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Edge optical absorption through multiphonon processes is viewed as the tunneling of a lattice in 
an adiabatic potential. The case of an exactly solvable single-mode model is used in a 
quasiclassical approach to classify the various tunneling paths for absorption at an impurity 
center and in an ideal lattice with weak and strong exciton-phonon coupling. Mechanisms of 
absorption to free and bound states of an exciton are distinguished. The intervals of the 
temperature and the photon energy in which one mechanism or other is dominant are studied. 
The optimum tunneling path for each mechanism is also determined. 

INTRODUCTION 
Optical absorption below the edge of the exciton band 

has been studied quite thoroughly on the experimental side. 
The best-known property of this absorption, which is char- 
acteristic of many crystalline substances, is the so-called 
Urbach r~1e . I .~  This is an exponential decrease in the absorp- 
tion with distance from the edge of the exciton band, with an 
argument which is essentially linear in the photon frequency 
and in the reciprocal temperature. The surprisingly general 
applicability of this rule has attracted the interest of many 
 theoretician^,^-^ who have attempted to explain it at a corre- 
spondingly general level. These attempts have in fact been 
unsuccessful, but they have nevertheless accomplished 
much in improving our understanding of optical absorption 
processes in yolids. 

There are two basic directions in the theory of edge ab- 
sorption. The first is concerned with the absorption which 
results from static variations in the potential. This direction 
dates back to the study by Dow and Redfield,9 in which the 
Urbach rule arose from the broadening of a exciton line 
caused by a random electric field. Further developments of 
this direction, which we will not be discussing here, have 
centered on an analysis of fluctuations in the concentrations 
of lattice defects or impurities (see the  review^'^^"). The 
second direction, which is the subject of the present paper, is 
concerned with the blurring of the edge of a band due to 
thermal vibrations of the lattice. The multiphonon absorp- 
tion mechanism is always predominant at high tempera- 
tures; in pure crystals, it is also predominant at low tempera- 
tures. 

Dexter's study6 can be regarded as the first step in this 
direction. Dexter suggested that edge absorption stemmed 
from deformation-induced fluctuations of the band gap. 
Dexter did not consider the dynamic nature of the thermal 
fluctuations; i.e., the random strain energy was assumed to 
be static, and the temperature appeared only in its ampli- 
tude. That remained the basic approach in several subse- 
quent st~dies. ' ,~ Toyozawa7 succeeded in reproducing the 
Urbach rule through the introduction of a purely quadratic 
coupling with the lattice, but the validity of the model which 
he used is problematical. Despite the fact that the dynamic 
nature of lattice fluctuations can be ignored only at high 
temperatures, Dexter's approach continues to be followed. 
Several s t u d i e ~ ' ~ - ' ~  take it over the entire temperature range, 
down to absolute zero. In this approach the time dependence 
of the fluctuation potential is ignored, and-the major 

point-the inverse effect of the appearance of an exciton on 
the motion of the lattice is also ignored. In particular, energy 
conservation in the absorption event is not considered; as a 
result, the absorption below the band edge turns out to be 
finite even at absolute zero. 

The dynamic nature of lattice fluctuations has been tak- 
en into account in several studies15-l9 based on a perturba- 
tion theory in the electron-phonon coupling. Although that 
approach does lead to a law which is approximately the same 
as the Urbach rule, the range of applicability of the approxi- 
mation of a weak electron-phonon coupling is extremely 
narrow. In particular, the weak-coupling approximation 
fails completely to describe substances in which self-trap- 
ping is observed (see, for example, the review by RashbaZO). 
Generally speaking, the effectiveness of a perturbation theo- 
ry is degraded by the multiquantum nature of the absorption 
process. 

The most systematic approach to multiphonon pro- 
cesses is quasiclassical, in which the interaction of excitons 
or charge carriers with the lattice is treated adiabatically. 
That approach, which dates back to Iordanskii and Rashba's 
continuum self-trapping theory2' and which is essentially a 
dynamic version of the optimum-fluctuation m e t h ~ d , ~ ' - ~ ~  
was developed by Io~elev ich .~~ Ioselevich used a two-parti- 
cle Green's function to study the absorption of a photon and 
the creation of an electron and a hole, which interact with 
polar optical phonons. It was assumed that the energy defi- 
ciency of the photon, A, is much larger than the exciton 
rydberg E, . The influence of exciton effects at E, > A  was 
studied by Ku~martsev.'~ It was found that the width of the 
exciton absorption band depends on the difference between 
the masses of the electron and the hole. Ioselevich2' studied 
the shape of the Urbach edge in a model problem incorporat- 
ing the coupling of a Frenkel' exciton with deformation-in- 
duced optical phonons. In a cubic crystal this coupling oper- 
ates only in the case of a degenerate exciton band (one 
corresponding to a spin S = 1 ). Incorporating band degen- 
eracy leads to a new effect, spontaneous breaking of the sym- 
metry of an optimum lattice f l uc tua t i~n .~~  

The fact that the absorption remains finite at T = 0 can 
be explained in a natural way in terms of self-trapping of the 
quasiparticles which form. Self-trapping was first identified 
as an absorption mechanism by Ra~hba . ' ~  Self-trapping was 
also assumed to be the reason for absorption at absolute zero 
in Refs. 12-14, which we mentioned earlier, but in their ap- 
proach the absorption actually results from a blurring of the 
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band edge caused by zero-point lattice vibrations. In fact, 
this blurring is fictitious since the zero-point vibrations of a 
lattice carry no energy. 

An important advantage of the quasiclassical approach 
is its transparency, which makes it a comparatively easy 
matter to qualitatively analyze various situations which 
arise during absorption. The complex models used in Refs. 
25-28, however, have yielded only particular solutions in 
certain limiting cases. It has turned out to be a difficult mat- 
ter to draw a comprehensive picture of the dependence of the 
tunneling path on the parameters of the problem and to dis- 
tinguish the qualitatively different absorption regimes in the 
problem. In the present paper we attempt to draw such a 
picture for the case of Frenkel' excitons with a broad band. 
We will use the adiabatic approximation and the quasiclassi- 
cal approach directly and (we think) more systematically 
than in Refs. 25-28. We introduce the concept of indepen- 
dent absorption mechanisms associated with different final 
states of the exciton and the concept of absorption regimes 
associated with different types of tunneling lattice paths. We 
will not discuss specific realistic formulations of the prob- 
lem; we will demonstrate the approach in the case of the 
single-mode model which can be solved analytically. The 
diagrams constructed below to show the arrangement of the 
various regions in the temperature-(photon frequency) 
plane qualitatively show the various typical pictures of ab- 
sorption in various systems. 

