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The explicit form of the order parameter is found for the nonergodicity range of structural glasses 
in the quantum case. It is shown that the part ofthe order parameter corresponding to intervalley 
transitions does not exhibit quantum fluctuations. This property is used in developing a general 
theory of nonergodicity of structural glasses. More detailed equations are derived for the case of a 
small anharmonicity constant of displacive-type structural glasses. In the case of order-disorder 
structural glasses the explicit forms of the longitudinal and transverse dynamic susceptibilities 
are found for the weak tunneling case. 

1. INTRODUCTION 

A new branch of the physics of strongly disordered sys- 
tems dealing with structural glasses is growing rapidly at 
present (see, for example, Ref. 1 ) . Structural glasses are sys- 
tems with competing interactions of different signs, exhibit- 
ing structural transitions. Structural glasses are structural 
analogs of spin glasses. It is known that conventional struc- 
tural transitions result in ordering of a great variety of enti- 
ties such as dipoles, quadrupoles, etc. Therefore, structural 
glasses have a great variety of forms: dipole, proton, quadru- 
pole, orientational, Potts, etc. I t  is found however, that the 
universality typical of spin glasses is not exhibited by struc- 
tural glasses. We shall therefore consider only two classes, 
namely dipole and proton glasses, and refer to them for bre- 
vity as structural glasses. 

These classes of structural glasses are particularly inter- 
esting because the first experiments described recently dem- 
onstrated that they exhibit a strong frequency dispersion of 
the real part of the permittivity ~ ( w )  at about several hertz. 
These are the frequencies that correspond to a nonzero 
imaginary part o f ~ ( w ) .  Such behavior is exhibited by dipole 
and proton glasses2.' and in all probability is a universal 
property of all structural glasses. 

On the other hand, precisely the same effects have been 
long known for spin glasses.4s5 In spin glasses they form a 
part of a wide range of irreversible effects demonstrating 
that spin glasses are nonergodic (see, for example, a review 
by the present author in Ref. 6) .  In all probability, the neces- 
sary range of measurements will be made in the near future 
on structural glasses with the aim of detecting and investi- 
gating in detail this wide range of phenomena. 

It is therefore desirable to construct a suitable theory of 
nonergodicity of structural glasses. This is the task of the 
present paper. A highly advanced theory of the molecular 
field in spin glasses is already a~ailable,~, '  so that the ques- 
tion arises whether this theory can be extended also to struc- 
tural glasses. 

The following comments should be made. Unfortunate- 
ly, conventional methods make it very difficult to go beyond 
the mean field approximation, so that we shall confine our- 
selves to this approximation. The question naturally arises 
whether the predictions obtained on the basis of the mean 
field approximation agree with real experiments. It is prema- 
ture to make a detailed comparison of the molecular field 
theory with experiments. However, i t  is generally accept- 

ed6,' that the molecular field theory is in qualitative agree- 
ment with experiments and can provide the language suit- 
able for discussing the phenomena observed experimentally. 
However, no attempt should be made to carry out any specif- 
ic quantitative fitting and the discussions have to remain 
qualitative. 

We are hoping that this applies also to structural 
glasses. However, new problems appear because structural 
glasses are intrinsically quantum systems. We therefore face 
a new range of times, which are called quantum times. More- 
over, there is a range of classical times and a nonergodicity 
range. We hope that the molecular field theory of structural 
glasses can provide a qualitative description of all these 
ranges although this can be determined definitely only by 
going beyond the molecular field approximation. 

In extending the standard molecular field theory of spin 
glasses to structural glasses we are faced with a serious diffi- 
culty associated with quantum properties of structural 
glasses. This is due to the fact that the Parisi order parameter 
q ( x )  of quantum glasses should depend also on the Matsu- 
bara time 7, i.e., it should be a function q(x , r ) .  A similar 
problem is encountered also in the case of spin glasses when 
the spin is S -  1. This problem was first pointed out in con- 
nection with the quantum properties of spin g l a s s e ~ . ~  The 
quantum aspect is always ignored in the modern theory of 
nonergodicity of spin glasses. In the case of Ising spin glasses 
this problem does not arise at all, whereas in the Heisenberg 
case it is usual to assume that S9 1. 

In the case of structural glasses we cannot ignore the 
quantum properties because the quantum frequencies are as 
a rule of the order of the transition temperature and the 
quantum parameter is of the order of unity. This situation is 
not specific to structural glasses. It is exhibited also by con- 
ventional structural transitions (see, for example, Ref. 9) .  In 
this situation it is necessary to extend the standard theory of 
nonergodicity of spin glasses to structural glasses under con- 
ditions of strong quantum fluctuations. This is precisely the 
task of the present paper. 

