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A numerical experiment has been carried out, confirming the self-similarity hypothesis in the case 
of the electrical conductivity of percolation systems. Phenomenological equations capable of 
yielding analytically the permittivity and the conductivity of a large class of disordered systems 
were derived for the first time. 

We consider the behavior of the electrical conductivity 
and the permittivity of percolation composite systems near 
the percolation threshold. An example of such systems is a 
composite material consisting of a disordered mixture of me- 
tallic and insulating particles. A reduction in the concentra- 
tion P of the metallic (conducting) component reduces the 
static conductivity of the composite, so that it vanishes at 
some critical concentration PC known as the percolation 
threshold. In other words, composite metal-insulator mix- 
tures with a concentration P of the conducting component 
equal to the percolation threshold PC undergoes a composi- 
tion-dependent metal-insulator transition. 

The electrophysical characteristics of a composite ex- 
hibit a number of special features near PC. The effective con- 
ductivity ac, vanishes in accordance with a,, cc a, rr, where 
a, is the conductivity of the metallic (conducting) compo- 
nent and r = (P - PC )/PC is the dimensionless concentra- 
tion. The effective permittivity E,, and the internal induc- 
tance 1,. diverge at the percolation threshold: e,, K E~ I T )  q ,  

and I,, a aO2r - *  (Refs. 1-3), where E,  is the permittivity of 
the insulator and a,  is the microscopic scale (size of the 
composite particles). The scaling invariance of percolation 
systems was used in Ref. 1 to put forward a similarity hy- 
pothesis: near PC the effective complex conductivity u,, de- 
pends on the frequency w and on the dimensionless concen- 
tration T as follows: 

where h = Gi/am = iwei/4.nu,/ Gi = - iwEi/4.rr is the 
complex conductivity of the insulator; f (x)  is a universal 
function which is independent of the microstructure of the 
composite. 

We use numerical experiments to confirm the similarity 
hypothesis of Eq. ( 1 ) and then we shall apply this hypothesis 
to obtain a phenomenological equation of state for G,, : 

only on the parameter x = r/h This consequence of 
the similarity hypothesis was checked in a numerical experi- 
ment. It was found that all the points obtained fitted a single 
smooth curve tan S = p(x),  as shown in Fig. 1. The critical 
exponents t and q were selected so that t + q = 3.0 + 0.1, in 
satisfactory agreement with the known values t = 2.0 + 0.2 
and q = 0.8 f 0.1 (see Refs. 4-7 and the literature cited 
there). The fact that tan S depends only on the parameter x 
is a confirmation of the similarity hypothesis in the three- 
dimensional case (for d = 2 cm-see Refs. 8 and 9).  

We now use the similarity hypothesis to obtain a phe- 
nomenological equation for a,, . We introduce an analog of 
the susceptibility x ( T , ~ )  (Ref. 1 ): 

If we had been able to express f in terms of x on the right- 
hand side of Eq. (3) ,  Eq. (3)  would have become a differen- 
tial equation forx. However, the function f(x)  is very incon- 
venient in practice because, as deduced from Eq. ( 1 ), there is 
a singularity of f (x)  at x = 0. Therefore, following Ref. 10, 
we derive the dependence off on x with the aid of auxiliary 
functions u (x)  and v(x),  which are finite for all values of x :  

U(X) = ( B  etf/ci,)~tiq=[-l/ ( t f  q)] Llqxt(t+q+l)'qf(x) [ fr(x)  

(4) 
V ( Z )  =hX(t+q)/i, [-I/ (t+*) ] ( t + q i l o z i t + i i i i t - i ) i g  [f' (x) ] '""'l" 

The relationships given by Eq. (4)  define parametrical- 

tan 6 

In our numerical experiments we determined G,, by 
modeling a composite material with the aid of a cubic lattice 
with edges in the form of resistors or capacitors. The concen- 
tration of the resistors was assumed to be P and that of the 
capacitors 1 - P. We then solved the Kirchhoff equations 
and found the effective complex conductivity G,, as a func- 
tion of the frequency w and the dimensionless concentration 
T (for details see Ref. 4) .  