1. GENERAL FORMALISM 

Since we are interested only in the exponential depend- 
ence of the absorption coefficient on the photon frequency 
and the temperature, we are not obliged to develop a compli- 
cated apparatus of the type which would be required for a 
complete description of the absorption process. For our pur- 
poses it is sufficient to use the Franck-Condon principle, 
supplemented with some simple mechanical ideas similar to 
those which have been developed in the quasiclassical analy- 
sis of radiationless multiphonon  transition^.^' 

We describe the lattice by means of a set of coordinates 
Xj which are combined in a vector X (there is no difficulty in 
transforming to a continuum picture in specific applica- 
tions). Everywhere below we replace the photon frequency 
by the difference between the energies required for the cre- 
ation of a free exciton at rest in the undeformed lattice (i.e., 
we use the fundamental absorption edge Eg ) and the energy 
of the absorbed photon, fin. We call this quantity, 

the "deficiency." 
From the quasiclassical standpoint, the absorption of 

light below the edge of the exciton band must be treated as an 
optical transition between lattice terms, i.e., between differ- 
ent branches of the potential energy of the lattice. 

The initial term, which we will call the "empty term" 
and denote by E, is the purely elastic energy of the lattice, 
U,  (X). The final terms are formed by adding to this energy 
the energy of the exciton which has been created. An exciton 
has a continuous spectrum of free states, which undergo es- 
sentially no coupling with the lattice; in a certain region of 
lattice configurations it also has bound states. For the ener- 
gies of these states, E,, (X),  we place the origin of the scale at 

the edge of the exciton band. Adding Ee, ( X )  gO to the elas- 
tic energy of the lattice, we find a term which we call a 
"bound term" and denote by B: 

The origin on the energy scale has been chosen for con- 
venience, in such a way that the potential energy has no dis- 
continuity in an optical transition from the empty term E to 
the bound term B, which occurs (according to the Franck- 
Condon principle) in any lattice configuration with a bind- 
ing energy equal to the deficiency, 

A bound state of an exciton and thus the bound term B may 
not be unique, but for simplicity we will consider only the 
bound state which has the lowest energy. When there is a 
deficiency, absorption can occur only to a bound state of an 
exciton. This state may fall into the continuum as a result of 
a subsequent radiationless liberation from the lattice poten- 
tial well. 

According to the quasiclassical theory of trapping," 
the optimum case is a continuous transition from an exciton 
bound in a potential well to a free exciton which is at rest. In 
contrast, the repulsion of a bound state deep into the contin- 
uum is disadvantageous. For this reason, we can ignore the 
entire continuum except for the bottom of the exciton band, 
adding its energy to the elastic energy of the empty lattice. 
We call the resulting term, with a potential energy 

a "free term" ( F ) .  Since the origin of the energy scale has 
been chosen in the same way in ( 1) and (3) ,  the bound term 
joins smoothly30 with the free term at the boundary of the 
region in which the former exists, 

From the quasiclassical standpoint, the absorbing sys- 
tem can be characterized completely by the shapes ofthe free 
and bound terms U, (X) and U, (X). There can be several 
quite different types of exciton terms, with configurational 
schemes as shown in Fig. 1: 

a )  A lattice with a defect which has a level in the unde- 
formed state. A deformation of the lattice may either in- 
crease the exciton binding energy or reduce it, to the point 
that the level is pushed into the continuum. This event corre- 
sponds to a merging of the bound branch and the free 
branch. 

FIG. 1. Configuration schemes of exciton terms. a-Impurity center; b- 
ideal crystal. The behavior of a bound term is shown for the cases of ( 1) 
weak, ( 2 )  intermediate, and ( 3 )  strong exciton-phonon coupling. 
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b) An ideal lattice. A level arises only if there is a cer- 
tain deformation of the lattice. The subsequent course of 
events depends on the strength of the exciton-phonon cou- 
pling. 1-If the coupling is weak, the elastic energy of the 
lattice increases more rapidly than the exciton binding ener- 
gy with increasing deformation, so the adiabatic energy of 
the lattice has no minima in the region in which bound states 
exist. 2-If the coupling is strong, the bound branch of the 
exciton term has a minimum (a self-trapping state), which is 
an absolute minimum of the exciton-plus-lattice system. 3- 
There is an intermediate situation in which the self-trapping 
state exists but is metastable with respect to a transition to 
the free branch of the exciton term. 

Each minimum on the F o r  B term is a possible final 
state of the absorption process. We thus see that in an ideal 
lattice with a weak exciton-phonon coupling (case lb)  there 
exists a unique absorption mechanism, absorption to a free 
state of an exciton. In other cases there are two absorption 
mechanisms: there is also an absorption to an impurity state 
(case a )  or to a self-trapping state (2b,3b). In a real crystal, 
of course, both of these additional mechanisms may operate, 
but they differ in nature, and we will study cases a and b 
separately. We wish to stress that the presence (and num- 
ber) of different mechanisms is determined exclusively by 
the type of exciton term. At any temperature and at any 
deficiency, these mechanisms coexist, although the absorp- 
tion by one of these mechanisms may overwhelm that by the 
other because of the exponential behavior involved. 

The motion of the lattice is described by the classical 
equations of motion 

a Z~ a L x i+-=o .  ax, axi ax, 

The Lagrangian L(X,X) contains U, (X) or U,(X) or 
U, (X) as potential energy, in accordance with the particu- 
lar term occupied by the lattice. By virtue of our choice of 
origin for the energy scale for the B and F terms, the lattice 
potential energy has no discontinuities in an optical transi- 
tion from an empty term to a bound term or in a radiationless 
transition from a bound term to a free term. For this reason 
we can speak in terms of a classical motion of the lattice, ( 5 ) ,  
in a complex (and generally multivalued) potential relief 
U ( X ) ,  formed by "splicing" the E and B terms at points 
determined by Eq. (2)  and of B and F terms at the points 
determined by Eq. (4).  In this picture the absorption pro- 
cess reduces to tunneling in a static potential and is com- 
pletely analogous in this regard to the radiationless transi- 
tions studied in Ref. 30. 

This analogy allows us to immediately formulate a gen- 
eral recipe for calculating (with an exponential accuracy) 
the optical absorption coefficient with a deficiency A at a 
finite temperature T = P - '. We need to find the classical 
path X(t) in the potential constructed by the method de- 
scribed above, which has an imaginary period iw, and we 
need to calculate the action 

K (A) = exp [iA-lS (A, fi) I. ( 6 )  

A qualitative analysis of edge absorption in any model 
reduces to enumeration of the various possible types of peri- 
odic paths in each absorption mechanism, determination of 
the nature of the transition from one type of path to another 
as the parameters A andpvary, and identification of regions 
in which one of the absorption mechanisms is predominant. 
Carrying out an analysis o'f'this sort for realistic specific 
models is an extremely complicated matter. We will accord- 
ingly limit ourselves to analyzing a simplified model which 
can be solved analytically and which, from all appearances, 
draws a qualitatively correct picture of the absorption. The 
results can then be compared with the results of more-com- 
plicated calculations. 

2. CLASSIFICATION PRINCIPLES 

In this section of the paper we introduce some concepts 
which we will be using to classify the paths traced out by the 
lattice in the absorption process. For simplicity we consider 
a "lattice" which has a single degree of freedom, with a coor- 
dinate X. The pa$'traced out by the lattice is determined 
completely by the total energy E. For this reason, it is con- 
venient to analyze the various types of paths and the depend- 
ence S(A,P) by parametrizing the path specifically by means 
of the energy E and then relating this energy to the tempera- 
ture T = 0 - ' with the help of a periodicity condition. 

