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The symmetries of the 6j-symbol form a group, related to the transposition of roots of the 
characteristic polynomial of a quadratic algebra. 

1. INTRODUCTION 

The 6j-symbols (Racah coefficients), which are the re- 
coupling coefficients between two schemes for adding three 
angular momenta, are widely used in theoretical physics. In 
addition, the 6j-symbols play an important role in various 
problems of mathematical physics, related to the theory of 
group representations. In particular, Racah coefficients 
arise in the "tree" problems and representations of the 
SU(3) group.' The connection of the 6j-symbols with the 
theory of special functions is also of interest; in particular it 
turns out that they are expressible in terms of a new class of 
orthogonal polynomials.' Of particular interest is the study 
of the symmetries, i.e. transformations of the parameters 
that leave invariant the 6j-symbol 

(here j,, j,, j, are the values of the angular momenta being 
added, j4 is the total angular momentum, and j12 and j2, are 
intermediate angular momenta.) 

In addition to the "classical" symmetries, discovered 
already by R a ~ a h , ~  the so-called Regge symmetries were 
found in 195K3 Their discovery was a kind of scientific sen- 
sation, since no simple interpretation of these symmetries 
existed. In the 30 years that have passed since many attempts 
were made to give a simple explanation or a different treat- 
ment of these mysterious transformations (see, e.g., Ref. 4).  
However, all these explanations are rather complicated and 
awkward from the point of view of calculations. 

In this paper we show that the 6j-symbols are uniquely 
determined by a representation of a quadratic algebra with 
three generating operators: the invariance properties of the 
6j-symbols are a trivial consequence of the invariance of the 
structure parameters of the algebra. 

We note that the well-known method of Vilenkin5 of 
group-theoretical construction of special functions does not 
permit the inclusion of 6j-symbols (and the orthogonal poly- 
nomials corresponding to them1), because the latter are not 
the matrix elements of a transformation operator of a Lie 
group. In particular, the Vilenkin method does not cover a 
sufficiently wide class of functions-classical orthogonal 
polynomials of discrete argument. 

An approach that permits the inclusion of precisely this 
class of functions was proposed in Ref. 6. The main idea of 
the method consists of the observation that the three-term 
recursion relation for the special functions (specifically- 
orthogonal polynomials) is obtained as a consequence of the 
commutation relations of a Lie algebra. The orthogonal 
polynomials themselves arise as the transformation function 
between the bases of two hermitian operators that enter the 
algebra. Moreover, the eigenvalues of one of the operators 

serve as the order of the polynomial, while the eigenvalues of 
the other serve as the argument of the polynomial. From the 
very construction scheme it is clear that the form of these 
polynomials is independent of the specific nature of the rep- 
resentation and is determined just by the commutation rela- 
tions of the algebra. Using this approach it is possible to 
include in the scheme of Lie algebras with three generators 
several known classes of polynomials of discrete as well as of 
continuous a r g ~ m e n t . ~  

The 6j-symbols cannot be included in this scheme, be- 
cause a Lie algebra with three generators has too few inde- 
pendent parameters. However this can be accomplished, if 
the commutator of two operators is expressed nonlinearly in 
terms of the other operators, i.e., it is necessary to drop the 
requirement that the resultant algebra be a Lie algebra. If 
one takes the simplest generalization-an algebra with qua- 
dratic commutators-then it becomes possible to construct 
ladder representations of such an algebra for which the 
transformation function between the bases of the two opera- 
tors is the 6j-symbol. 

Algebras with quadratic commutation relations were 
first introduced by Sklyanin in papers7 devoted to the lattice 
model in the theory of magnetism. However the Sklyanin 
type algebras possess too complicated a structure, in particu- 
lar they have four generating operators in place of the three 
needed in our case. 

In this paper it is shown that a quadratic algebra with a 
simple structure can successfully be applied to the study of 
6j- and 3j-symbols, as well as of the Wilson-Racah orthogo- 
nal polynomials, which are a generalization of these physical 
objects.' Moreover, practically all the important properties 
of these polynomials follow just from the commutation rela- 
tions, which makes possible a new simple algebraic treat- 
ment of these important objects of theoretical physics. 