It follows from the scaling hypothesis [Eq. ( 1 ) ] that 
the loss-angle tangent tan S = 4.nae,/w~,, should depend 

FIG. 1 .  Dependence of the loss-angle tangent tan a = 4 ~ a , , / w e , ,  on the 
parameter rlh h = - i o & , / 4 f f o  ,,,, r = ( P  - P , ) / P , ,  P, = 0.25;O) 
r = 0.08; A )  r = 0.16; 0) r = 0.32. 
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ly the functional dependence v(u). Our aim is to determine 
the explicit form of this dependence because this makes it 
possible to reduce the problem of finding Geff to solution of 
the differential equation for the function 2 = rqx: 

In an analysis of the dependence u(u) it is convenient to 
consider real values of h, which corresponds to a percolation 
composite consisting of a mixture of powders of highly con- 
ducting and poorly conducting particles with the conductiv- 
ities a, and a,, respectively ( h  = ai/a, ). In this case the 
parameter x is a real variable which ranges from - UJ to 
+ UJ. 

We consider the asymptotic behavior of the functions 
u(x)andu(x)inthelimitx-+ f m.Thecasex+ - UJ cor- 
responds to a system which is below the percolation thresh- 
old (T < 0) and h + 0. According to the theory of Efros and 
Shklovskii,' in this limit we have 

which consequently leads to 

It follows from the relationships in the system (6)  that in the 
limit u -0, we have the asymptotic relationship 

In the other limiting case when x +  + UJ (when the 
system is above the percolation threshold T > 0) and h -0, 
the values of a,, and x are described by the asymptotic ex- 
pressions 

~,~~,a(J,, , t~ (l+ah~.-(q+')+'/~bh~~-~(q+~)), 

X a  (a~-q+bht-'-~q), 

which lead to 

v(x)=hX(f+~)J~aa(f+~)~~x-(f+~) (8a) 

Since we do not know the values of a and b, it follows that 
(dv/du),, + , remains unknown. 

The similarity invariance hypothesis postulates that the 
only characteristic length of the problem is the correlation 
length e (see, for example, Ref. 2) .  For a fixed va!ue of T and 
h approaching zero (which corresponds to x- + UJ ), the 
quantity 6 is a function of just the dimensionless concentra- 

where Y is a critical exponent which is Y = 0.88 f 0.02 for 
the three-dimensional case.27'' If h is fixed and T-0 (which 
corresponds to x -O), then 

The crossover from Eq. ( 10) to Eq. ( 1 1 ) occurs at 
6, /6, r 1x1" - 1. Consequently, the functions u (x)  and u (x)  
change from the asymptotic behavior described by Eq. (6)  
(x- - UJ ) to the asymptotic behavior described by Eq. (8)  
(x- + UJ ) in the interval - l 5 x  5 1. In this interval the 
only characteristic scale of the problem is the quantity {, so 
that it is natural to assume that the functions v(x) and u (x) 
have no more than one extremum and if it exists, it must lie in 
this interval. According to Eqs. (6)  and (8) ,  we find that 
U(X)  + O  in the limit 1x1 + ~ 4 ,  and since u(x) > 0, it is obvious 
that this function has a maximum. We can easily show also 
that the function u(x) is either monotonic or has one maxi- 
mum. 

Depending on the presence of a maximum in the case of 
a function u (x) and its position relative to the maximum of 
the function v(x), we can have three qualitatively different 
forms of the function v(u). According to hypothesis A the 
function u(x)  is monotonic, ranging from 0 to u* as x is 
varied from - w to + w . It then follows from Eqs. (8 )  and 
(9) that (dv/du). = .. < 0. Figure 2a shows qualitatively the 
function v(u) corresponding to hypothesis A. Hypotheses B 
and C postulate that the function u(x)  has a maximum. It 
then follows from Eqs. (8)  and (9)  that (dv/du) . = .. > 0. 
In case B, the function v(x) reaches its maximum earlier 
than does the function u (x),  whereas in case C the function 
u (x)  reaches a maximum before the function u(x). Figures 
2b and 2c show qualitatively the form of the functions v(u) 
corresponding to the hypotheses B and C. 