The derivation of the principal equations for structural 
glasses, similar to that given in Ref. 8 for spin glasses, shows 
that at first sight the function q (x , r )  should depend on r .  If 
the solution does indeed have this property, then ordinary 
integrals have to be replaced by functional integrals and the- 
ory would become very unhelpful. However, the main result 
of the treatment given below is that the molecular field equa- 
tion for the order parameter q (x , r )  (and for other quantities 
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representing the nonergodicity ) has a solution independent 
of T. We can therefore develop in the usual way a fully help- 
ful theory which is completely analogous to the theory of 
classical spin glasses. The quantum effects are then impor- 
tant in two cases: firstly, when the boundary conditions to 
the molecular field equations depend strongly on quantum 
fluctuations, and secondly, when the intravalley ergodic sus- 
ceptibility is determined entirely by quantum effects. There- 
fore, it is important to point out that this susceptibility is not 
an order parameter and it also exists in the paramagnetic 
region. The quantities describing nonergodicity directly are 
sensitive to quantum fluctuations only via the boundary con- 
ditions to these equations. 

2. DERIVATION OFTHE PRINCIPAL EQUATIONS. ERGODIC 
CASE 

The conventional theory of structural transitions dis- 
tinguishes two cases: displacive and order-disorder transi- 
tions. A classical example of the former is BaTiO, and of the 
latter is RbH, PO,. There is no sharp boundary between sys- 
tems of these two types and many substances have interme- 
diate properties. However, for the sake of simplicity, we 
shall retain this division since these extreme cases are de- 
scribed by the simplest model Hamiltonians. 

Spin glasses are obtained when a system exhibits a com- 
petition between the ferromagnetic and antiferromagnetic 
interactions. A similar situation naturally occurs also in 
structural glasses. The competing interaction appears dur- 
ing the preparation of solid solutions. Such an interaction is 
exhibited, for example, by an alloy formed between a typical 
ferroelectric and a typical antiferroelectric such as Rb, 
(NH4 ),H,PO,. 

We shall consider two characteristic Hamiltonians. The 
Hamiltonian of a displacive-type structural glass will be 
used in the form 

where x, are the displacements,p, are the momenta, M is the 
mass of an ion, w, is a characteristic frequency, and A , ,  is a 
random Gaussian quantity with zero average value. It is con- 
venient to introduce dimensionless displacements and mo- 
menta: 

where a is the lattice constant. Equation ( 1 ) then becomes 

ik t 

C ( m , ,  r,) =mZi2t+~m'/8+boo2r2/2,  

In the classical limit we have a,,-0 and the term containing 
the momenta wirf becomes unimportant. The Hamiltonian 
of Eq. ( 3 )  then reduces to the well-known soft model of a 
spin glass (see, for example, Refs. 6 and 10-12). 

The Hamiltonian structural glass of the order-disorder 
type has the form of the Ising model in a transverse field with 
random e~change" , '~  

where S : and S :  are the spin operators for the spin 1/2. 
We shall derive general expressions only for the Hamil- 

tonian ( 3 )  and in the case of the Hamiltonian (4) we shall 
use specific relationships because, as demonstrated later, the 
general expressions are independent of the actual nature of 
the Hamiltonian. 

It is well known that general averaging over all the real- 
izations J,, should be carried out by the replica method. In 
the case of the classical Hamiltonian this is a fairly simple 
procedure, but in the quantum case we are faced with a prob- 
lem associated with the noncommutative nature of the quan- 
tum operators. A way of overcoming this difficulty was sug- 
gested in Ref. 8. We can represent the partition function Z in 
the form 

1/T 

Equation ( 5 )  contains the Matsubara time T and the 
operator P is the Matsubara time-ordering operator. The 
quantum-mechanical operators inside the expression for P 
can be treated in the same way as the ordinary c numbers. 
Therefore, introducing replicas we can apply the standard 
procedure for averaging over J,, . The result is 

where p, Y = 1, ..., n-0 represents replicas. The molecular 
field equation is obtained from Eq. (6 )  if the standard sepa- 
ration is applied to the first term. After the usual manipula- 
tions (see, for example, Ref. 6 ) ,  we obtain an equation for 
the quantity 

Tr { ~ [ m , , ( t , ) m , ( T z ) e - ~ ~ ' ~ ] )  
~ U V  (Ti, 7.) = sp ( f )e- I rc IT  1 , 

Comparing Eq. (7 )  with the usual equation of this kind 
in the classical limit, we find that the principal distinction of 
Eq. (7 )  is that q,,,, depends on the Matsubara times 7 ,  and 
T,. This dependence does not allow us to carry out further 
standard transformations of this equation, which would 
have led to the ordinary molecular field equations; this is 
true in the ergodic range and particularly so in the nonergo- 
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dic range. Therefore, at first sight it would seem that it is not 
possible to develop an ordinary molecular field theory for 
the quantum case. 