Those regions of the potential energy U(X) which lie 
below E correspond to motion in real time and do not con- 
tribute to the imaginary action S(A,P). The only regions 
which are of importance to the transition probability are the 
classically forbidden regions, U(X) > E. Depending on the 
energy E and the deficiency A, the tunneling may occur along 
different numbers of terms. We will accordingly speak in 
terms of different absorption regimes, designating them by 
means of the order in which the terms (E,B,F) are crossed in 
the forbidden region. 

The beginning and end of a tunneling are stopping 
points, i.e., solutions of the equation U(X) = E.  The initial 
stopping point X, corresponds to the time t, = 0, and the 
final stopping point Xf corresponds to the time tf , whicli is 
imaginary, in accordance with the tunneling nature of the 
motion (itf > 0). In our problem, in which the potential en- 
ergy is made up of arcs of different terms, the tunneling path 
X( t )  must also be made up of segments which join together 
smoothly (i.e., X and x are continuous) and which corre- 
spond to a sequential motion through each of the terms in the 
forbidden region of U(X) . Proceeding in this fashion, we can 
find a path X(t)  for each value of&; in particular, we can find 
the final stopping point tf ( E ) .  By construction, the path is of 
even parity with respect to the initial stopping point, 
X(t) = X( - t ) ,  so it has a period 

where T(E) is a real oscillation period in the inverted poten- 
tial, - U(X), with an energy - E. The optimum path for a 
given temperature is defined by the condition 

along this optimum path. The absorption coefficient K (  A )  is There is not necessarily a single optimum path which 
proportional to an exponential function of the action: corresponds to a given value of the temperature. It can be 
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seen from Eq. (7)  that a path is unique only if the functional 
dependence T(E) is monotonic. On the whole, the period 
T(E) tends to increase with decreasing energy E. In particu- 
lar, it diverges as E approaches the bottom of any of the terms 
involved in the transition. For this reason, a deviation of 
T(E) from monotonic behavior would have to be N-shaped 
and would have to give rise to three extrema of the action in a 
certain temperature region. The S(A,P) dependence in this 
case acquires the "swallowtail" shape shown in Fig. 2. One 
of the extrema turns out to be unstable and is definitely not 
favored, so only two paths are left in contention. At each 
value of the temperature it is necessary to choose the path 
which has the smallest value of Im [S(A,P) 1, so that a transi- 
tion from one extremum to another occurs discontinuously 
at the point where the rays intersect the swallowtail. The 
curves of the action and thus the absorption coefficient ver- 
sus the deficiency and the temperature change slope at this 
point. Analyzing the single-mode model, we can easily un- 
derstand the following general behavior. If the potential has 
a slope change at some slope, then as the energy approaches 
the level of this slope, E*, from below the period T(E) has a 
square-root singularity: 

In principle, this singularity could have either sign, but in 
our problem the change in the slope of the potential occurs at 
the point at which the E and B terms cross, and the sign of 
the square-root increment is always negative. An N-shaped 
deviation from a monotonic T(E)  dependence forms, so the 
transition between the regime which contains tunneling 
along the E terms and a regime in which this term is tra- 
versed in real time is necessarily accompanied by a change in 
the slope of S(A,O). We will call such a change in regime, 
which is analogous to a first-order phase transition, a "hard" 
transition. We will call a change of regime which does not 
disrupt the monotonic T(E)  dependence, and which is analo- 
gous to a second-order phase transition, a "soft" transition. 
In this case the action S(A,P) is a smooth function of the 
parameters. 

The nature of the path X(t)  can be quite varied; it is 
determined by the shape of the barrier. The potential energy 
in this problem is constructed in such a way that in addition 
to barriers of the ordinary type (Fig. 3a) there can be bar- 
riers with an "underhanging" initial or final slope (Fig. 3, b 
and c).  We will call the ordinary tunneling "horizontal" 
tunneling, and we will call tunneling with an underhanging 
initial or final slope "ascending" or "descending" tunneling, 
respectively. The tunneling paths X(t)  corresponding to 
these barriers are shown in Fig. 3 under the diagrams of the 

FIG. 2. "Swallowtail" on the plot of the action S versus the reciprocal 
temperaturep, which leads to a discontinuous change in optimum path (a  
hard transition). 

FIG. 3. Top: Types of barriers. Bottom: Corresponding paths. a-For 
horizontal tunneling; b-for ascending tunneling; c-for descending tun- 
neling. 

barriers. In the case of horizontal tunneling the path takes 
the form of an oscillatory motion in imaginary time; in the 
case of ascending or descending tunneling a region with a 
retrograde motion in time arises at respectively the begin- 
ning or end of the path, since the potential is double-valued 
(cf. Ref. 30). 

In addition to the absorption regimes with tunneling 
which we have been discussing there is yet another possible 
regime, which we will call an "activation" regime and desig- 
nate as regime A.  It occurs at high temperatures in cases in 
which the barrier has a smooth saddle point. In such cases, in 
contrast with cases in which the barriers have a "sharp" 
crest, the period of the oscillations in the inverted potential 
T(E) is bounded from below. A solution of the equations of 
motion which has the necessary period i+@ is trivial at small 
values of& it describes a lattice which is lying at rest at the 
crest of the barrier, X(t)  = const. We know (Ref. 30, for 
example) that this case corresponds classically to passage 
over the potential barrier. In this temperature region, quan- 
tum-mechanical effects influence only the coefficient of the 
exponential function in the tunneling probability (in our 
case, in the absorption coefficient). In the case of a barrier 
with a sharp crest the period T ( E )  approaches zero as the 
energy E approaches the crest (or, in the multidimensional 
case, as it approaches the saddle point), so at an arbitrarily 
high temperature the path has a tunneling region, although 
this region is small. In the edge-absorption problem a barrier 
with a a smooth saddle point occurs on the B term if there is a 
strong exciton-phonon coupling in the ideal lattice (Sec. 6 ) .  

We wish to stress that the nature of the tunneling is 
determined by the form of the potential only in the classical- 
ly forbidden part-i.e., the part which rises above the E lev- 
el-of the barrier, R (X) > E. The nature of the tunneling 
may thus change with the energy E. Let us examine the upper 
barrier in Fig. 3b as an example. The overhanging initial 
slope of this barrier goes into the classically allowed region 
as the energy is raised, and the tunneling converts from as- 
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cending to horizontal with a smooth saddle point of the type 
shown by the upper barrier in Fig. 3a. 

These new concepts remain meaningful in the multi- 
mode case. The only fundamental distinction is that it is 
necessary to search for a periodic path among the paths with 
a given energy c. This procedure is extremely complicated to 
carry out in practice, but the presence of a solution is guaran- 
teed by the very nature of the problem. That this solution is 
'qgle-valued for each mechanism is a fairly natural assump- 

although unproved. 