In the effective medium approximation, which is used 
widely to calculate the effective parameters of composite 
materials,'' hypothesis A applies and the function v(u) then 
has a very simple form: 

Another method for approximate analysis of percola- 
tion systems is the method of renormalization groups in real 

which has become popular recently. In this meth- 
od an analysis of a real system is replaced with an analysis of 
a certain hierarchical structure with its parameters selected 
so as to reproduce the real system. We shall consider a fairly 
simple hierarchical fractal, which is constructed as demon- 
itrated in Fig. 3. As in the case of a regular lattice, assuming 

FIG. 2. Qualitative form of the function v(u)  correspond- 
ing to the hypotheses A (a) ,  B (b), and C (c) .  
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that each edge of a fractal can have the conductivity a, with 
the probability P and the conductivity ai with the probabili- 
ty 1 - P, and also, as in a regular lattice, we shall assume 
that this fractal is characterized by a percolation threshold 
PC. The conductivity of the fractal a,, vanishes in accor- 
dance with the law a,, a rr, whereas the permittivity di- 
verges at the percolation threshold as E,, a 171 - q. The prop- 
erties of this fractal depend on the parameter n (Fig. 3 )  and 
for n = 2 the problem of percolation on a fractal is similar to 
the problem of percolation on a square lattice, whereas for 
n = 4  it is similar to percolation on a cubic lattice. The con- 
ductivity of such a fractal considered as a function of the 
quantities 7 and h = u,/a, can be found exactly by succes- 
sive application of a "decimation" procedure (see, for exam- 
ple, Ref. 14) .  Consequently, we can calculate the function 
u ( u ) .  Plots of the dependences u ( u )  for the cases n = 2, 3, 
and 4  are shown in Fig. 4 .  We can see that, as in the effective 
medium approximation, the function u ( u )  corresponds to 
hypothesis A. 

FIG. 4. Form of the function v ( u )  for hierarchical fractals plotted for 
different values of the parameter n: the continuous curves represent the 
exact calculations and the dashed curves are calculated on the basis of Eq. 
(14). 

FIG. 3. Three successive stages of construction of a 
hierarchical fractal for the cases when n = 2 (a) and 
n = 3 (b).  In case a, each stage gives rise to an edge 
(for example, AB), which then changes to a combina- 
tion of four edges A 1, lB, A 2 ,2B,  etc. In case b at each 
stage an edge (for example, B) is replaced by a cornbi- 
nation of six edges A 1, IB, A 2,2B, A 3,3B, etc. A frac- 
tal with an arbitrary value of n is constructed in a simi- 
lar manner. 

In an analysis of real systems we shall concentrate our 
attention on hypothesis A and ignore hypotheses B and C. 
The function u ( u )  defined in a finite interval 0  < u  < u* car- 
ries all the information on the conductivity of the percola- 
tion system for all the parameters of r and h.  In accordance 
with hypothesis A and on the basis of Eqs. (7) and (9) we 
find that the function u ( u )  has one maximum and vanishes 
at u  = u*, and also that we have u ( u )  - u  + o ( u )  in the limit 
u  -0 .  Clearly, such a function can be approximated as accu- 
rately as we please by the following series: 

We shall make the simplest assumption and limit Eq. ( 13) to 
two terms: 

The quantity a can be found by considering the behav- 
ior of U ( X )  and v ( x )  at x  = 0 .  In fact, following Ref. 10, we 
can easily show that f ( x )  a x  ' ( 1 + A x )  in the limit x  - 0 .  
Using Eq. ( 4 ) ,  we find that 

t-l 
( 1 5 )  

