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Whitham's equations for the slow variation of the parameters of a periodic solution are derived 
for the self-induced-transparency equations. The theory developed is applied to the problem of 
soliton formation on the front of a long light pulse. 

1. INTRODUCTION 2. PERIODIC SOLUTIONS OF THE SIT EQUATIONS 

Sufficiently short and intense light pulses are known to 
propagate in a resonant medium in the form of solitons, here 
called 2~-pulses.' Longer and more intense pulses decay ul- 
timately into several solitons. Experiments in which the ini- 
tial pulse breaks up into several ( - 10) solitons have by now 
been reported.' A description of the processes whereby soli- 
tons are formed from a long light pulse is therefore called for 
and is the subject of the present paper. 

From the theoretical viewpoint, the problem posed is 
related to the familiar theory of collisionless shock waves in 
a plasma: the leading edge of a light pulse entering a resonant 
medium is similar to the shock-wave front on which solitons 
are created. Gurevich and PitaeviskiT3 developed a theory 
for such a process on the basis of Whitham's m e t h ~ d , ~  and 
described the dynamics of the medium through which a 
shock wave propagates by using the Korteweg-de Vries 
(KdV) equation. The inverse scattering problem method 
was not yet in use when Refs. 3 and 4 were written. It is clear 
at present, however, that Whitham's method is fully effec- 
tive only for equations which are integrable by the inverse 
scattering problem method (and which include the KdV 
equation). In fact, the latter method leads directly to Whith- 
am's equations in an invariant Riemann form, as demon- 
strated in Ref. 5 for the KdV equation. Although the substi- 
tution needed to transform to the Riemann variable was 
inferred by Whitham,4 it is more difficult to find Riemann 
variables for other equations, and the use of the inverse scat- 
tering problem is almost obligatory. It was just on this basis 
that Whitham's method was developed in Ref. 6 for the phy- 
sically important sine-Gordon equation. 

Whitham's theory is a variant of the averaging method: 
the complete solution is subdivided into sections, each of 
which is described by a single-period or multiperiod solution 
with slowly varying parameters. The parameter variation 
within each section is determined by Whitham's equations, 
which can be obtained in principle by substituting periodic 
solution with variable parameters into the initial dynamic 
equations, and by averaging them under the assumption that 
the parameters change little in one wavelength and in one 
period. A more effective method of obtaining Whitham's 
equations is to average the conservation l a ~ s ~ - ~  and to use 
the inverse scattering problem to select the natural param- 
eters on which the periodic solutions depend, as well as to 
determine the solutions themselves. 

In view of the foregoing, we must find first, by the in- 
verse scattering method, periodic solutions of the self-in- 
duced-transparency (SIT) equations that describe the prop- 
agation of a light pulse in a resonant medium, then obtain 
Whitham's equations by the averaging method, and finally 
solve them for the specific situations of interest. 

The SIT equations take the form1*'.' 

where is the envelope of the light wave, A is the difference 
between the frequency of the applied field and the frequency 
of the transitions in the  medium,^, q, and n are the elements 
of the medium's dipole-moment operator matrix 

and the light pulse propagates along the x axis. The matrix 
element n in (2)  describes the level population, whilep + iq 
describes the amplitude of the transition between the levels 
of the medium. The integral of the motion 

reflects conservation of probability, so that its value is fixed. 
Equations ( 1 ) have been written under the frequently used 
assumption that inhomogeneous line broadening and relaxa- 
tion processes can be neglected. In our problem this means 
that the field 8 is strong enough to make the duration of one 
2~ pulse much shorter than all the relaxation times, and to 
make Eqs. ( 1 ) valid for the description of a train of many 2~ 
pulses. 

Periodic solutions of the system ( 1 ) date back to Ref. 9, 
but their form there does not lend itself readily to the use of 
Whitham's method. As indicated in the Introduction, con- 
venient and natural solutions are obtained by the inverse 
scattering problem method, to which we now turn. 