3. THE MODEL 

We turn now to a quantitative analysis of the model, in 
which the sole oscillatory mode is harmonic, and the "exci- 
ton-phonon coupling" is described by a zero-range potential 
which is related to the lattice coordinate in a linear way. A 
similar model has been used in the theory of the radiationless 
capture ofcharge carriers at a natural impurity center and in 
self-trapping t h e ~ r y , ~ ~ . ~ '  where only transitions between free 
and bound terms were considered (charge carriers and self- 
trapped particles neither appeared nor disappeared). To ap- 
ply this mode to edge absorption we need to add a third 
(empty) term, but there is no difficulty in doing so. 

In our model the lattice coordinate X is the sole coordi- 
nate, and the Lagrangian of the lattice without an exciton is 
quadratic: 

where Mis the mass of a lattice atom, and w, is the frequency 
of its free vibrations. The exciton is treated in the effective- 
mass approximation, while the potential well which binds 
the exciton is described by a zero-range potential with a reci- 
procal scattering length x(X) which depends linearly on the 
lattice coordinate: 

A bound state exists in the region x(X) > 0 and has an ener- 
gy 

E,,(X) =--tizx'(X)/2m, 

where m is the effective mass of an exciton. The potential 
energies corresponding to the empty and free exciton terms 
differ by an amount A according to (3)  and are described by 

UE(X)=M~02F/2,  U~(X)=A+MO~~J?/~ .  

Because of the linear relationship (9),  the adiabatic poten- 
tial energy of the lattice is also quadratic in X on a bound 
term and is described by 

UB(X)=Up(X)+Ee=(X) =-U'+A+MVO~~(X-X')~/~, 

where 

v=l-XlzJ1~/m~Oo2,  U*=A2xO2/2mv, XI=ti2~o~l/v0oZMm. 

The free and bound terms merge at the point X, = - x,/x,. 
Switching to dimensionless quantities, we can set, M, m, w,, 
and fi equal to unity. The picture of the terms will then de- 
pend only on the parameters of the linear relationship (9): 
x, and x,. We will use wg ' as the unit of time, &, as the unit 
of energy and temperature, (fi/M) ' I 2  as the unit of the coor- 

dinate X, and (mw,/fi) l f 2  and ( m M )  'I2/fi as the units of the 
coefficient x, and x,, respectively. In this system of units the 
lattice Lagrangian becomes 

with a potential energy 

on the empty term, 

on the free term, and 

on the bound term [in the region x(X) > 01. 
How successful would our model, with purely parabolic 

terms, be in qualitatively describing the various type of exci- 
ton terms which were listed in Sec. 2? With no loss of genera- 
lity we can assume that the parameter x ,  is positive. A lattice 
with a defect corresponds to x, > 0 (there is a level at 
X = 0).  In accordance with our choice x, > 0, the point 
Xbf = - X,/X at which an exciton is repelled into the band 
is negative. The absence of an exciton bound state in the 
undeformed ideal lattice corresponds to x, < 0, and the point 
Xw is positive. The bound term branches away from the free 
term at this point. The presence or absence of a self-trapping 
absorption mechanism corresponds to a negative or positive 
value of the parameter Y, which we call the "curvature" of 
the bound term. 

With x, < 0 and a positive curvature, the bound term 
formally has a minimum U * = - x2/2v, but this minimum 
occurs outside the region in which the bound term itself ex- 
ists. If the curvature is negative, the minimum converts into 
a maximum of the bound term; this maximum actually exists 
and describes a self-trapping barrier. Obviously, our model 
has no bound-term minimum corresponding to a self- 
trapped exciton. Accordingly, we cannot use our model to 
quantitatively illustrate the effects which stem from the 
presence of this minimum in a real situation, e.g., the differ- 
ence between the cases of strong and intermediate coupling 
(2b and 3b). We will discuss these effects at a qualitative 
level in the Conclusion. We will not consider at all the case in 
which the bound term has negative curvature in connection 
with absorption at a defect (x, > 0, Y < O), since the only 
distinction between this and the case x, > 0, Y > 0 is that 
there is no minimum on the bound term. This situation does 
not correspond to the physical situation. An extremum of a 
barrier type, on the other hand, occurs in this case in the 
region forbidden by the condition x(X)  )O. 

In the following sections of this paper we will systemati- 
cally analyze various configurations of this new model. In 
each configuration, the order of operations is the same. We 
list the possible absorption mechanisms and the regimes 
which occur in them, writing the corresponding expressions 
for the action S(A$) along an extremal path. For each 
mechanism, and for each value of the parameters A and p, 
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we find an optimum regime and construct a "phase" dia- 
gram in the (A,T) plane. On this diagram we specify the 
regions in which each of the regimes prevails and the nature 
of the transition between neighboring regimes. By compar- 
ing the various mechanisms we identify the regions in which 
one mechanism or another is predominant. We will go 
through this series of operations more or less in detail for the 
case of absorption at an impurity center, while for the other 
cases we will simply describe the qualitative distinctions, 
present the diagrams, and discuss them briefly. The dia- 
grams presented here are illustrative and do not correspond 
to any specific values of the parameters of the model. They 
generalize the qualitative aspects of the specific diagrams 
which are generated in a numerical solution of the problem. 

4. ABSORPTION OF LIGHT AT AN IMPURITY CENTER 

As we mentioned above, there are two mechanisms for 
the absorption of light at impurity centers. Figure 4 shows 
the configurations of the terms of an impurity center in our 
model with the parameter values x, > 0 and x ,  > 0 for var- 
ious values of A. 

We first consider the absorption mechanism corre- 
sponding to a bound state. In this mechanism, regardless of 
the value of the energy E, tunneling occurs along two terms: 
the empty term E and the bound term B. In other words, 
there is only a single regime, EB, in our terminology. The 
lattice begins the tunneling on the empty term at the time 
t = 0, moving in accordance with the law 

with a coefficient A, which is related to the energy by 

The time at which the transition from term E to B occurs is 
determined by the equation 

On the bound term  he law of motion is 

where the coefficient A, and the stopping time t, = - ir, 
are determined by the conditions that X( t )  and X(t)  are 
continuous at the time of the transition: 

System ( 16), ( 18) with real values of the path parameters 
A,, A,, 7, , and re, is closed by the periodicity condition 

Evaluation of the action 

along the optimum path gives rise to the expression 

is (A, p) = (xo~/~v-A) (B-2z.a) 

which involves the time of the absorption, re,, which is de- 
termined by the equation 

Depending on the deficiency A, the point 
Xeb = [ (2A/x: ) ' I 2  - 1 ] xO/xI at which the bound term 
crosses the empty term may be in different positions with 
respect to the minima involved in the tunneling of the terms, 
Xe = 0 and X, = ?to%,; the differences are reflected in the 
shape of the optimum path. In the case of absorption to a 
bound state the change in the nature of the tunneling occurs 
at the deficiency values A = x:/2 and A = xg/2?. 