Substituting Eq. ( 14) into the left-hand sides of Eq. ( 15) ,  we 
obtain 

The function v ( u )  expressed in the form of Eq. ( 14) is in 
satisfactory agreement with the exact function u ( u )  deduced 
for a hierarchical fractal (Fig. 4 )  and makes it possible, as 
shown below, to reproduce well the results of numerical ex- 
periments. Substituting Eq. ( 1 4 )  into Eq. ( 5 )  and solving 
the latter, we obtain 

If we now introduce new variables 8 = g ~ ' / " + ~ ' )  and 
R = ( x / c )  - we find that the relationships (4)  and ( 17) 
are converted into a system of parametric equations for the 
determination of the complex conductivity 8,, : 

~ = R [ O ( t + q ) / q - I ]  , h=ARt+q(3*+q-' ( I - @ ) ,  
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FIG. 5. Dependences of the effective conductivity o,, and of the permit- 
tivity &,, on the parameter rlh I - '''. Theresultsofnumerical experiments 
(PC = 0.25, open circles represent o,,/? and the black dots represent E,, 

7): A ) ,  A )  T = 0.08; a), 0) T =  0.16; W),  0 )  T = 0.32. The solution of 
Eq. ( 19) was obtained for a = 0.5 16and b = 1.12; the dashed curve repre- 
sents ue,/? and the continuous curve gives E,=T. 

where A and B are certain real constants governed by the 
geometric structure on a microscopic scale. A comparison of 
the results of a numerical experiment reported in Ref. 4 with 
the solutions of the system of equations (18) in the case 
h = ~ W E ~ / ~ I T U ,  is made in Fig. 5. The solution is selected by 
analytic continuation of h from the real axis." The solution 
of the system of equations ( 18) agrees well with the results of 
this numerical experiment if we assume that the critical ex- 
ponentsare t = 2 andq = 1. Forq = 1, thesystem (18) sim- 
plifies to 

h f a  (a:,, 10,) T= b (a,,, /om\ "+ "It. (19) 

In particular, when the critical exponent is t = 2, which cor- 
responds to the dimensionality d = 3, the problem of calcu- 
lating the conductivity of three-dimensional percolation sys- 
tems reduces to the solution of the cubic equation ( 19). 

Figure 6 shows the dependences of the permittivity E,, 

and of the conductivity a,, on the dimensionless concentra- 
tion T found on the basis of Eq. ( 18). It is interesting to note 
that, in contrast to the generally accepted view (see, for ex- 
ample, Ref. 1 ), the value of E, reaches its maximum not at 
the percolation threshold but at a certain concentration 
P * (o) that depends on the electric field frequency w. 

FIG. 6. Dependences of the permittivity E,, (continuous curves) and of 
the conductivity o,, (dashed curves) of a percolation composite system 
on the dimensionless concentration T for different values of the dimen- 
sionless frequency: Ih I = os , /4rom:  1) lh I = 2) Ih I = 3) 
lh 1 = 

It should be stressed that the accuracy of the above pro- 
cedure for the determination of 8, (T, h) depends on the 
precision of the approximation of the function v(u) and is 
independent of the functional form of the approximation it- 
self. However, the nature of the parametric equations ( 18) 
may generally depend on the method of approximation of 
the function v(u). This ambiguity can be removed by apply- 
ing field-theoretic methods.I5 However, at present consider- 
able difficulties are encountered in the application of such 
methods to the problem in question, even in the space of 
dimensionality d = 6 - E. Nevertheless, we may assume 
that the approximation of v(u) by Eq. ( 14) proposed above 
should give the simplest form of the similarity equations 
( 18) and ( 19) that reproduce satisfactorily the results of 
numerical experiments. 

The authors are deeply grateful to A. V. Gol'denshtein, 
A. N. Lagar'kov, S. P. Obukhov, and B. I. Shklovskii for 
valuable discussions. 
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