However, it is found that Eq. ( 7 )  has a very simple 
solution, namely 

i.e., the off-diagonal matrix elements of the operator 
q,, ( r1 , r2 )  are independent of T ,  and T,. This has a very 
simple meaning. The off-diagonal matrix elements q,, de- 
scribe in fact fluctuations of frozen molecular fields. The fact 
that these matrix elements are independent of the Matsubara 
frequencies simply means that the frozen molecular fields do 
not exhibit quantum-mechanical fluctuations. Only the sus- 
ceptibility D ( T )  has such fluctuations. Physically the pic- 
ture is almost self-evident. We shall now show mathemat- 
ically that Eq. ( 8 )  is indeed the solution of Eq. ( 7 ) .  We shall 
demonstrate this first in the simplest ergodic case. We then 
have 

We shall substitute Eqs. (8 )  and ( 9 )  into Eq. ( 7 )  for H , .  
This gives 

i l l  

Next, we shall substitute Eq. (10) into an expression for 
qllY ( r1 , r2 )  in Eq. ( 7 ) ,  which gives 

In the derivation of Eq. ( 1 1 ) we allowed for the fact that, as 
is easily demonstrated, the denominator in the expression 
for q,,, ( r1 ,r2)  in Eq. ( 7 )  becomes unity in the limit n -0. 
Equation ( 1 1 ) differs from Eq. ( 7 )  by the fact that the argu- 
ment of the exponential function in Eq. ( 1 1 ) has a single sum 
over the replicas. It is important to point out that the opera- 
tors corresponding to different replicas commute. Using this 
fact, we obtain directly the following expression in the case 
when y # v: 

dh 
(luvsq= 1 (8n10g) (- &) M2(h) for p+v, 

( I?\ 

It  is clear from Eq. (12) that the off-diagonal matrix ele- 
ments q,, (T1,r2) are independent of r. Therefore, the solu- 
tion of type (8)  does indeed exist. We shall now consider 
q,, ( r1 , r2 ) .  Obviously, we have 

Equation ( 13 ) defines the Matsubara correlation func- 
tion D ( T ~  - r 2 ) .  

3. NONERGODIC RANGE 

We shall now consider the nonergodic range. In this 
range it is usual to employ the Parisi theory l 5  of disturbed 
replica symmetry. However, we shall use a fully equivalent 
concept developed by the present author6 and based directly 
on a pattern of an ultrametrically constructed infinite-di- 
mensional space of objects which we shall arbitrarily call 
valleys. 

We shall introduce M valleys which we shall label with 
the index a and we shall assume that the total Hamiltonian is 
the sum of the Hamiltonians describing each valley, i.e., we 
shall postulate that instead of Eq. ( 3 ) ,  we have 

Averaging then over J,, we obtain by analogy with Eq. ( 6 )  

Following the derivation of Eq. ( 7 )  from Eq. (6), we shall 
use Eq. ( 1 5 )  to derive the following equation: 

Tr  P [ ~ , , ( T ~ )  mVb ( 7 2 )  exp (-H,IT) 1 
qrvob (TI, ~ 2 )  = Tr P esp  ( -H,lT)  

In the nonergodic range we shall assume siniilarly6 that 

In Eq. ( 1 7 )  it is postulated, by analogy with Eq. ( 8 ) ,  that 
only the intravalley susceptibility D(r)  depends on the Mat- 
subara frequencies and this susceptibility corresponds to the 
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diagonal, in respect of the replicas and valleys, matrix ele- 
ments a  = b and p = Y. The remaining matrix element q,,, 
describing the overlap of different valleys, and p,,, corre- 
sponding to the intervalley susceptibility, are independent of 
T. We shall show later that this hypothesis is indeed con- 
firmed by Eq. ( 16) .  We note also that by substitution of Eq. 
( 1 7 )  into Eq. ( 16) we can show that in the limit n -0 the 
denominator of the expression for q,,,,,, (T I ,T2 )  is unity and, 
therefore, Eq. ( 16) simplifies to 

qUvab(Ti, a2)= T r  P [ m , ( z l ) r n v b ( t z )  e s p ( - H c / T )  I. ( 1 8 )  