2.6j-SYMBOLS AND THE QUADRATIC ALGEBRA 

We recall that 6j-symbols appear in the theory of addi- 
tion of three angular momenta J, (k  = 1,2,3) with eigenval- 
ues j, ( j, + 1 ) as follows. We form the squares of the inter- 
mediate momenta according to the schemes 
JI2* = (Jl + J2), and J2,' = (J2 + J3)2 and we introduce 
the square of the total angular momentum 
5,' = (J1 + J2 + J3)2, which commutes with all the other 
operators. The eigenfunctions of the operators 

form two independent bases in the space in which the quan- 
tum numbers j,, j,, j, and j4 have been fixed. The transforma- 
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tion matrix (p, ) forms the set of 6j-symbols. 
The main idea of the proposed method reduces to the 

following. Since qP ,p, are eigenfunctions of two noncom- 
muting operators, information on the structure of the matrix 
element (p, Irl, ) may be obtained by studying the commu- 
tation properties of these operators. In particular, if the com- 
mutation relations form a closed algebra then the properties 
of the matrix elements are uniquely determined by the prop- 
erties of the algebra. 

We therefore introduce the three operators 

An uncomplicated direct verification shows that these oper- 
ators indeed form the algebra 

[K2, KS] =AKz"B {Ki, Kz)+CKz+Di+EZi, 
(2)  

[K,, Ki]=BKi2f A {Ki, Kz)+CKi+Dz+EzKz, 

which is closed under commutation. Here {K,,K,) denotes 
the anticommutator, and the structure constants have the 
following form: 

& 

A=&?=-2, ~ = 2 z  ak, 
k-s 

Di==2 (ai-ar) (a3-a2), Dz=2 (ai-az) (a3-a~), (3  ) 

The algebra (2)  is quadratic, i.e., the right-hand sides of 
the commutation relations contain squares and bilinear 
combinations of the original operators. It is interesting to 
note, however, that this circumstance is not an obstacle in 
the construction of a representation of the algebra. 

Indeed, let us choose a basis W p ,  in which the operator 
K, is diagonal: 

It is then easy to see that in the basis Wp we have a ladder 
representation, in which the operators K2 and K, are tri- 
diagonal: 

KzWp=ap+1T17p+l+apTVp-l+bpW,r 
( 5 )  

To obtain the explicit form of the matrix elements a, ,bp it is 
sufficient to make use of the commutation relations (2),  
with the result 

where 
A 

is the characteristic polynomial of fourth degree. Its roots lk 
determine the endpoints in the range of variation of p and 
can be obtained starting from the angular momentum com- 
position scheme 1 jl - j 2 1 ~ ' , 2 ~ . l  + j2,/ j12 - j31 Q ~ Q ' ~ ~  + j3: 

A complete description of the representation of the algebra 

(2) ,  as in the case of a Lie algebra, requires further the speci- 
fication of the value of the Casimir operator Q, commuting 
with all the generators of our algebra. Direct verification 
shows that the Casimir operator for the algebra (2)  has the 
form 

+ (AZ+E2)K22+K:+ (ABSC) {Ki, Kz) 

+2 (D2+AC) Kz+2 (Di+BC) K,. ( 9 )  

For a particular realization of the algebra ( 2 )  for which the 
operators have the form ( 1 ) , the Casimir operator is not 
arbitrary and is expressed in terms of the quantum numbers 
j l ,  j2, j, and j, (see the following Section). 

In this way specification of the constants C, D,, D, and 
Q, which we shall call the parameters of the algebra, com- 
pletely describes the representation of the algebra (2).  

The 6j-symbol Wp (q) is now uniquely determined from 
the recursion relation 

where I{,l g pg l ,  - 1 and WI5 , ,  - (q)  -0. We note that 
Wp (q) is determined from the recursion relation to within a 
normalization factor. In this way the full number of vari- 
ables in the symbol W, (q)  equals six-the four structure 
parameters of the algebra ( 2 )  and the two quantum numbers 
p, q, which precisely corresponds to the number of indepen- 
dent parameters of the 6j-symbol. 

