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We investigate the coherent propagation of short light pulses in a three-level V-configuration 
medium with arbitrary level populations (i.e., "nonzero temperature" ), using both analytical 
and numerical methods. We show that for unequal populations of the upper levels simultons- 
i.e., multifrequency self-induced transparency pulses--cannot exist. The only stable pulse which 
forms in this case is a single-frequency 277 pulse which propagates accompanied by a transition to 
a minimum difference of the original populations. We point out that experimental realization of a . coherent frequency conversion scheme using such light pulses does not require additional 
preparation of the medium and can be implemented over a wide range of parameters of the 
resonant medium. 

1. Resonant multilevel media have been the objects of 
intense study in the last few years (see, e.g., Ref. 1 and the 
references cited therein), because of certain interesting fea- 
tures of the coherent interaction between short light pulses 
which propagate in them. From a practical point of view, the 
use of such media in their parametric and Raman modes 
promises to provide efficient frequency conversion and 
fixed-length laser pulses.' For problems of laser isotope sep- 
aration, resonant photochemistry, and nonlinear spectros- 
copy, special interest attaches to the generation of multifre- 
quency self-induced transparency pulses, the so-called 
~imultons.~ By applying mathematical methods derived 
from the inverse scattering problem (ISP) ,3  it is possible to 
investigate the nonlinear dynamics of formation and interac- 
tion of simultons in considerable detail.' However, there are 
gaps in our understanding of these systems. Exact soliton 
solutions can be constructed only for the case of coupled 
resonant transitions with equal oscillator strengths. More- 
over, up until now all inferences concerning the propagation 
and interaction of simultons have applied to the case of a 
medium at "zero temperature", i.e., all resonant levels are 
assumed to be originally in their ground states. The only 
exception is the case investigated in Ref. 2 involving propa- 
gation of a simulton in a three-level medium with a "cas- 
cade" configuration (i.e, a nonintegrable system). Here the 
existence of simultons is possible only when additional prep- 
aration of the system, e.g., a special ratio of the original level 
populations, is provided. Of course, this formulation of the 
problem is just as "artificial" as the case of zero temperature. 

The purpose of this paper is to fill in some of these gaps. 
We will investigate here a V-configuration medium with an 
arbitrary ratio of oscillator strengths for the transitions and 
arbitrary initial populations of all levels. In Sec. 2 we will 
investigate the propagation of a single-frequency 27r pulse in 
such a medium and show that it is stable at the transition 
g-a with the smaller of the two original population differ- 
ences: n, - no < n, - n,. However, propagation of a 277 
pulse at the transition g- b with the larger original popula- 
tion difference is unstable against conversion into radiation 
at the g-a transition frequency. (The subscripts g, a, b, 
denote respectively the ground state level and the two work- 
ing levels; see Fig. 1 below: n,,,, are the original populations 
of the corresponding levels, which are subject to, e.g., the 
Boltzmann distribution.) 

In Sec. 3 we will obtain exact nonlinear solutions for the 
case of equal oscillator strengths using ISP methods, which 
describe the complete transformation of a 27r pulse of fre- 
quency ob to a 2n pulse of frequency w, (for n, > no > n, ); 
we will also show that the existence of simultons is not possi- 
ble in such a medium. We will compare these solutions 
which describe collision and exchange of photons between 
simultons in a zero temperature medium. 

In Sec. 4 we present results of numerical calculations 
which confirm the analytical conclusions, and also which 
allow us to study the stages of nonlinear interaction in situa- 
tions which are not amenable to a fully analytical treatment. 

2. The interaction of light pulses whose length is consid- 
erably shorter than all relaxation times in the problem with a 
resonant three-level V-configuration medium is described by 
the following equations:' 

Here C,,,, are probability amplitudes for the level occupa- 
tions, no,, =pa,, E,,, /2h are the Rabi frequencies for the 
transitions g-a and g-b respectively, E,,, are the enve- 
lopes of the pulses,p0,, and w,,, are the dipole moments and 
frequencies of the corresponding transitions, and N is the 
concentration of resonant particles. The initial conditions 
which reflect a nonzero medium temperature are manifested 
in the original populations of the levels a and b: 

Physically this implies that the medium consists of particles 
of three kinds: I-particles in the ground state (the number 
of which is Nng ); 11-particles originally excited to level 
(whose number is Nn, ); 111-particles originally excited to 
level b (whose number is Nn, ). The particles of each type 
act on the field and contribute to the polarization of the me- 
dium; this contribution must be taken into account when 
solving Eqs. (2)  in a field. 