We now have to assume an ultrametric structure of the ma- 
trices g,, and p,,. By analogy with Ref. 6  we shall assume 
that we are dealing with the ( k  + 1  ) th hierarchical level and 
that the branching of the ultrametric tree is j. It follows that 
each ofthe Mvalleys a  can be labeled with the number k + 1: 

a,, a,, . . . , ak, O<a,Gj-l,  M=jk+'. (19) 

Then, the matrices q,, and p,, can be parametrized using 
k  + 1 parameters: 

Next, we have to assume that 

and in the final answers to have to go to the infinite limit. 
Following Ref. 6, we shall now assume that 

puV..cth. a ,  p u ,  ... nh. 

1 (k) 

= + p i T  H ,  [m,.. r,., g p a  .... n-ilD ,,;. 
pa,. . .nk 

at!' n S (8n10 (- A,'/pn)* (-- Po 810 (- A,,') 
f i  

d S E 0  n ! (8n10 (- A,'/pl))'Iz 
W a  exp{- -81 ,  (-- A,') 

If we substitute Eq. ( 2 3 )  into Eq. (18),  we find that 

Equation ( 2 4 )  is very similar to Eq. (1  1 ), but instead of 
simple integration with respect to h in Eq. ( 1 l ) ,  we find that 
Eq. (24) contains a path integral with respect to h and T. 
However, this does not change the basic situation. Since the 
operators corresponding to different replicas commute, it 
follows that when ( p a )  # ( v b ) ,  we find from Eq. (24) that 
the corresponding matrix element q,,,,, is independent of T.  

We can write down the explicit form of this matrix element 
by introducing a two-particle function representing the dis- 
tribution of the molecular fields F, ( h ,  ,h ,) ,  which is dis- 
cussed in detail in Refs. 6, 16, and 17. We then obtain 

q,.., = d h ,  dh ,  F,(h, ,  h,. 2 )  M ( h , )  M ( h , ) ,  ( p a ) +  (vb), ( 2 5 )  

where M ( h )  is determined in Eq. ( 12)  and z gives the ultra- 
metric separation between the values a  and b  based on ex- 
pressions from Ref. 6:  

z (r,-r,) =a ln Ira--rt(, a# b,  

a+O, 2-1, 
( 2 6 )  

r,=-M/2-l-a,j"'+a2jR-2+ . . . +a,, 

Substituting Eqs. ( 2 2 )  and ( 17) into the expression for H,  in M=jk, al=O. . . j - I ,  l = l  . . . k .  
Eq. ( 16) and applying the Hubbard-Stratonovich transfor- 
mation to all the terms except that with D(T) ,  we obtain In Eq. ( 2 6 )  the quantity r, defines the valley number a  in the 
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ultrametric space, whereas z  is the distance between the val- 
leys on a logarithmic scale. We can easily show that the as- 
sumptions about the nature of the matrices of Eqs. ( 2 0 )  and 
( 2 2 )  correspond to the case when pa, = q [ z ( r ,  - r, ) ]  and 
to a similar expression for pa, in terms of A  ( 2 ) .  A diagonal 
matrix element is described by 

Tr P [ m ( z I )  m(zz)exp(-H0(h) /T)  I 
= ' Sp P exp (-Ho ( h )  IT)  7 ( 2 7 )  

where F, ( h )  is a one-particle distribution function of the 
molecular fields. Explicit equations can be written down for 
F2 and F, . These are fully analogous to the corresponding 
equations in the classical case. The specific nature of the 
quantum case is that these equations contain explicitly the 
expression for M ( h ) ,  which naturally depends on the explic- 
it form of U(m, r )  and on quantum fluctuations, as well as 
on the function D ( r ) ,  which is defined by Eq. ( 2 7 ) .  How- 
ever, neither F, ( h , ,  h,, z )  nor q ( z )  depend explicitly on r  
and it is this fact that makes it possible to extend all the 
expressions and equations of the conventional theory to the 
quantum case. By way of example, we shall simply give the 
expression for F, ( h ) .  The equations for all the other quanti- 
ties, particularly theexplicit expression for the total probabi- 
listic functional, are easily obtained following for example 
the treatment in Refs. 6, 16, and 17. The quantity F ,  ( h )  is 
the boundary value of another function for which we have 
the equation 

1 d 
+-Ar(z) ,aST[F(zj  T h ) M ( z .  h )  I )  , 

( 2 8 )  

Fi ( h )  =F (0, h ) ,  F (m, h )  =6 ( h )  . 