The case A < x:/2 is formally equivalent to the capture 
of a particle with a negative energy by an impurity center. Its 
path corresponds to a descending tunneling (Fig. 3c). At the 
boundaries of the next region, with A = x:/2 and 
A = x:/2?, the tunneling path characterizing the absorp- 
tion degenerates into a static path. Throughout the duration 
of the tunneling from - iD /2 to iD /2 the system lies at the 
bottom of an empty term (in the case A = xi/2) or a bound 
term (A = x:/22). In the region x:/2 <A <x:/2? itself 
the tunneling is horizontal (Fig. 3a). At A > x;/2? a retro- 
grade region reappears on the path X(t) ,  but now the empty 
term is the underhanging term, and the tunneling becomes 
ascending (Fig. 3b). 

We turn now to the light absorption mechanism in 
which the exciton in the final state is free. This second mech- 
anism has a greater diversity of paths. The critical values of 
the deficiency in this mechanism are 

Fig. 4 shows the positions of the terms corresponding to 
these values. 

FIG. 4. Relative positions of the terms of an impurity center for various 
values of the deficiency, A ,  < A, < A,. To simplify the figure, the positions 
of terms B and Fand fixed, and the height of term E is varied. The bottom 
of the latter term is actually the origin for the energy scale (as in Figs. 6 
and 8) .  
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At deficiencies A < A, the point where the empty term E 
crosses the bound term B is, on the energy scale, above the 
bottom of the free term. Accordingly, again in this region of 
deficiencies two light absorption regimes are possible, de- 
pending on the temperature. In the first of these regimes, 
which is characteristic of high temperatures, the motion un- 
der the barrier occurs along terms B and F. The absorption of 
a photon occurs in the classically allowed region, not in the 
tunneling region. The motion along the bound term is de- 
scribed by expression ( 16) with T~ = 0 (the beginning of 
tunneling), while the motion along the free term is described 
by 

X ( t )  --Af cos (t+iz,). (23) 

We analyze this case by analogy with the mechanism for 
absorption to an exciton bound state, but the joining equa- 
tions differ from ( 18) (in particular, they do not contain the 
deficiency ). For this reason the optimum path depends only 
on the temperature, and the action along the optimum path, 

depends linearly on the deficiency. Here rbf is the time of the 
transition from a bound term to a free term, which is deter- 
mined by the equation 

In the second regime, EBF, which is characteristic of 
low temperatures, we need to use all three laws of motion: 
( 14), ( 17), and (23). We join them at the transition times 
T,, and T,,. Elementary but tedious calculations yield an 
expression for the action: 

iS(A, $)=A (2'Ceb-B) +xo'v-' [tbt-th (zbt-P/2) 
--Teb+ (1-D) th ( ~ ~ b ) ] .  (26) 

The time T ~ ,  is determined by the equation 

where we have introduced 

to streamline the equations. The time T,, is expressed in 
terms of the solution of Eq. (27) by 

The three-term paths of regime EBF correspond to an as- 
cending tunneling, regardless of the value of the deficiency A 
(Fig. 3b). 

The transition between regimes BFand EBFoccurs in a 
hard fashion, with a discontinuous change of the dominant 
path. The line of the transition in the ( A,T) plane, on which 
the values of the action given by (24) and (26) are equal, is 
shown in Fig. 5. At deficiencies A ,  < A < A, the point at 
which the empty and bound terms cross lies below the bot- 
tom of the free term on the energy scale, so there is only a 
single regime, BF, with action (20). 

At deficiencies A > A, the point at which the empty and 

FIG. 5. Diagram showing the various regimes of absorption at an impuri- 
ty center '(the free mechanism). Solid lines-Hard transitions; dashed 
lines-soft transitions; hatching-region in which absorption to a bound 
state dominates. 

bound terms cross again lies above the bottom of the free 
term, but now on the other slope of the bound term. With 
this arrangement of terms, two barriers must be crossed for 
absorption to a free state; i.e., two successive tunnelings are 
required (at low temperatures). In this regime the lattice 
initially tunnels from the empty term to the bound term; it 
then goes in real time from the right side of the bound term to 
the left side, and with the same energy it tunnels from the 
bound term to the free term. We denote this absorption re- 
gime as EB-BF. The first tunneling is described by the same 
equations as describe regime EB in the bound channel, but P 
must be replaced by the time of the first tunneling, 0 , .  Corre- 
spondingly, the second tunneling is described by the equa- 
tion for regime BF, withp replaced by P2. The periods of the 
tunneling paths, P, and P,, are determined by the condition 
that the overall tunneling time be equal to the reciprocal 
temperature, 

and the condition that the values of the energy in the two 
tunneling regions be equal. The resulting action is given by 
the sum 

where S, is found from (2  1 ), and S2 from (24). 
The existence of a classically allowed region between 

two tunnelings gives rise to resonance effects, which are 
superimposed on the exponential dependence 
exp [iS(P,A) 1. We will not discuss these effects here; we as- 
sume that the resonances are completely smoothed over (by 
inhomogeneous broadening, for example). We might add 
that the picture of double tunneling becomes slightly more 
complicated in the multimode case. After the final stopping 
time of the first tunneling, the lattice moves along a compli- 
cated path and reaches the initial point of the second tunnel- 
ing after a long (strictly speaking, infinite) real time. This 
circumstance is of importance, however, only for the coeffi- 
cient of the exponential function in the absorption coeffi- 
cient. 

The transition between regime B F  and double-tunnel- 
ing regime EB-BF is soft. It corresponds to the vanishing of 
the part of the tunneling motion along the empty term; this 
event occurs under the condition 
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[see the notation which was introduced along with Eq. 
(2711. 

At deficiences A > A, the point at which the E and B 
terms cross rises above the point at which the terms B and F 
cross. Accordingly, we find a region of high temperatures in 
which only the barrier EB is crossed by tunneling, while the 
barrier BFis crossed classically. In this regime, EB, the tun- 
neling path obviously coincides with the path of absorption 
to an exciton bound state. This means that the optical ab- 
sorption coefficients corresponding to the two mechanisms 
are the same, to within exponential terms. The relative 
numbers of the excitons which go to free and bound states 
are determined in this case by the coefficients of the expo- 
nential functions in the absorption coefficient, which depend 
on the relaxation mechanisms, among other factors. 

A soft transition between regime EB and the double- 
tunneling regime EB-BFis determined by the condition that 
the time of motion along the bound term vanish: 

, . 

1 B - B P  (A) =-v-' In [vD-I+ ( V ' D ' - ~ ~ D )  ' b ]  

The double tunneling occurs in the region P , ( A )  
< P < & ( A ) .  

Which of the absorption mechanisms dominates is de- 
cided by comparing the values of the action. A curve separat- 
ing regions in which different optical absorption mecha- 
nisms are predominant is shown in Fig. 5. At small 
deficiencies, a transition of the system to a free state is prefer- 
able. As the deficiency increases, a transition of the system to 
an exciton bound state becomes preferable. Also shown here 
is the region of large deficiencies, in which the two mecha- 
nisms are equally probable, to exponential accuracy. 