The inverse scattering problem method is based on the 
possibility of representing the system ( 1 ) as the compatibili- 
ty condition of two systems of linear equations, for arbitrary 
values of the spectral parameter f (see, e.g., Ref. 9): 
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These linear systems have two basic solutions (p, ,  p,) and 
($,, qh2) with different boundary conditions. An important 
role in the theory of finite-domain integration1' of the KdV 
equation is played by the square of the eigenfunction. In our 
case this role is assumed by a system of "squared basic func- 
tions" (see, e.g., Refs. 6 and 1 1 ) : 

Their dependence on x and t is determined by systems of 
linear equations that follow from (4)  and ( 5 ) : 

We readily find from this that 

so that the value off - 4gh depends only on f:  

fZ--4gh=R ( 6 )  . (9)  

Periodic (finite-range) solutions are distinguished by the 
condition that R ( f )  be a polynomial in (. The simplest non- 
trivial solution is obtained when R (5) is a fourth-degree pol- 
ynomial: 

1 

where f i  are the zeros of the polynomial. For our purposes it 
suffices to know only this solution, and we therefore investi- 
gate it in greater detail. It is natural to seek the solution of 
Eqs. ( 7 )  and (8 ) in the form 

f=fo+f ,  (bZ-AZ) '1r - (bZ-A2) ,  g=go+gl (52-A2)'1' ,  

h=h,+h, ( f 2 - A 2 ) ' h .  (11) 

Substitution of ( 11 ) in (7)  and (8) results in a set of equa- 

tions for the coefficients; these equations are easily solved 
and lead to the expressions 

with the requirement that the desired solutions satisfy the 
relation 

Here A is an integration constant easily expressed in terms of 
the zeros of the polynomial R (6).  Substituting ( 12) in (9) 
and ( 19) we obtain 

4 

whence follows, with allowance for (3  ), . 6 

A'-IT t i 7  ~ = ( n  ti)"' 

(the choice of the sign of the square root will be discussed 
below). In addition, we have obtained the integral of the 
motion 

as well as the relations between the zeros 

from which it follows that 5, = - f , ,  C4 = - f 2  (apart 
from a change of notation), so that 

Knowing the integrals ( 3 )  and (15) it is easy to find the 
solution of the system ( 1 ) by the usual method. Bearing in 
mind, however, the averaging that follows, it is more con- 
venient to use procedures developed in the inverse scattering 
method. The dynamics of finite-domain solutions is de- 
scribed by the motion of the zeros and poles of the functions 
(6)  (see Refs. 10 and 11 1. Let y be a zero of the function g; 
then 

and 

Putting ( = y in (9)  we get 

It is clear now that all the quantities can be expressed in 
terms of only one function y(x,t). It follows from ( 18) that 

n=- ( y2*R,12(y )  ) , (19) 
6152 

from (15) and (19) we get 
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and, finally, ( 13) and ( 16) yield 

A 
P = - -[ f t2+f 2Z-2 (yZ*Rlh (y) ) ] ' la ,  fiez (21) 

To find the equations that determine the function y(x,t) we 
substitute expressions ( 17) and ( 18 ) in the second equations 
of the systems (7)  and ( 18), and then put < = y. Equation 
( 17) yields 

so that 

We obtain similarly from (8)  (taking ( 13) and ( 16) into 
account) 

1 87 R ~ ~ ( ~ ) = - ( I  +-)F. 
d x  t i t  

From the viewpoint of general theory, it is interesting to note 
that the variable in these equations is in fact f (and not y ) ,  
and that f moves over a Riemann surface defined by the 
equation y2 = ( f - A') R ( y ) ,  i.e., an additional factor 
f - A2 has appeared here, in contrast to the KdV theory. 

It follows from (24) that y depends only on the variable 

E=x-ut, u= (if I /b,b2) -l. (25) 

Since we are considering equations for the envelope of the 
electromagnetic field Z9, the wave velocity should be less 
than that of light: v < 1. To meet this requirement, the con- 
stant A = in ( 14) was chosen positive. 

To find y(6) we must integrate the equation 

where R(y )  is the polynomial (18). We assume that 
A <<, <<,, so that the function y varies in the interval 
A<y<<,. It is easy to express the solution of Eq. (26) in 
terms of elliptic functions: 

where 

is the parameter (modulus) of the elliptic function. Substi- 
tuting (27) in (19)-(22) we obtain ultimately expressions 
for the periodic solution: 

(we shall not write out the obvious equations for p and q, 
which we do not need). 

3. WHITHAM'S EQUATIONS 

All the quantitites in the propagating nonlinear single- 
period wave investigated in the preceding section depend on 
the phase 

so normalized that a shift equal to the wavelength or to the 
period changes the phase by 27~. If the wave properties vary 
slowly in time and in space, the local values of the wave 
number and of the frequency are given by 

Hence follows the kinematic condition 

which takes in our case the form 

In the calculation of k and w from Eqs. (32) we have taken 
into account here only the most rapidly varying terms of 
(31).  The phase velocity v is given by Eq. (25), and the 
wavelength can be easily calculated: 

i t  

Y ~ Y  - - 2vK (s) 
h=2v j 

A ( (y"A" R ( y )  ) " (Cg2-A2) 'v, ' 

where K ( s )  is a complete elliptic integral of the first kind. 
The parameters 5, and 6, must thus satisfy the equation 

ir 1 (51'-A')'"] at [ (5:-A')" ] 
- d t  [ ( I  + --) -k -- 

b t f z  K ( s )  K ( s )  
= O .  (36) 