Thelast equality gives the boundary condition for F(z ,  h  ) . In 
the case of M ( z , h ) ,  we have a similar equation 

- dZM (z, h )  
dh2 

( 2 9 )  

N (0, h )  =M ( h )  , 

where the boundary function M ( h )  is defined in Ref. 12. The 
quantities q ( z )  and A ( z )  are obtained by going to the contin- 
uous limit for A, and q, . These topics are discussed in detail 
in Refs. 6  and 16. The equation for D ( r ,  - r,) is included in 
Eq. ( 2 7 ) .  We note that the average magnetization is 
(m, , )  = M ( w , h )  and not M ( h ) .  

It is clear from Eqs. (28) and ( 2 9 )  that only the func- 
tion M ( h ) ,  which defines the boundary conditions for 
M ( z , h ) ,  is sensitive to the quantum nature of the problem. 

Extension of the whole theory to the case of a structural 
glass of the order-disorder type presents no difficulty. All 
that we need to do is to replace Ho of Eq. ( 11 ) everywhere 
with the expression 

Since in all the molecular field equations the informa- 
tion about the system occurs only in H,, this defines fully all 
the equations. 

Therefore, we now have a closed system of equations for 
all the quantities of interest to us. This has been possible only 
because q ( z )  and A ( z )  are independent of r. If such a de- 
pendence exists, equations of this kind cannot be derived. 

However, even these equations are fairly complex. We 
shall therefore attempt to write down simpler equations sub- 
ject to certain approximations. In particular, we shall con- 
sider the intravalley susceptibility D ( T ) .  

4. PERTURBATION THEORY 

We shall begin with a fairly simple case of a structural 
glass of the displacive type with a weak anharmonicity. In 
this case we can develop perturbation theory on the basis of 
the anharmonicity constant u and bypass the general theory. 
We shall consider only the nonergodic range so that we shall 
use Eq. ( 1 6 ) .  

It is clear from Eq. ( 1 6 )  that q,,,, ( r )  (the operator i j  
depends only the difference of times r = 7 ,  - 7,) is a con- 
ventional correlation function modified somewhat to allow 
for the problems encountered in disordered systems and for 
nonergodicity. Therefore, the usual perturbation theory 
based on the anharmonicity constant u can be applied to this 
correlation function. This theory has been used in the classi- 
cal limit to deal with the dynamic problem in other papers of 
the present In the present case this should be the 
standard theory for the Matsubara correlation functions 
q,,,ah ( 7 )  or their Fourier transforms (see, for example, Ref. 
18) : 

The second equality follows from Eq. ( 17) .  If I ,  = 0 and 
u = 0, we are left with a bare correlation function of a har- 
monic oscillator 

D,, (a , )  = ~ W , , ~ / ( W , ~ +  0 0 ~ ) .  (32 

In our case, we find from Eq. ( 16) that 

where ij(w,, ) is the expression for the correlation function 
+(a, ) written down in the operator form and occurring in 
Eq. ( 3  1 ), whereas E is the unity operator. 4 s  in Refs. 1 1 and 
12, we shall consider 5 graphs of first (Z"')  and second 
(i'2') orders in respect of the anharmonicity constant. 
These graphs are 
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3u2 3 
x;::b (T) = q,,vab (TI. 

We can calculate explicitly if we allow for the fact that, as 
can be demonstrated on the basis of Eq. ( 2 2 ) ,  each matrix 
element obeys pa, - 1 /M< 1 ,  whereas q,, and D are of the 
order of unity. If this is allowed for, we obtain 

It is clear from Eq. ( 3 5 )  that, as expected, all the terms 
representing nonergodicity are contained only in the term 
with zero frequency. Therefore, if n#O,we obtain directly 
the following simple equation for D ( w ,  ): 

We shall now consider the term with w,, = 0  in Eq. 
( 3 3 ) .  Then, as is clear from Eqs. ( 3  1 ) and ( 3 5 ) ,  we obtain 
equations for 

and Z ( w ,  = 0 ) .  Since D ( w ,  ) and X ( w ,  ) are analytic in w,,, 
it follows that to find them we have to use Eq. ( 3 6 )  and then 
assume that w,  = 0.  However, the most interesting term is 
nonanalytic in w ,  and it is this term that characterizes non- 
ergodicity. 