An exciton may also be in a free state if it is initially 
ab~orbed to a bound state, since the latter may be thermally 
101 -zed. Although this process does include two tunnelings, 
it is not described by a single path, since the first tunneling, 
from the empty term to the bound term, is followed immedi- 
ately by thermalization, and the subsequent tunneling from 
the bound term to the free term requires activation. The 
probability for such a process is equal to the product of the 
probabilities of each of these transitions. Clearly, absorption 
directly to a free state is preferred. 

5. ABSORPTION IN A HOMOGENEOUS CRYSTAL WITH 
WEAK EXCITON-PHONON COUPLING 

In this relatively simple case there is a single absorption 
mechanism, for which the final state is an undeformed lattice 
with a free exciton. In the model which we are using here, 
this case corresponds to parameter values x, < 0 and x, > 0. 
A bound state exists in the region X > - x o / x l .  The configu- 
ration of terms is shown in Fig. 6. 

There are two absorption regimes, EB and EBF, which 
are completely analogous to the corresponding regimes in 

FIG. 6 .  Relative positions of the terms during absorption in an ideal'crys- 
tal with weak coupling. 

,. , 

the case of an impurity center, which we discussed above. In 
regime EB, which is characteristic of high temperatures, the 
action is described by expressions ( 2  1 ) and (22)  ; in regime 
EBF, which corresponds to low temperatures, it is described 
by (26) - (28) .  

Figure 7 shows a diagram of the regimes. A transition 
between regimes occurs in different ways, depending on the 
value of the deficiency A. There exists a critical deficiency 
A, = x i  [ ( 1 + 4v) ' I 2  - 1 I2/8g,  below and above which 
the transition is respectively hard and soft. The temperature 
corresponding to the soft transition in the region A > A,  can 
be found from the vanishing of the time of motion along the 
free term F: 

At deficiencies A < A,, where the transition is hard, the only 
way to find the point of the transition is to compare the val- 
ues of the action calculated from (21 ) and (26) .  

6. OPTICAL ABSORPTION IN A CRYSTAL WlTH SELF- 
TRAPPING EXCITONS 

For crystals with a strong exciton-phonon coupling 
there are typically two minima, which correspond to free 
and self-trapping exciton states; correspondingly, there are 
two absorption mechanisms. In this regard this situation is 
similar to absorption at an impurity center (Sec. 4), but here 
the adiabatic potential of a lattice with an exciton which is 
formed by B and F terms is single-valued. The two minima of 

FIG. 7. Diagram of the various absorption regimes in an ideal crystal with 
weak coupling. 
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the adiabatic potential are separated by a rounded saddle 
point (a  self-trapping barrier); at small and large values of 
the deficiency the saddle point lies respectively below and 
above the energy of the empty term at the same point, X. In 
the former case the saddle point of the self-trapping barrier 
lies on the path to the self-trapping state, and absorption to a 
free state occurs through the sharp crest formed by the inter- 
section (splicing) of terms E and B; in the latter case, we 
have the opposite situation. As we pointed out in Sec. 2, if a 
barrier has a rounded saddle point at high temperatures only 
a static path, corresponding to crossing the barrier in an 
activated fashion, is possible. This result means that a new 
regime, A, appears in the picture of the absorption. This new 
regime has no analog in the absorption at an impurity center 
or in the case of weak coupling with the lattice. This regime 
appears in that mechanism to which the saddle point of the 
barrier corresponds. 

In the model which we are using here (see the configu- 
ration diagram in Fig. 8 )  this strong-coupling case corre- 
sponds to a negative value of the curvature v. Nearly all of 
the equations required for analyzing this case were derived 
in the analysis of absorption at an impurity center. All we 
need to do, because of the imaginary nature of the frequency 
of the bound term, is to replace the hyperbolic tangents by 
simple tangents in the corresponding places in the equations 
for the parameters of the tunneling path (more on this be- 
low). Figure 9 shows diagrams of regimes in the (A,T) 
plane. 

We first consider the optical absorption mechanism 
which has a free exciton in an undeformed lattice as final 
state. In this mechanism there are three characteristic values 
of the deficiency: A, = - x;/2v, at which the point at 
which the empty and bound terms cross is at the crest of the 
barrier; A, = - ~x;/v,  at which this point moves to the 
right to the height of the splice of terms B and 4 and 
A, = - X; ( 1 + x ,  - x, ')/2v, at which this point is at the 
level of the bottom of the free term. In the region 0 < A < A,, 
these regimes are identical to the corresponding regimes in 
the case of a weak coupling (Sec. 5).  Regime EB, which 
corresponds to high temperatures, is described by the fol- 
lowing expressions for the action, which we find from (21) 
and (22): 

FIG. 8. Relative positions of the terms during absorption in an ideal crys- 
tal with weak coupling. The dashed lines show the positions of term E for 
deficiency values A , ,  A>,  and A,. 

FIG. 9. Diagrams of the various absorption regimes in an ideal crystal 
with strong coupling. a-Free mechanism; b--self-trapping mechanism. 
For each mechanism, the hatching shows the regions in which the mecha- 
nism is not dominant. 

The time re, at which the transition from the empty term to 
the bound term takes place is found from 

[ ~ o -  (2A) '"I th ( t e a )  

= ( -V) - ' ~ [XO-V(~A) '~ ]  tg ((-~)'~(.t,+P/z)). 

In regime EBF, which corresponds to low temperatures and 
which is separated from regime EB by a hard transition, the 
action is given by 

iS (A, p )  =A ( h e b + p )  +?rozv-' [~bf-th (~bj+p/2) 

and the transition times re, and T,, are found from the equa- 
tions 

tbi=-p/2+arcth H, H= [(I-D)' th2 ( ~ , b )  +vDZ+2D] 

T ,~=-P /~+  arcth (H) - (-v) -'j2 arctg ( (-v) '"H) 

+ ( -v ) - "  arctg [(-Y)"~(I-D) th . t . ,b l ( l+  vD)], 

which are found from the expressions in Sec. 4 when the 
negative sign of Y is taken into account. As before, we use the 
notation D = (2A) 1 1 2 ~ ,  < 0. In the region A, < A < A,, these 
two regimes are supplemented by an activation regime, 
which is designated A in the diagram. In this regime the 
lattice does not tunnel. Over the entire time - i w i t  is at rest 
at the crest of the barrier, so the action is linear in A and 0: 

An activation is involved in the dependence of the absorp- 
tion coefficient on the deficiency and the temperature. In the 
region A, < A < A, tunneling along terms E and B is allowed 
by the positions of the terms, but at this temperature such 
tunneling is not optimum, so there is no regime EB in the 
diagram at A > A, .  

For A > A, tunneling from term B to F becomes possi- 
ble with crossing of term E in real time. This is a horizontal 
tunneling and is described by the action 
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in which the time of the transition, rb,, is found from the 
equation 

Since the term E is not involved in the tunneling, the defi- 
ciency does not appear in the path equations; as a result, 
activation is involved in the dependence of the absorption on 
the deficiency. 