We study the problem of stability of a propagating soli- 
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FIG. 1 .  Interaction scheme: (a)  a 27r pulse E, (solid curve) and a weak 
signal E, (dashed) enter into interaction with a partially excited medium; 
(b)  the transition g -  b absorbed part of the energy of the 27r pulse to form 
a population inversion at the transitiong-a; (c )  and nucleus E, removes 
the inversion with the transition g-a, decreasing thereby the energy 
which the transition b-gcan convert into radiation E,; ( d )  the amplified 
Stokes pulse and remained "pump" cease to interact, leaving behind an 
energy surplus in the form of excitation of the level 6. 

ton Eb at the transition g- b in the presence of a weak field 
Ea at the frequency of the other transition g-a. Without 
loss of generality we will assume a natural state for the medi- 
um, i.e., n, > n, > n, for wb > m a .  When E, = 0, there is a 
solution for E, in the form of a 277- pulse of the following 
form: 

Qa=O, Qb=-  ( i / ~ = )  sech T, ( 4 )  

Here y  = ( t  - x / u ) / T ,  ; yp is the pulse length, a free param- 
eter which determines the amplitude and velocity of propa- 
gation of the pulse: 

where Ro = (277-Npb 'w, / f i )  ' I 2  is the so-called cooperative 
frequency. 

Linearizing the system ( 1  ), ( 2 )  with respect to small 
perturbations fi,,, , e,,,,, of the solutions (4),  ( 5 ) ,  we ob- 
tain 

au, au, i ---- -- x - ~  (cgca*+c&,'), 
d r  dE ng-n. 

au, au, i 
---=- 
6'1- dg ng-nb (c8bw+~gc6') 

a E g  - - Eb sech r=i  (uaca+ubcb), 
8 r 

a~ a E~ - = iuaWcg, - + Eg sech r=iubWc,. a z ar  

For convenience we have transformed here to the new vari- - 

ables T ,  6 = ( 1 - v / c ) x / v r P ,  and u , ,  = f lu , ,  T, . The param- 
eter xZ in ( 7 )  represents the ratio of oscillator strengths for 
the two transitions, i.e., x2 = pb 2 ~ b  / p a  'ma. 

Let us seek a solution for u, in the form u, 
= u  (7) exp( y6)  . After solving (8)  with respect to 1, , 1, for 

each of the three kinds of particles and performing some 
transformations, we obtain an eigenvalue problem 

for the integrodifferential operator 

+B sech r J u sech r' dr' 1, ( 10) 

where A  = (n ,  - n, ) / ( n ,  - n, ), B = ( n ,  - n, ) / ( n ,  
A 

- n, ). The spectrum of the operator L for B = 0, A = 1 
(i.e., nu = n, ) and x2 = 1 was investigated earlier see Ref. 
1 ) in the context of the problem of transverse instability of 
simultons. Analogously, we can show that for B = 0 but 
x  61 there is an isolated discrete level y, = 0 in the spectrum 
of L which corresponds to the eigenfunction 

In particular, this implies that propagation of a single-fre- 
quency 277- pulse in a three-level medium with identical pop- 
ulations of the upper levels is neutrally stable against the 
appearance of an accompanying weak signal of the form 
( 1 1 ) at the frequency of the other transition. As we will see 
below, the requirement that the populations of the upper 
levels be equal is critical for the existence of simultons in a 
medium with arbitrary x. 

For moderately small differences in the original level 
populations a and b, i.e., In, - n, I < 1 ,  (n ,  - n, ) - 1 ,  we 
can make use of standard perturbation theory and seek cor- 
rections to yo = 0 with respect to the small parameter B. 
After multiplying Eq. ( 9 )  by the solution E ,  of the unper- 
turbed associated equation and integrating with respect to T 

from - cu to + cu , we obtain 

2y J ii: dr+x-'i  { Jii, aech r  dr } - 0. ( 1 2 )  