We can write down the equations for q,, and pa, by 
noting first of all that, in the language of the variable z in Eq. 
( 2 6 ) ,  the hypothesis about the nature of the matrices of Eqs. 
( 2 0 )  and ( 2 2 )  implies that 

We can solve our equations for the matrices q,, andp,, quite 
conveniently by the Fourier transformation in terms of the 
variable rob. We can easily show that 

Using Eq. ( 3 9 ) ,  we readily find that Eqs. (33 ) - (35 )  yields 
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the following expressions for q ( y )  and A ( y  ) : 

We can readily demonstrate that the boundary condi- 
tion for A ( y )  is 

Comparing the second equation from the system ( 4 0 )  
when y  = 0  with Eq. ( 3 6 ) ,  we can see that Eq. ( 3 6 )  is satis- 
fied for all values of w,,. This is of course to be expected. 
Next, differentiating the second equation from the system 
( 4 0 ) ,  we find that 

In the classical limit ( T$w,,  ) all the sums over w,, are 
replaced with one term corresponding to w,, = 0.  Then, ob- 
viously, we obtain 

and the usual equations for the classical soft model" then 
follow from Eqs. ( 3 6 ) ,  ( 4 0 ) ,  and ( 4 2 ) .  

We then find that the first equation of the system ( 4 0 )  
and Eq. ( 4 2 )  are both degenerate and give only the relation- 
ship between q ( y )  and A ( y )  : 

This relationship is an expression of the well-known (in the 
classical case) scaling invariance. 

A detailed analysis of the molecular field equations in 
the range of validity of perturbation theory is very interest- 
ing, but it is outside the scope of the present article. 

5. ORDER-DISORDER STRUCTURAL GLASSES 

In an investigation of the order-disorder structural 
glasses we have to use Eq. ( 16) with the Hamiltonian of Eq. 
( 4 ) .  Our main task in this section will be to obtain explicitly 
the dynamic correlation function in the w  representation in 
terms of quantities characterizing the nonergodicity of the 
system. It is this dynamic correlation function that is deter- 
mined in spectroscopic experiments. 

Spectroscopy of structural glasses should exhibit a 
range of fundamentally new phenomena. In particular, a 
change in any parameters of a system such as the tempera- 
ture or the external electric field, should result in slow relax- 
ation of the lines studied spectroscopically. This relaxation 
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is similar to slow relaxation of amplitudes of the dynamic 
susceptibility of spin glasses and is a very interesting effect 
not observed so far experimentally. Studies of these phenom- 
ena require a dynamic theory of structural glasses. This the- 
ory will be provided elsewhere. In the present paper we shall 
employ a static theory framework to study just the equilibri- 
um dynamic correlation function. 

The only small parameter in the Hamiltonian of Eq. ( 4 )  
which can be used is a transverse magnetic field A. We shall 
assume this parameter to be small compared with tempera- 
ture and assume that the static approximation is sufficient to 
find it. This approximation was first suggested in Ref. 8  for 
the quantum spin in the paramagnetic region. 

The meaning of this approximation is as follows. We 
have seen in the preceding section that if w, & T ,  then 

This does not mean that D ( w )  is nonanalytic in respect of 
the frequency. It does mean only that the characteristic fre- 
quencies are low compared with temperature and, at fre- 
quencies in the range w  - T we have now a 6-function maxi- 
mum at w  & T. Since the Matsubara times obey T -  T  -', it 
follows that D ( T )  = d and that it is almost independent of T.  

We can then find D ( T )  simply from the equation ford. Natu- 
rally, this equation, together with the equations for @ and a, 
is valid in the static approximation. In fact, this is the classi- 
cal approximation, but we are retaining the standard termin- 
ology and calling the approximation static. 

In our case of an order-disorder structural glass the pa- 
rameter of this approximation is A/T, which we shall regard 
as small. However, as a result of the interaction we can have 
a situation when there are characteristic frequencies w  - T. 
The behavior of the correlation function at these frequencies 
can be found by applying a special perturbation theory. We 
shall do this by taking the right-hand side of Eq. ( 13) and 
replacing D ( T )  in the exponential function simply with dT 
and then calculating D ( T )  on the left-hand side. This gives 
the following expression for the left-hand side: 

D ( T )  =d,T+D, (T), 

where Id - d l  I T, and D,  & d T  in terms of the parameter 
A/T. In the w  representation we obtain correspondingly 
d ,6 , ,  + D ,  ( w ,  ) and then Dl  ( w )  changes significantly at 
w  - T. Therefore, the whole dependence at w  & Toccurs only 
via d and the dependence at w  - Tis calculated from pertur- 
bation theory. 