With a further increase in A the temperature range in 
which regime EBF is optimum becomes wider. As the defi- 
ciency is increased to A> A,, the involvement of term E in the 
tunneling disappears from the diagram, as does regime EBF. 

Transitions between all regimes occur in a hard fashion 
(in our model). A transition between regimes B F  and A at 
large deficiencies is depicted by the horizontal line since the 
term E does not participate in the tunneling. The absence 
from this diagram of a regime in which the tunneling occurs 
exclusively along the single bound term, B, is explained by 
the exceedingly harmonic nature of the bound term (more 
on this below). In the second mechanism, which involves a 
transition of an exciton to a self-trapping state, only the 
terms E and B can participate in the tunneling. In the region 
A > A, ,  the regime EB is the only one in this channel. It is 
described by expression (33), in which the other branch of 
the tangent must be taken. In the region A < A ,  there is again 
an activation regime with action (35).  

The absorption of light in systems with self-trapping 
occurs by two mechanisms simultaneously at any values of 
the deficiency A  and the temperature 13. At small deficien- 
cies, absorption to a free state is predominant; at large defi- 
ciencies, absorption to a self-trapping state is predominant. 

7. EFFECT OF ANHARMONICITY OF THE BOUND TERM 

As was pointed out in Sec. 3, the model which we are 
using has one fundamental shortcoming when applied to the 
case of strong coupling of an exciton with an ideal lattice: Its 
bound term for values x,, < 0 and v  < 0 is purely parabolic 
and has no minimum corresponding to a self-trapping exci- 
ton state. For this reason, at large deficiencies the point of 
the transition from the free term to the bound term moves 
monotonically down the energy scale with respect to the bot- 
tom of the free term. We will discuss qualitatively the situa- 
tion in which there is a minimum on the bound term in a 
model with a single degree of freedom. In this case the lower- 
ing of the point at which the free and bound terms cross with 
respect to the free term must give way to a rising as the 
deficiency increases. In the mechanism of absorption to a 
self-trapped state, the horizontal tunneling turns to ascend- 
ing tunneling at this time. In the mechanism of absorption to 
a free state doubling tunneling arises as the deficiency is in- 
creased further. As the point at which terms E and B cross 
rises above the barrier, there is the possibility (at high tem- 
peratures) that the tunneling paths in the two absorption 
mechanisms will coincide. It is not difficult to see that this 
entire picture originates from the positive curvature of the 
bound term near the self-trapping minimum; thereafter the 
situation is completely analogous in this sense to the absorp- 
tion of light by an impurity center with x,, < 0 and v  > 0 at 
large deficiencies. This region is not shown in Fig. 9. 

In addition to the absence of a self-trapping minimum, 
the parabolic shape of the bound term in the case x, < 0, v  < 0 

has another, and subtler, consequence, which stems from the 
fact that the vibration frequency of a harmonic oscillator is 
independent of the energy. This property of a parabolic po- 
tential is important for that absorption mechanism whose 
tunneling path passes through the crest of the self-trapping 
barrier. For this mechanism there exists a region of energies 
near the crest of the barrier for which the tunneling occurs 
exclusively along the bound term and constitutes a strictly 
harmonic vibration with an energy-independent period 
T(E) =277( - Y )  - ' I 2 .  At the critical temperature 
T = T, = ( - v )  lt2/277 all the paths in this region are opti- 
mal. The absorption regime (tunneling along a bound term) 
which corresponds to these paths lies entirely at the single 
point T, along the temperature scale. Clearly, such a situa- 
tion is degenerate, and it should disappear in the presence of 
the anharmonicities which are unavoidable in any, even just 
slightly more realistic, model. The various possible versions 
of the effect of anharmonicities on the results derived in the 
single-mode model can be analyzed easily by the approach 
which has been taken in an analysis of self-trapping on the 
basis of the same mode." We will describe here only the 
changes which occur in the diagram of regimes when a slight 
anharmonicity is taken into account. 

If the anharmonicities increase the period T(E)  as the 
energy moves away from the crest of the barrier, the bound- 
ary between regimes A and B F  in the mechanism of absorp- 
tion to a free state in the region A > A, splits in two, and a 
regime B arises between the two resulting boundaries. At a 
temperature which corresponds to the period of a path near 
the crest of the barrier there is a soft transition between re- 
gimes A and B. A soft transition from tunneling along a B 
term to the B F  regime occurs at a lower temperature, corre- 
sponding to the period of a path at the height of the point at 
which the B and Fcross. Both of the boundaries which result 
are horizontal since the temperatures of the transitions de- 
pend only on the relative positions of the bound and free 
terms. In the mechanism of absorption to a self-trapped 
state, the B regime arises in a small region of small deficien- 
cies; this region becomes smaller as the anharmonicities be- 
come weaker. A horizontal boundary between regimes A and 
B (a  soft transition) arises here, as does a sloping boundary 
between regimes B and EB, with a hard transition. As the 
deficiency A is increased, the temperature region in which 
regime B is predominant shrinks and disappears; thereafter, 
regimes A and EB border on each other directly. 

In the opposite case, in which the period T(E)  decreases 
with decreasing energy E, regime B does not occur. In the 
mechanism of absorption to a free state the transition be- 
tween regimes A and BF becomes an ordinary hard transi- 
tion. The boundary between these regimes remains horizon- 
tal, but the transition temperature no longer corresponds to 
the period of a path close to the crest of the barrier. 

In the self-trapping mechanism, changes analogous to 
those described above occur with a transition between re- 
gimes A and EB in the region A  < A , .  

8. ELIMINATION OF THE LATTICE COORDINATES 

The quasiclassical approach starts from the adiabatic 
approximation. In its most general form this approximation 
means that one first solves a Schrodinger equation for an 
exciton in a lattice deformed in some arbitrary way, and then 
one solves an equation of motion of the lattice in which part 
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of the potential energy is the binding energy of the exciton in 
the potential of the arbitrary lattice deformation. We have 
taken this approach directly in the present study since the 
Schrodinger equation is trivial in our model, and the equa- 
tion of motion of the sole lattice degree of freedom can be 
solved analytically. Specifically, this approach clearly dem- 
onstrates the various versions of the optimum paths describ- 
ing the process by which the light is absorbed. 