From this we find 

where 

Thus, when a 277- pulse propagates at one of the transi- 
tions of the three-level medium a perturbation develops at 
the other transition as follows: 

u,(t, E) = F O  [sech"z+O(B)+. . .] exp ( Y E ) ,  ( 1 4 )  

where y  is the growth rate given by ( 13) ,  E, is the amplitude 
of the original "seed" signal at the frequency w , ,  
v = x - ' A  ' I 2 ,  and O ( B )  denotes terms of order In, - n, (/ 
( n ,  - n, < 1 .  
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The factor G(x)  in Eq. (13) for the growth rate de- 
creases monotonically as x increases. For large values of x 
(i.e., a weak Stokes transition with pa 'w, &p, 'w, ), we 
have y a x - ~ .  This behavior of the growth rate has a simple 
explanation. First, the gain coefficient for a weak signal in 
the pulse field E, is proportional to x-2 [see Eq. (7 )  1; sec- 
ondly, the effective amplification length decreases as x-', 
since the pumping pulse is shorter than the evolving pertur- 
bation by a factor of x. In the opposite limit, i.e., the case of 
strong Stokes transitions, x+O and G(x) behaves like 
%-3/2  , despite the fact that the amplification takes place over 

the entire length of the pulse, which would seem to imply 
that the growth rate ought to increase as xP2. The fact is that 
in this case there is a competition between the amplification 
effects of the weak signal in the field of the 2 a  pulse, the 
dispersive group velocity, and the absorption of the ampli- 
fied radiation outside the interaction region. 

The case x2 = 1 admits an exact solution to the problem 
(9) even when the inequality In, - n, (/(n, - n, ) & 1 is 
not fulfilled. In this case Eq. ( 13) for the growth rate of the 
weak signal u, simplifies: 

and the perturbation itself has the form u, ( r , f )  = exp(yg) 
sech T, or in dimensional variables 

Let us discuss the physical reasons for the exponential 
growth of the perturbation at the frequency w, in the field of 
the 2n pulse of frequency w, . Equation (5)  shows that when 
a soliton propagates at the transition g- b the population of 
the lower level changes in the following way: 

The maximum depletion of the g level takes place at the 
center of the 2 a  pulse, i.e., r = 0, and equals (C, (kin = nb.  
Consequently, for n, > n, the region of the 2 a  pulse consti- 
tutes an inverted layer for radiation of frequency w, whose 
width is 

From this it follows that over the length of the 2 a  pulse the 
Stokes signal is amplified by a factor of exp(n, - n, ). 

It is interesting to trace through the dynamics of energy 
exchange between radiation and the medium in such a pro- 
cess (Fig. 1 ). During propagation of a 2 a  pulse the medium 
absorbs n, - n, quanta of frequency w, [see Fig. 1 (b)  I .  
Then, once it is found in the inverted layer, the Stokes signal 
removes n, - nb quanta of frequency ma [see Fig. 1 (c) 1. 
The population of the levels at this time is IC, 1' = n,, 
IC, 1' = nb, lCb 1' = ng . Finally, the transition b+g can con- 
vert only n, - n, quanta to radiation of frequency w, [see 
Fig. 1 (d)  1. Thus the energy of the 277 pulse decreases during 
each elementary interaction event by the quantity 
AE = kb (n, - n, ), one part of which 

is converted into radiation at frequency w, while the other, 

is consumed in creating an inversion between levels b and a; 
thus, I C, I:, = n,, I C, I in = n, . Obviously the analysis we 
have carried out up to this point, which is linear in the field 
u,, cannot address the question of the final results of the 
interaction. However, it is clear that a high-frequency 277 
pulse in a three-level medium with the natural distribution of 
initial populations is unstable relative to transformation into 
radiation of lower frequency; in this case the upper level is 
populated while the intermediate level is depleted. 

3. Before turning to the exact solution of the system ( 1 ), 
(2 )  with initial conditions (3), we recall that in a medium 
with x = 1 at zero temperature it is possible for simultons to 
exist-i.e., multifrequency solitons, all of whose compo- 
nents have the identical propagation velocity v and envelope 
sech [ ( t  - X/U)T, ] (Refs. 1,2). Moreover, even for tcf 1 it 
is possible in a zero-temperature medium to form a com- 
bined multifrequency pulse' which possesses a well-defined 
margin of stability. 