It therefore follows that in the zeroth approximation 
with respect to the semiclassical parameter, we have 

In the case of the parameter d we now obtain the equation 
valid in the nonergodic range. It corresponds to the static 
approximation of Ref. 8, deduced for the paramagnetic 
range. 

We shall determine first of all the physical picture that 
corresponds to Eq. ( 4 5 ) .  We shall therefore discuss the fol- 
lowing quantity: 

Zo=Tr P esp [-H,(h)/T] . ( 4 6 )  

and in many other similar expressions. If the expression for 
Ho ( h )  of Eq. ( 1 1  ) is modified by the substitution of Eq. 
( 4 5 ) ,  we find that 

H,(h)=-hm+U(m, r ) .  

It is clear from Eq. ( 4 7 )  that the partition function 
(and not its logarithm) is averaged over a certain Gaussian 
field y. This means that the static approximation reduces to 
the fact that the system now has a certain thermodynamic 
equilibrium Gaussian field with a variance equal to 410dT, 
since in the presence of a thermodynamic equilibrium field 
the averaging procedure is applied to the partition function 
itself and not to its logarithm. 

It follows that in the static approximation we simply 
have an additional stage of averaging over the equilibrium 
field y. For example, Eq. ( 12) becomes 

Yltv=q=(MZ(h) > h  for p+v, 

and similar changes occur in Eq. ( 13 ) . 
Similar modifications apply to all the expressions ob- 

tained for the nonergodic range. The system of equations is 
closed by 

l / T  

d = j  D ( r ) d r .  ( 4 9 )  
0 

where D ( T )  is found from the modified form of Eq. ( 13) in 
the ergodic range and from a similar expression for the non- 
ergodic range. This is clear from Eq. ( 2 4 ) ,  which now can be 
rewritten in the form 

qvv, ( T , .  -cZ) = (Tr {P [ml.o(.rl) 

Separating from q,,,, (T,,T,) the value of D ( T ,  - T,)  on the 
basis of Eq. ( 17) and substituting the results in Eq. ( 4 9 ) ,  we 
obtain a closed equation for d. Moreover, Eq. ( 5 0 )  gives an 
equation also for the matrices q,, and p,, that occur in Eq. 
( 1 7 ) .  Therefore, the static approximation yields a closed 
system of equations for the matrices q,, andp,, and for the 
parameter d. 

The final equations are analogous to Eqs. ( 2 8 )  and 
( 2 9 ) ,  except that the boundary condition for M ( 0 , h )  
= M ( h )  is not described by the general expression ( 1 2 ) ,  

with Ho from ( 1 1 ), but by the simple expression forM(h) in 
Eq. ( 4 8 ) .  Therefore, we can see that in the static approxima- 
tion the problem becomes quite simple, at least no more 
complex than in the classical case. 

We found the form of the equations obtained in the stat- 
ic approximation using the example of structural glasses of 

This quantity occurs, for example, in Eqs. ( 12) ,  ( 13) ,  (27 ) ,  the displacive type, but in the case of the order-disorder 
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glasses the situation is exactly the same except that H, ( h )  is 
no longer described by Eq. ( 4 7 )  but becomes 

H , ( h )  =-hS2-AS". ( 5 1 )  

Following Eq. ( 5  1 ), we also obtain M ( h )  of Eq. ( 4 8 ) ,  but 
now instead of m in the trace we have 9. 

We shall now return to the problem posed at the begin- 
ning of this section, namely calculation of the dynamic sus- 
ceptibility for an order-disorder structural glass considered 
in the static approximation. We shall postulate that this ap- 
proximation is used in the zeroth order with respect to A/T 
to perform the standard task in the physics of structural 
glasses, namely to determine q,,  , p,,, and d. We now know 
the explicit form of all the distribution functions of the static 
molecular field, including the single-particle function F ,  ( h  ) 
as well as the Gaussian distribution function of thermody- 
namic equilibrium fields y introduced in Eq. ( 4 7 ) .  When we 
know these quantities, we can calculate the dynamic suscep- 
tibility using the next order in A/T. 

