclassical calculations and when 
f2  = 0.70 in the case of the variational calculation. 

Comparing the solutions for N = 1 and 2  and also for 
NS1, we can say that in the Hartree approximation the 
number of subbands in an accumulation layer is a monotonic 
function of the field with the asymptote Ncc FA". 

6. OPTICAL AND CAPACITANCE MEASUREMENTS 

We shall now discuss the characteristics of optical and 
capacitance measurements of the properties of accumula- 
tion layers. We shall consider the spectral dependence of the 
absorption coefficient a ( w )  in the case of relatively weak 
fields when N = 1. The absorption by direct transitions oc- 
curs when the vector potential of an electromagnetic wave is 
parallel to the z axis. The dependence a ( w )  is proportional 
to the square of the dipole transition between a localized 
subband and the continuous spectrum7: 

The right-hand side of this relationship can be rewritten with 
the aid of Eqs. ( 12) and ( 2 3 )  : 

The results of our calculations are presented in Fig. 7. It is 
important to note that a ( w )  has a sharp asymmetric maxi- 
mum in the absorption due to transitions in the continuous 
spectrum, which can be interpreted as transitions to the sec- 
ond localized subbanda8 The distinguishing feature is the 
asymmetry. The characteristic energy of the fall on the side 
of high values of .tie is 2 ~ ~ d ' ~ ,  whereas in the direction of 
smaller values of &I it is governed by the lifetime in the 
continuous spectrum. 

In this range of fields we can expect illumination to cre- 
ate a second localized subband so that there should be an 
additional maximum in the absorption spectrum and the po- 

FIG. 7. Frequency dependence of the probability of direct optical transi- 
tions between a local subband and the continuous spectrum. 

sition of this maximum should vary with the illumination 
intensity. 

We shall show that oscillations of the potential Ap as a 
function of the field result in abrupt changes of the capaci- 
tance of a metal-insulator-semiconductor (MIS) structure 
at points corresponding to the onset of filling of new sub- 
bands on the surface of the semiconductor. The voltage ap- 
plied to an MIS structure is V, and it can be expressed readi- 
ly in terms of the field on the semiconductor surface: 

where E ,  and d  are the permittivity and the thickness of the 
insulator, respectively. Bearing in mind that the charge Q on 
an MIS structure is eaV/n-ai, we find that the If capacitance 
C of such a structure is 

where ~ ~ / 4 ? 7 d  = Ci and y = ~ , a , / 2 u " ~ ~ d .  Substituting 
Eqs. ( l o ) ,  ( 1 7 ) ,  ( 3 4 ) ,  ( 3 5 )  into Eq. ( 4 8 ) ,  we obtain the 
following expression for the capacitance in the case of one 
filled subband C ,  and the onset of filling in the case of the 
second subband C, : 

Comparing these expressions, we can see that at the onset of 
filling of the second subband the capacitance changes ab- 
ruptly by a value of the order of C , ~ , / U , ~ ' ~ L .  

7. EXCHANGE INTERACTION 

We shall now allow for the influence of the exchange 
interaction on the screening of a field in accumulation layers. 
We can do this by including in the thermodynamic potential 
( 2 )  the exchange energy of the system a,,: 
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0, = -C' r, IIIJ dr dr' dz dz' 
Y ik' (r', z') 

ES I s = '  
( 1 r-r' 1 ' + 1 z-z' 1 ') ' I 2  

Here, \y, ( r , ~ )  = S -'12exp( i k r ) ~ ,  (z); S i s  the surface area 
of the semiconductor; the summation is carried out over all 
the filled states with parallel spins. Adopting the dimension- 
less variables introduced earlier, replacing summation with 
respect to k and k' by integration, and integrating with re- 
spect to r and r' and partly with respect to k, we obtain 

where x,  = - x cos 8 + ( 1 - x2 sin28) 'I2; (q /2gu  ) ' I2  
= k,,. is the quasi-Fermi momentum of the jth subband; k is 

normalized to 2 6 / a B  and c,. = 2 - Sv; Sv is the Kronecker 
delta. Bearing in mind that the kernel of the integral expres- 
sion has a maximum in the range of small values of lz - zlI, 
and expanding the exponential function in Eq. (52), we ob- 
tain 

N i m 

Here, K(x)  and E (x )  are complete elliptic integrals of the 
first and second kinds. 

It follows from the normalization of Re, that the ex- 
change interaction is significant in weak fields (a4 1), so 
that we shall limit our analysis to a transition to one of the 
two filled subbands. 