Let us now investigate the nonzero initial conditions 
(3)  and construct the exact soliton solution. For x = 1, this 
solution should describe the dynamics of a two-frequency 
pulse, while for n, - n, -0 it should degenerate into the 
usual simulton. After using ISP techniques, whose applica- 
bility to a three-level system we have discussed in a number 
of previous papers,' it is not difficult to show that such a 
solution has the form 

where 

[Compare this to the linear increment ( 16) ] ; the constants 
a,, and also the length rP are determined by the boundary 
conditions at the entrance to the medium. Expression (19) 
shows that the condition for existence of simultons is equa- 
lity of the initial populations of the upper levels, i.e., 
n, = n,. Otherwise the two-frequency pulse is unstable 
against conversion to a single-frequency 2rpulse at the tran- 
sition for which the initial population of the upper level is 
larger (the more "transparent" transition). We note that the 
instability of simultons has no threshold, i.e., a "seed" of 
radiation at frequency w, of arbitrarily small amplitude and 
area will cause degeneration of any two-frequency soliton 
into a frequency 2 a  pulse. The conversion length is 

where 1, = v, rp is the size of the 2 a  pulse in the medium. In 
this case fulfillment of the usual requirement on the initial 
area 

provides a natural threshold for soliton formation, where 

Tis the time interval during which radiation is present in the 
medium at both frequencies simultaneously. 
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It is interesting to compare the solution ( 19) with solu- 
tions which describe the collision of simultons in the zero- 
temperature medium: 

a,*= -i{p%bl a ( T i  ch(z,-qt) +&.s] p(Tt ch(za-q,) 

- (L,b~a,b) ( a ~ )  ' " ~ t ~  [ C ~ ( T ' ~ - ~ ? ~ )  ) 

Here r,,, = ( t  - x/u,,, )/TI,, ; TI and T2 are the lengths of 
two independent simultons, u,,, = c (  1 + T,,, 2, - I  are 
their velocities, TI, = 2(1/T1 + 1/T2)-', and a = (a , ,  
a, ) and = (Pa, Pb ) are vectors whose components are 
determined by the boundary conditions; 

are phase constants. 
Expression (22) is quite cumbersome, and for analysis 

it is convenient to use its asymptotic forms. Thus, for 
t -  - co we have two separate simultons: 

iar = 5 T,-'A; sech (rl-qi-) T2-' sech (rZ-q2-), 
lal IS l 

(23) 

where 

In the other asymptotic limit t -  + w we also have two sep- 
arate simultons, but with altered amplitudes: 

P o  b + - Tz-' ~z~ sech (z2-cp,+), 
I P I  

where 

Equations (23), (24) show that during a collision the total 
number of quanta and propagation velocities for each simul- 
ton do not change; however, redistribution of the amplitudes 
of the separate frequency components takes place. This pos- 
sibility was mentioned for the first time in Ref. 4. From the 
point of view of coherent frequency conversion using optical 
pulses there now arises the interesting possibility of forma- 

tion of two-frequency solitons from a single-frequency one, 
and conversely, i.e., shifting of 277 pulses from one frequency 
to another, etc. It is noteworthy that after the collision each 
of the simultons carries with it information about the length 
and amplitude of the other. 

We present as an example two curious schemes of non- 
degenerate interaction (the brackets here denote the relative 
amplitudes of the various frequency components of the si- 
multon): 

Here D = (& + i', ) 'I2, where r, and rb are respectively 
the lengths of the slow and fast simultons, i.e., rM > r, (let 
us recall that the propagation velocity of a pulse is v a T - ~ ) .  

For large differences in the lengths rM % r, the interaction 
(25) gives rise to almost complete conversion of the slow 277 
pulse to the other frequency. If, however, the fast single fre- 
quency pulse overtakes the slow two-frequency pulse, then 
the relative amplitudes of both pulses are left almost un- 
changed [scheme (26) 1. We note that within the framework 
of the assumption that the medium is at zero temperature, or 
indeed when the original populations of the upper levels are 
equal, the transformations (25), (26) are invertible. 