In the continuum theory of self-trapping (Refs. 21 and 
28, for example) and in research on edge absorption in spe- 
cific a slightly different version of the quasiclas- 
sical approach is usually employed. That version assumes 
that the effective-mass method and the harmonic approxi- 
mation for the elastic energy of the lattice, U, (X), are appli- 
cable, and it also assumes that the potential in the Schro- 
dinger equation for the exciton is linear in the deformation 
X: 

h2 [- zm A + v ( ~ ,  t) ] Y (r, t) =E.=(t) Y (r, t ) ;  
(37) 

where m and r are the mass and coordinate of the exciton. 
Writing the binding energy E,, , of the exciton as a variation- 
al minimum of the functional 

we can incorporate it in this form in the elastic energy. Since 
the elastic energy is quadratic in the lattice coordinates, we 
can minimize the action S with respect to the lattice path 
X(t) for a fixed arbitrary functional dependence Y (r,t) in a 
general form. A subsequent variation of the resulting func- 
tional S[Y  (r,t) ] leads to a time-dependent nonlinear Schro- 
dinger equation 

tt2 [ - zm A + 5 D (r, t; rl, tl) Y2 (rl, t') dt' d3r'] 'Y (r, t) 

in which the phonon Green's function is the kernel: 

D(r, t; r', t') =z Xjj, (t, t ')  Vj (r) Vjl (r') . (40) 
jj' 

Here Xu,  (t,t ') is the solution of the elastic equations of mo- 
tion of the lattice ( 5 ) ,  with a.term 6,. S(t - t ') on the right 
side. The solution Y (r,t) must have a period - i@. The 
integration over tin (39) is carried out in the region in which 
a bound state exists, i.e., at T,, ( t )  < 0. 

Equation ( 39 ) is directly applicable only in those cases 
in which the lattice coordinates X(t)  are single-valued func- 
tions of the time on the optimum path. In our problem, only 
the mechanism of absorption to a self-trapped state corre- 
sponds to such cases. In other cases, there is retrograde mo- 
tion in time, which renders the path multivalued, so this 
approach requires generalization. 

As the formal solution of the equations of motion with a 
right side, the Green's function D(r,t;rf,t ') has a singularity 
at t = t ' .  The generalization which is required here is 
achieved by introducing some analytic functions 
D + (r,t;rl,t ') and D -(r,t;rl,t '), which coincide with 

D(r,t;rl,t ') at it > it 'and it < it ', respectively. When thereis 
a retrograde region, it is necessary to introduce a time con- 
tour which is "folded in three," on which the times in Schro- 
dinger equation ( 39) can be ordered, and the path X(t) can 
be converted into a single-valued function of the time. For 
times t ' which precede t as the contour is traced out we must 
then use the function D + (r,t;rl,t '1 as the kernel, while for 
times t '  which follow t we must use the function 
D - (r,t;rl,t '). In the absence of folds on the contour, this 
recipe naturally yields the same result as the direct use of the 
function D(r,t;rl,t '). 

CONCLUSION 

We have presented in its general form the quasiclassical 
approach to the calculation of the exponential function in 
the coefficient of edge optical absorption due to multi- 
phonon processes, and we have demonstrated this approach 
with a simple but not uninteresting model. The absorption 
below the edge of the band is treated here as a tunneling of a 
lattice in a potential consisting of three terms: an empty term 
E, a bound term B, and a free term F. The position of the first 
term with respect to the other two is controlled by the energy 
deficiency of the photon, A. The absorption coefficient is 
determined by the action along that tunneling path which is 
the optimum path for the given phonon frequency and the 
given temperature T. 

We have introduced the concept of absorption mecha- 
nisms corresponding to different minima of the lattice terms. 
The free term always has a minimum, so in any situation 
there will be an absorption mechanism in which the exciton 
is in a free state. If there is also a minimum on the bound 
term, a second absorption mechanism will arise. Since the 
bound term may not be unique, the number of absorption 
mechanisms is determined by the particular system. The ab- 
sorption by any mechanism occurs in a manner which is 
completely independent of the absorption by any other 
mechanism. The total absorption is actually determined by 
some one mechanism which is predominant in the given re- 
gion of the values of the parameters A and T, but the absorp- 
tion by other mechanisms can be distinguished (e.g., on the 
basis of secondary luminescence); this possibility seems to 
us to be an interesting field for some experiments. 

We have introduced the concept of horizontal tunnel- 
ing in a single-valued potential and of ascending and de- 
scending tunneling in a double-valued potential. The dis- 
tinctions among them which are of fundamental importance 
from the theoretical point of view concern the shape of the 
time contour which describes the tunneling of the lattice. 
The presence of retrograde regions on the paths of the as- 
cending and descending tunneling means that caution must 
be exercised when the standard method of eliminating lattice 
coordinates is used (Sec. 8).  According to our results, sim- 
ple horizontal tunneling is a relatively rare process during 
the absorption of light. It arises in the mechanism of absorp- 
tion to a self-trapped state and (in a certain region of defi- 
ciencies) in the mechanism of absorption to a bound state at 
an impurity center. Absorption to a free state always occurs 
through ascending tunneling. It is easy to see that this con- 
clusion is general and is not tied to the particular model 
which is used. In some previous studiesz5 of edge optical 
absorption with a free final state of the charge carriers or 
excitons, retrograde motion was not considered, so the re- 
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sults of those studies qualify at best as crude approximation. 
A transition from one type of tunneling to another cannot be 
observed experimentally, since it is not accompanied by any 
deviation from analyticity in the action S(A,P). 

We have introduced the concept of absorption regimes, 
as sequences of terms which are crossed during tunneling. A 
transition between regimes as the deficiency and the tem- 
perature vary may occur in a hard fashion, i.e., with a slope 
change on the dependence S(A,p), or in a soft fashion, i.e., 
with a smooth dependence of the action. Seeing these fea- 
tures experimentally would seem to be problematical. 

We regard the diagrams showing the arrangement of 
the various regimes in the plane of the parameters A and Tas 
the primary result of this study. The quantitative character- 
istics of the absorption are contained in the transcendental 
equations which were written in the corresponding sections 
of this paper and which can be studied only by numerical or 
asymptotic methods. Of greatest interest from the experi- 
mental standpoint is the shape of the edge absorption line, 
which is described by the dependence of the action 
S(A,P) = ln[K(w) ] on the deficiency A = E, - h. We do 
not have room here to reproduce the diagrams of S(A,P) for 
the various values of the parameters. Furthermore, there is 
no major reason to do so, because of the simplified nature of 
the model which we have used. We will restrict our discus- 
sion to a qualitative description of this behavior. 

At large deficiencies the A dependence of the action is 
approximately linear. For absorption at impurity centers 
and for absorption in an ideal crystal with weak exciton- 
phonon coupling, this dependence becomes slightly steeper 
with increasing A. For absorption to a self-trapped state, it 
becomes less steep. At small deficiencies the mechanism of 
absorption to an exciton free state always dominates since at 
A = 0 the action S(A,p) vanishes, and the absorption coeffi- 
cient has only the small factor associated with the coefficient 
of the exponential function. A characteristic feature of ab- 
sorption at an impurity center is that the action also vanishes 
at a value of the deficiency equal to the exciton binding ener- 
gy at a center in an undeformed lattice (the absorption in 
this case naturally goes to an impurity state). In crystals 
with self-trapping, the absorption coefficient falls off mono- 
tonically with increasing deficiency A for both mechanisms. 

For the BF regime and for the activation regime, the 
action is characteristically a purely linear function of the 
deficiency. This fact, however, does not bear directly on the 
Urbach rule, since these regimes occur only in a mechanism 

which is not predominant. An explanation of the Urbach 
rule thus requires actua! analysis of specific models. 

We wish to thank E. I. Rashba for a useful discussion. 
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