The other equation, following Whitham,4 can be obtained by 
averaging the conservation law 

in accordance with the rule 
2 1 

Substitution here ofthe solutions (29) and (30) and calcula- 
tion of the integrals are not particularly difficult and yield 
the averaged conservation law 

where E ( s )  is a complete elliptic integral of the second kind. 
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The system (36) and (39) for the variables f ,  and f 2  is 
quite complicated and can be greatly simplified by using in 
place of (39) the averaged generating function of the conser- 
vation laws, an infinite set of which is possessed by the inte- 
grable system ( 1 ). It is easy to find two forms of the generat- 
ing function: 

which coincides with (39). Real new information is ob- 
tained by investigating the other singular points f = f ,  and 
f2. At the point f = c, the function rI ( y , ~ )  is regular, so that 
the singularity contains only derivatives of 

and equating the coefficient of (f - f 2 ) - ' I 2  to zero leads 
directly to an equation for c2 in Riemann form: 

To simplify the calculations we sum these expressions and 
use the normalization f * - 4gh = 1 rather than Eq. (9)  (see 
Ref. 6). We then obtain a generating function in the form 

(where the equation rI( - s2,s) = E ( s ) / ( l  --s2) is used). 
The singular point f = el is more difficult to investigate, but 
there is no need for this, since (36) and (47) readily lead to 

I E ( s )  - ( I - sZ)  K ( s )  [ ( I + (I-s2)  K ( s )  
The functions 8 , p ,  q, g, and h depend on the parameters f i ,  
while expansion in powers of 1/c with c+ co generates an 
infinite aggregate of conservation laws. Averaging over the 
phase variables, in accordance with (37) and (38), trans- 
forms Eq. (41 ) into the generating function of the Whitham 
equations for the slow variables ci.  In our case of a single- 
phase solution, Eq. (41 ) can be easily expressed in terms of 
the function y: 

Equations (47) and (48) constitute the desired set of Whith- 
am's equations. We write them in the form 

where the group velocities are 

Averaging over 8 reduces to integration with respect to y: 

It is easy to verify with the aid of these equations the conser- 
vation law (391, which is thus found to be a consequence of 
the equations of motion (49) and (50). We consider now a 
specific application of the derived equations." 

- - 1  

(<'-A2) K ( s )  
U ( v , s ) ,  4. SOLITON CREATION ON A PULSE FRONT 

We consider the evolution of a light pulse which is step- 
like at the initial instant: where 

Z=Zo f o r  x<0, 8 = O  for x>O (51) 

and 
n12 

(a  similar problem for the KdV equation was solved in Refs. 
3 and 10). After a certain time there is produced between the 
zero-field region and the region with constant amplitude 8, 
an intermediate region (the analog of a simple wave) de- 
scribed by the solution (30) with variables f ,  and 5,. The 
field amplitude vanishes on the leading edge of this region, 
l.e., 

n ( v , s ) =  j dcp 
( l + v  sin' c p )  ( I -s2 sin2 9) '"  

is a complete elliptic integral of the third kind. After averag- 
ing, Eq. (42) finally takes the form 

a 1 n ( v ,  S )  
- {RI~( , )  at [(I + -)- - f 2 - A 2  I} 

bit2 K ( s )  2 t Z  
On the trailing edge the field oscillations should be damped, 
i.e., 

Expansion in powers of I/( near the singular point 6 = 0 
leads to a sequence of averaged conservation laws, the first of 

After a sufficient time, when the number of field oscillations 
in the intermediate region is large, the variation of the pa- 
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rameters 5, and C2 in this region can be described by Whith- 
am's equations (49)  and ( 50 ) .  On the edges of the region, 
the parameters <, and C2 must satisfy the boundry conditions 
(52)  and ( 53 ) .  

The problem formulated contains no characteristic di- 
mensions whatever, so that all the quantities depend only on 
the self-similar variable T = x / t :  

s  = 0  and <, = A, we obtain from ( 56 )  

x 
- = ( I +  t I-' =c l .  

A ( a o V A 2 )  '" 

For a frequency difference A = 0  the trailing edge remains in 
place. 

A comparison of these equations with the experiment of 
Ref. 2  is difficult because in the experiment the leading front 
of the initial pulse is not steep enough. The slow increase 
( 60 )  of the distance between the produced solitons is appar- 
ently confirmed, so that qualitative agreement with experi- 
ment can be claimed. 