Using the variational wave functions of Eqs. (29) and 
(30), we can describe the exchange energy by 

Minimization of the thermodynamic potential R with re- 
spect to v, and v,, inclusion ofp, and the assumption that 
L -  w , i.e., that 7, + v2 = 1, yields 

Minimization of R with respect to b, and b2 subject to the 
condition 77 4 1 gives 

Using these relationships, the smallness of v2 ,  and the values 
of K, and I,, calculated earlier, we can now simplify Eq. (55) 
to 

The right-hand side of this equation F(v2 ) has a minimum 
at v2m defined by 

where F(vZm ) = - 8 . 5 . 1 0 - ~ g ; / d ~ ~ .  Therefore, it follows 
from Eq. (58) that inclusion of the exchange interaction 
gives rise to an abrupt appearance of the second subband. 
The field u,  in which this happens is given by Eq. (58) and it 
is approximately an order of magnitude higher than the val- 
ue of a, obtained in the Hartree approximation [Eq. (22) 1. 
Using Eq. (58) and assuming that g, = 2, we find that 
Mu, '13/2 = 0.7 1 . Further expansion of Eq. ( 55 ) in terms of 
v2 shows that after an abrupt change second subband rises 
linearly on increase in the field. 

8. CONCLUSIONS 

We shall now consider the main results of our investiga- 
tion. The Hartree approximation provides a universally val- 
id description of the screening in an accumulation layer. At 
low field intensities there is only one localized transverse 
quantization subband on the surface of a semiconductor and 
only this band becomes filled. In a field higher than a certain 
critical value (o>u,  ) the second localized subband splits off 
and begins to fill smoothly as the field increases. 

The critical field a, can be deduced from an abrupt 
change in the If capacitance of an MIS structure. It is shown 
that the spectral dependence of the matrix elements for tran- 
sitions from a localized subband to the continuous spectrum 
is an asymmetric curve with a maximum and the characteris- 
tic energy of the fall at high frequencies is proportional to 
E, d/3. 

A determination is reported of the range of positions of 
the Fermi level (in the bulk of the semiconductor) corre- 
sponding to overscreening of the field, i.e., to a situation 
when the number of electrons that reach the semiconductor 
surface is greater than that needed to screen the external 
field and the field in the bulk of the semiconductor changes 
its sign. Overscreening is due to the fact that the screening of 
the field requires the charge flowing through the surface to 
be proportional to u, whereas the characteristic energies due 
to band bending are proportional to Therefore, at low 
values of a a well contains more electrons than those needed 
for the screening. 

An allowance for the exchange energy does not alter 
qualitatively the nature of the screening process, but gives 
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rise to the following special features. The range p where the relationship between the density of surface electrons 
overscreening effect is observed becomes greater compared u4I377a; and the concentration of charged impurities 
with that given by Eq. (2 1 ). This range is readily found if we N, - No. The case of reduction in Ap corresponds to the 
assume that the left-hand side of Eq. (58) is less thanp/dl3. inequality 
The second subband is filled abruptly and this corresponds 
to an abrupt change in the capacitance of an MIS structure in N, -Na<o"~/naB3, (60) 
the course-of filling. The field a, corresponding to the filling 
of the second subband increases by an order of magnitude see 
[Eqs. (22) and (58)]. 

We shall consider the ( 100) surface of Si and find the 
numerical values of the field F, and of the surface density n., 
corresponding to the filling of the second subband. If we 
assume that m, = 0.916m0 and mll = 0.19m0, g,  = 2, and 
E = 11.5, we find that Eq. (22) yields F, = 1.13 X lo5 V/cm 
and n,, = 7.16X 10" ~ m - ~ .  

We shall now make some comments about the influence 
of doping. To be specific, we shall consider a lightly doped 
compensated n-type semiconductor with donor and accep- 
tor concentrations Nd and No, respectively. Overscreening 
occurs if the Fermi level, which in such a semiconductor 
coincides with the donor level, satisfies the inequality of Eq. 
(2 1 ). The presence of the potential Ap increases the number 
of the surface electrons in an accumulation layer by An,, 
where An, z [ A p (  N, - Na )/277e2 ] ' I 2 .  The length of the 
sample is then defined as the total localization length of sur- 
face electrons a , / ~ ' / ~  and of the positive charge at donors 
L, = An, /(N, - Na ), whereas the singularities of the be- 
havior of Ap (a) become singularities of An, (a). The self- 
consistent potential A p  found allowing for the impurity 
charge decreases or disappears completely, depending on the 

whereas Ap vahishes when the opposite inequality is obeyed. 
In particular, in the range of transition from one to two filled 
subbands on the ( 100) surface of Si we have ~f/~/ . rra;  z 10" 
cmP3, i.e., if Nd - Na =: lox8 cm-', we can ignore the influ- 
ence of doping in the region of the transition from one to two 
filled subbands. 
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