3. ANALYSIS OFSYMMETRIES OFTHE ALGEBRA AND THE 
6j-SY MBOL 

As was shown in the preceding Section, the 6j-symbol is 
determined by specifying the parameters C, Dl, D, and Q of 
the algebra (2) .  Therefore, if the algebra (2)  is invariant 
under some transformation of its parameters, then the 6j- 
symbol will also be invariant under this transformation. Let 
us find all such transformations. 

From formulas (3)  and (9)  one readily finds that the 
parameters of the algebra are symmetric function of the 
roots {, of the characteristic polynomial: 

where 

This means that any transposition of the roots among them- 
selves, as well as changing the sign of an even number of the 
roots (taking into account the fact that the algebra param- 
eters depend on the roots,"') leaves the parameters of the 
algebra, and therefore the 6j-symbols, invariant. Moreover, 
since the number of parameters of the algebra coincides with 
the number of the roots of the characteristic polynomial, all 
the symmetries of the algebra are contained in these trans- 
formations. 

In this fashion we obtain an invariant subgroup of the 
6j-symbol, which leaves unchanged its last column. This 
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subgroup has dimension 4!. 12 = 288, where 4! is the dimen- 
sion of the permutation group of the roots and 12 is the di- 
mension of the group of sign changes of two or four roots. 

Let us consider some of these transformations in more 
detail: 

a )  the transposition 6, zc2 is the "mirrorw2 symmetry 
j2+ - 1 -j2; 

b)  the transposition 6, zc3 is the Regge symmetry 

c )  the change of the pair of signs6 + - 6 ,,, is equiva- 
lent to the classical Racah symmetry j, zj, j3 zj,. 

The above described three types of transformations 
generate the entire invariant subgroup of the 6j-symbol. 

To obtain the full symmetry group it is necessary to add 
to the subgroup considered so far the group of dual transfor- 
mations, which mix the rows of the 6j-symbol. In algebraic 
language such a transformation means passing from the real- 
ization given by Eqs. ( I ) ,  to a different realization corre- 
sponding to a different choice of the pair of angular mo- 
menta being added. The number of such transformations 
altogether is C,* = 6. For example, the simplest dual trans- 
formation K, ~i K,, Kj  + - K,, D, s D ,  is equivalent to one 
of the classical Racah symmetries: j, s j 3 ,  j,, zj,,. 

In this manner the full invariance group of the 6j-sym- 
bol has dimension 4! - 12.6 = 144.12. 

We note that usually the discussion of the invariance 
problem of the 6j-symbol is confined to the enumeration of 
the 144 symmetries-the classical and the Regge symme- 
tries. However by themselves these symmetries do not form 
a group. As we have seen, it is necessary to include in this 
group the so-called mirror transformations j, + - 1 - j,, 
there being precisely 12 such independent ones. 

The fact that all possible symmetries of the 6j-symbol 
form a group was, apparently, not noticed previously. In our 
opinion the most interesting circumstance is the connection 
between this symmetry group and the group of permutations 
of the roots of the characteristic polynomial of fourth de- 
gree. This is one more testimony to the fact that the 6j-sym- 
bols have (rather mysterious) connections to the most var- 
ied fields of physics and mathematics.' 

4. SYMMETRIES OF THE 3j-SYMBOL 

The 3j-symbols are simpler objects than the 6j-symbols. 
They arise in the addition of two angular momenta J, ,J,  as 
follows. Let us fix in the space of the angular momenta being 
added the quantum numbers j,, j, and m = (J, + J,),. 
Then the eigenfunctions of the operators (J, + J212 and 
(J, - J,), form in this space two independent bases. The 
transformation matrix between these bases is the 3j-symbol. 
In other words, the 3j-symbol is the Clebsch-Gordan coeffi- 
cient ( jm I j ,m, j2m2) in the expansion of the total angular 
momentum in terms of the direct product of the angular 
momenta being added. 

The symmetry of the 3j-symbol may be obtained from 
the symmetries of the 6j-symbol by making use of the exis- 
tence of an asymptotic relation that connects these two ob- 
j e c t ~ . ~  We shall indicate another, more constructive, ap- 
proach, which is once again related to a quadratic algebra. 