We can easily show that in the T representation the lon- 
gitudinal dynamic susceptibility obtained for q,, < 1 is of the 
form 

D ( T - T I )  = / dh  F. ( h )  ( ~ r  P { s ' ( ~ ) s ' ( ~ ' )  

We can see that the numerator and denominator are aver- 
aged over y separately, and their ratio is averaged over h. 
This corresponds to the presence of static and equilibrium 
fields in the system. The averaging overy is carried out using 
Gaussian fluctuations of the distribution introduced in Eq. 
( 4 7 ) .  In the denominator of Eq. ( 5 2 )  the symbol of ordering 
with respect t o p  is removed in exactly the same way as was 
used to introduce it in Eq. ( 5 ) .  The denominator of Eq. ( 5 2 )  
can be calculated explicitly and the result is 

Calculation of R in thew representation yields 

ch [ ( h Z + A 2 )  lb /2T]  
R (h ,  on) = 

2 ( h 2 + A 2 )  

(h2+A2)"a 
th - 2AZ 

(io,) '- ( h Z + A Z )  

It is clear from Eqs. ( 5 3 )  and ( 5 4 )  that if A - 0 ,  then 
R (w, ,  ) -S,,.O, as expected. Naturally, Eq. ( 5 4 )  is valid only 
if A < h, T so that Eqs. (53  ) and ( 5 4 )  should be expanded in 
terms of A2, retaining the zeroth and first terms in A2. In the 
limit A -0 we naturally have 

It is the above value of d that can be used in the averaging 
over y when A* is small. Therefore, for small A we have to 
find only F , ( h ) .  Clearly, in the lowest order in A' we can 
find F, ( h )  using the conventional static theory for the Ising 

model. Then, if we expand all quantities in A2 and retain the 
contribution of the zeroth order in A' in the static term 
(-a,,,) and the first-order contribution in the dynamic 
term, we find that 

1 sh[ ( h + y ) / 2 T ]  ) (2chh+Y)- ' .  
io,) ' -  (h+ y) 27' v 

( 5 6 )  

Therefore at low values of A', D ( w ,  ) is given by Eq. ( 5 6 )  
and we can find d and F,  ( h )  without solving the full quan- 
tum problem but simply tackling the classical Ising model. 
Equation ( 5 6 )  represents the simplest example of the appli- 
cation of perturbation theory based on A2, mentioned at the 
beginning of this section. 

It is interesting to note the following. The thermody- 
namic equilibrium field y with the variance 

does not disappear at all in the limit A -0. The static term in 
Eq. ( 5 6 )  is indeed independent of y, but the dynamic term 
retains this dependence fully. 

We must bear in mind that near the paramagnetic re- 
gion we have ( h  2 ,  < (y2), so that the main broadening occurs 
in this region because of the scatter of y. In particular, this 
broadening is retained also in the paramagnetic region 
where F, ( h  ) = 6 ( h ) ,  and Eq. ( 5 6 )  contains only the averag- 
ing for y. 

We shall now use the static approximation to calculate 
the transverse correlation function G. By analogy with Eq. 
( 5 3 ) ,  we obtain 

Calculation of G  and K i n  thew representation gives 

c h ( ( h 2 + A 2 )  % / 2 T )  
K ( h ,  6 ) " )  = 

2 {h'+Az) 

The expression for G(w, ,  ) given by the second equation of 
the system ( 5 9 )  is valid subject to the condition A< T,y. 

We have thus derived explicit expressions for the longi- 
tudinal and transverse correlation functions. We must stress 
again that the term 6,,,, includes all the frequencies w < Tand 
does not imply nonanalyticity in respect ofw. The term with 
w -  T in the longitudinal correlation function is small in 
terms of the parameter A/Tand therefore the use of pertur- 
bation theory in the calculation of this term is fully justified. 
It is interesting to note that the transverse correlation func- 
tion G ( r )  depends completely on r when A 4 T. However, 
this correlation function does not occur in the molecular 
field equation and, therefore, its significant dependence on T 
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does not alter the validity of the static approximation. 
We note that this behavior of D ( T )  should have the 

effect that in a study of longitudinal fluctuations there will 
be a strong central peak and a weak background greatly 
broadened by an amount w - T. In studies of transverse fluc- 
tuations there should be practically no central peak, but the 
background should be very strong for w - T. It  would be 
interesting to check these predictions experimentally. 

We shall conclude by noting that even well inside the 
region of existence of a structural glass phase when A/T< 1, 
the condition ( 5 7 )  is obeyed and all the distribution func- 
tionsof the type F, ( h ) ,  F2 ( h ,  , h ,  ), etc. can be determined as 
in the case of the conventional Ising model. Therefore, ex- 
pressions of the ( 5 3 ) - ( 5 6 )  type are still valid. However, if 
the condition A/T< 1 is not satisfied, the static approxima- 
tion cannot be employed. 
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