4. In Fig. 2. we present results of a numerical solution of 
Eqs. ( I ) ,  (2)  for two values of the parameter 
?t = ( ~ ~ w ~ / , u ~ w , ) ~ ' ~ ,  i.e., 0.7 and 1.5. Details of the com- 
putational method have been published previously (see Ref. 
1 ). For both choices of x the initial and boundary conditions 
were taken to be the same: n, ( t  = 0 )  = 0.7, 
n, ( t  = 0)  = 0.3, n, ( t  = 0)  = 0; at the boundary z = 0 a 277 
pulse E, enters the medium with a 1% (intensity) correc- 
tion of radiation E,. It is apparent from the figure that the 
pulse E, is unstable against complete conversion into the 
pulse E, . The rate of conversion agrees well with the linear 
estimate ( 13). In the region of interaction we observe a pop- 
ulation inversion of levels a and b with respect to the scheme 
in Fig. 1. The length of the inversion zone left behind by the 
pulses in the medium depends both on the conversion 
growth rate and on the propagation velocity of the pulse in 
the medium. The length and peak value of the intensity of the 
Stokes pulse depend strongly on the value of x. For the 
stronger transitiong-a, ?t < 1, the Stokes pulse is preserved 
because the cooperative frequency at this transition is large, 
i.e., ra/rb -x; its intensity exceeds the intensity of the 
"pump", i.e., IE, I 2 / I  E, 1'- x-', while the propagation ve- 
locity increases both because of the increase in intensity and 
because of the larger "transparency" of the transition, i.e., 
n, - n, < n, - n,. A further result of this is an increased 
pulse length in the medium, i.e., I, -I,%-'(n, - n, ) /  
(n, - n, ). For ?c > 1 the situation is reversed: the Stokes 
pulse is slower and less intense. However, because of its low 
propagation velocity the transfer takes place over a shorter 
distance in the medium. 

We should point out the close analogy between the in- 
teraction under study here and the coherent regime of simu- 
lated Raman scattering (SRS).' As in the latter, during the 
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interaction the two pulses form a bound state, which brings 
about the complete conversion of energy into radiation at a 
lower frequency (for the natural level populations of the me- 
dium). The quantum efficiency of the process also comes to 
100%, and the excess energy remains in the medium in the 
form of excitation of the upper level. The relationships 
between the Stokes parameters of the pulse and the "pump" 
as x varies reinforce this analogy. 

Thus we have shown that it is possible to have coherent 
frequency conversion of short light pulses in a three-level V- 
configuration medium. To obtain such a regime experimen- 
tally we need not fulfil any artificial conditions, such as, e.g., 
previous preparation of the medium or equality of the oscil- 
lator strengths of the two transitions. The numerical calcula- 
tions show that typical conversion lengths amount to - 10 
pulse lengths in the medium, less than the distance tran- 
versed by both single-frequency and multifrequency solitons 
up to their decay due to transverse instability.' A natural 
limitation is imposed on the lengths of the pulses: they 
should not exceed the longitudinal and transverse relaxation 
times in the medium. From this, based on the ratio PET, / 
4 - 2 1 ~ ,  there follow estimates of the pulse energy densities 
required to observe these coherent effects. In experiments on 
resonant interactions it is customery to use atomic vapors,5s6 
molecular gases,'s8 and mixed  crystal^.^ The relaxation times 
in these media are determined by various mechanisms. Thus, 
for atomic vapors (T 5 10-9-10-Lo sec,p - cgs units) 
we require energy densities 1- 10-100 ,uJ/cm2, for molecu- 
lar gases (T 5 10-8-10-9 sec, ,u- 10-l9 cgs units) 1-0.1-1 

FIG. 2. Energy transfer of a 2n  pulse E, into a 27-r pulse E, in a 
medium with x +  1: (a)-x = 0.7, (b)-x = 1.5. The scale 
along the z-axis is based on units of the length of incoming pulse 
based on the transitiong-a [the total length of the axis corre- 
sponds to 15 lengths of the pulse E, (entering) 1 .  The scale of the 
axis E, corresponds to the value X / T ,  (entering) a,, (i.e., the 
amplitude of a Stokes 2n pulse with a length equal to the length 
of the "pump" pulse). The curves in Figs. ( a )  and (b)  are drawn 
for one and the same instants of time for identical boundary 
conditions and initial populations n, = 0.7, no = 0.3, n ,  = 0. 

mJ/cm2, and for condensed media (7 5 10-'0-10-12 sec ) 
1-0.1-10 mJ/cm2. 

In conclusion we remark that the results of the present 
work also are relevant to the problem of simulation formula- 
tion. Thus, the combined propagation of multifrequency 
pulses on a length L requires preliminary matching of the 
populations of the upper levels to less than the quantity 

(I, is the pulse length in the medium) for x - 1 or the use of a 
medium with a larger ratio of transition oscillator strengths, 
7t) 1, for which (Gx)  1. 
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