I am grateful to V. G. Nosov and A. L. Chernyakov for 
a discussion of the results. 

Equations (49)  take therefore the form 

The solution satisfying the boundary conditions ( 52 )  and 
(53)  is 

APPENDIX 

For A = 0,  the SIT equation 

The expressions 

can be reduced to a sine-Gordon equation by introducing a 
function u such that 

where <, is given by ( 5 5 ) ,  determine the desired dependence 
on T = x / t .  

On the leading edge, where s-0, we obtain by using the 
known asymptotic forms of elliptic integrals 

The last two equations of (A1 ) are then automatically satis- 
fied, together with the probability conservation condition 
n2 + a2 = 1, while the first equation of ( A l )  takes the form 

d2u d2u -+- 4- sin u=O. 
at2 at ax  

The change of variables 

Thus it is clear that the propagation velocity of the pulse 
front in the resonance region is equal to 

reduces this equation to the canonical form 

d2u dZu + sin u=O, at2 ag2 
The soliton on the front is of the form 

studied in numerous papers by the inverse scattering prob- 
lem method. A finite-domain integration of this equation 
was carried out in Refs. 6  and 11 for N = 1 and 2  zones, and 
the corresponding Whitham equations were derived. We 
shall show that our Eqs. (49) and ( 50 )  go over at A = 0  into 
the corresponding equations of Ref. 6. 

We must first find the connection between the spectral 
parameter f and the spectral parameter E of Refs. 6  and 11 .  
It is shown in these references that at N = 1 the periodic 
solution depends on the phase 

i.e., its amplitude is double the amplitude of the incident 
wave. This result is similar to that obtained in the KdV theo- 
ry.4 The distance between the solitons is determined by the 
wavelength. Let us determine the wavelength variation with 
increasing distance from the leading edge, where the self- 
similar variable is obviously r f  = c. Introducing the vari- 
able T' = c - r we obtain from ( 57 )  

whence, with logarithmic accuracy, 

l - s z  = 
1 22' 

1-A2/ (&'oZ+AZ)2 c2 ln(8cZ/t') ' so that in the variables (x, t )  the phase velocity is given in 
terms of the spectral parameter E = E,, E, by 

u = 
1 

I+ i6  (ElE2) '% . 

so that the wavelength is equal to 

4ncK (s) 
h=cT = 

(bZ2-AZ) ' I2 8 0  Bo2+A" 
Comparison with Eq. ( 25 )  with allowance for the locations 
of E,, E2 and <,, 5, on the corresponding complex planes 
leads to 

The wavelength increases logarithmically as T' -0. 
On the trailing edge of the intermediate section, where 
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From this and from ( 4 9 )  and ( 5 0 )  follow Whitham's equa- 
tions for El and E, in the variables (x, t )  : 

where 

In the variables (6, T) Eqs. ( A 6 )  yield 

The very same group velocities were obtained in Ref. 6 in the 
form 

The constants C' * ' are determined from the conditions that 
the differentials 

1 d E  
Qtl = - - (E-C'+ ' ) -  

2 RYE) ' 

where R ( E )  = [ E ( E  - E , )  ( E  - E , ) ]  l i i  have zero periods 
on the b-cycle (the differentials (A12)  are defined on a two- 
sheet Riemann surface obtained by joining together two 
complex planes along the cuts ( E l ,  E,) and ( 0 ,  w ), so that 
the b-cycle starting from an arbitrary point on one of the 
planes passes through one cut to the second plane and re- 
turns through the second cut to the starting point on the first 
plane). Calculations of the integrals over the b-cycle yields 

and substitution of these quantities in ( A  1 1 ) leads to expres- 
sions that coincide with ( A 9 )  and ( A 1 0 ) .  

It is interesting to note that in Ref. 6 Whitham's equa- 
tions were obtained by averaging the conservation-law gen- 
erating function 

in which the "squares of the basic functions" g and h are 
multipliers rather than divisors as in ( 4 0 )  and ( 4  1 ) . For the 
sine-Gordon equation, however, it is easy to obtain conser- 
vation-law generating functions similar to ( 4 0 )  : 

It is easy to verify that averaging any of expressions (A14) -  
( A 1 6 )  results in the same Whitham equations. 

"The SIT equations ( 1) can be reduced for A = 0 to the sine-Gordon 
equation for which the Whitham equations were obtained in Ref. 6. The 
connection between (49), (50), and the equations of Ref. 6 is made clear 
in the Appendix. 
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