We introduce three operators in the space with fixed 

quantum numbers 

One verifies that these operators form a quadratic algebra of 
the form (2),  but with a simpler structure. In contrast to the 
case of the 6j-symbol, the matrix element a, of the operator 
N2 is expressed in terms of the characteristic polynomial of 
third order 

where the roots C,, 5, have the previous meaning (8) ,  and 
6, = m. The structure parameters of the algebra are again 
symmetric functions of the roots: 

[the functions S, are given, as before, by expression ( 12) 1. 
Consequently, all possible transformations of parameters 
that leave the algebra and the 3j-symbols invariant, consist 
of permutation of roots and sign changes of two roots. 

Let us consider some of these transformations: 
a )  the transposition 6, e l , ,  as in the case of the 6j-sym- 

bol, is equivalent to the mirror symmetry j,-+ - 1 - j2; 
b)  the transposition 6, $6, is the Regge symmetry 

C )  the change of two signs 6 ,,, + - 6 ,,, is equivalent to 
the exchange of the momenta j, zj,, m -+ - m. 

In this manner the stationary (i.e., not changing the 
values j and m, - m,) subgroup of symmetries of the 3j- 
symbol consists of 3!.3 = 18 transformations, which con- 
tains classical, Regge and mirror symmetries. 

As in the case of the 6j-symbol, to obtain the full group 
of symmetries one must include dual transformations. In- 
deed, the 3j-symbols are obtained by the addition of three 
angular momenta to a form of zero sum. It is clear that there 
exist six ways to choose a pair of angular momenta to form 
the operators N, and N,. For example, the interchange of the 
original operators J, and J,, N, = (J, + J212, 
N, = (J, - J,), is equivalent to the symmetry j, zj, ,  
m , s m,. Thus the full symmetry group of the 3j-symbol con- 
tains 18.6 = 108 transformations. 

Thus the symmetries of the 6j- and 3j-symbols are relat- 
ed to representations of quadratic algebras of the same type. 
The difference lies in the specific values of the parameters of 
the algebra. This explains the "Regge mystery." He ob- 
served: "There is no simple relation between the symmetries 
of the 6j- and 3j-~ymbols".~ 

5. CONCLUSION 

We have established that the symmetries of the 6j-sym- 
bol (3j-symbol) form finite groups, isomorphic to the invar- 
iance group of the characteristic polynomial of respectively 
fourth and third degree. This polynomial arises as the matrix 
element (7 )  in the representation of a quadratic algebra, 
with the explicit form of this matrix element being deter- 
mined by specifying the parameters of the algebra (i.e., the 
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structure constants and the Casimir operator). It is impor- 
tant to note that invariance of the algebra parameters under 
the transformations of the roots includes not only the classi- 
cal and the Regge symmetries, but also the mirror symme- 
tries, without which the transformations of the 6j- and 3j- 
symbols do not form a group. 

We note that the effectiveness in using the quadratic 
algebra is not limited to the case of the rotation group, dis- 
cussed in the present paper. It is not hard to show that the 
same quadratic algebra is formed by the operators of the 
O(2,l) algebra (from the discrete series representations), 
which permits one to immediately conclude that the 6j-sym- 
bols of the O(2,l) group coincide functionally with the 6j- 
symbols of the rotation group (previously this fact had no 
simple explanation). Moreover, an algebra of the same 
structure is formed by the squares of the T- and U-spin in the 
SU(3) algebra, which helps to understand the reason for the 
appearance of the same 6j-symbols in the theory of represen- 
tations of that group.' 

Finally we note that the quadratic algebra of the type 
( 2 )  has greater universality-it may serve as basis for the 
construction of the Wilson-Racah orthogonal polynomials 

introduced in Ref. 9. Indeed, it can be shown that the algebra 
(2)  with arbitrary structure parameters produces general- 
ized Wilson-Racah polynomials (of continuous as well as 
discrete argument). %his answers the question left open in 
Ref. 6 on the inclusion of these polynomials into the algebra- 
ic scheme with three generators. 
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