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We show that the directivity (non-equilibrium) of a cascade process (splitting or merging of 
vortices) leads to a very strong nonlinearity in the description of homogeneous turbulence. The 
"thermodynamics" of the degrees of freedom of such turbulence turns out to be nonlinear for 
arbitrarily low pulsation energies. We propose a method of virtually balanced cascade processes 
which makes it possible to apply in this situation the maximum entropy principle to a virtual 
system in which there is, apart from the real cascade, a virtual cascade in the opposite direction. 
We find, for the inertial range ofscales, spectral densities ofthe pulsation energy of the form kY,  
kY ln(kL) ,  kY ln2(kL), ..., where L is the correlation (integral) turbulence scale. We establish 
agreement of the first two dependences with the experimental data of various authors. 

A physical system isolated from external actions tends 
with time to a state of equilibrium. This state is character- 
ized by maximum entropy. Usually the transition of the sys- 
tem to equilibrium takes place in two stages: the formation of 
quasistationary nonequilibrium states and the evolution of 
the quasistationary states to complete statistical equilibri- 
um. We shall in the present paper be interested in quasista- 
tionary nonequilibrium states in homogeneous turbulence. 
However, although one can use for stationary equilibrium 
states the maximum entropy condition, there is no such uni- 
versal extremum principle for a quasistationary nonequilib- 
rium situation.' When one is dealing with advanced turbu- 
lence one usually stipulates that this is a system with a very 
large number N of degrees of freedom. There is an estimate 
of how N depends on the Reynolds number (Ref. 2):  

In fact, one is dealing here with the number of vortices." 
Formally one can take as degrees of freedom, for instance, 
the modes of the Fourier expansion for the velocity field- 
discretization of the model in this case is usually accom- 
plished by considering a large but finite region of motion. 
The dynamical equations in this model are the Navier- 
Stokes set. The applicability of the Liouville theorem leads 
to a simplified nonviscous set of equations for the Fourier 
expansion modes, and for a special choice of variables one 
can also change to  a Hamiltonian ~ y s t e m . ~  

1. In the case of uniform isotropic turbulence without 
external energy supply, a monotonic damping with time (de- 
generation) of the average kinetic pulsation energy, propor- 
tional to (u2) ( U  is the characteristic velocity of the pulsa- 
tions) will occur. Kolmogorov and Obukhov (see Ref. 5 )  
advanced the idea of existence in advanced turbulence, of an 
extended range of wave numbers characterized by a quasi- 
stationary behavior. The basis of this idea was the assump- 
tion that for that range of scales the characteristic times for 
the processes were small compared to the characteristic time 
for the total degeneracy. Such a ratio of the characteristic 
times makes it possible for the degrees of freedom from that 
range to be easily adapted to a slow change in the integral 
turbulent regime. The quasistationary state of these degrees 
of freedom depends on a few integral parameters of motion 

and only through them on the time. The use of these ideas 
led, in particular, to finding the Kolmogorov-Obukhov law 
for the spectral density of the energy E: 

( k  is the absolute magnitude of the wave number, 
E = id  (u2)/dt, and cis a constant). In the above-mentioned 
range a cascade process of subdividing the vortices takes 
place; this consists of the f~ l lowing .~  Large-scale (energy- 
containing) vortices split up and in that way transfer their 
energy to smaller vortices which, in turn, also split up, and so 
on, until the size of the vortices produced becomes so small 
that they vanish rapidly under the action of the viscosity 
(and in them the energy dissipation is realized). The reality 
of the splitting-up process, and also of the inverse process of 
the merging of vortices, has been confirmed by direct obser- 
v a t i o n ~ . ~  

2. If we introduce the entropy Sof  the system of degrees 
of freedom in the quasi-equilibrium range it will, in the case 
of uniform isotropic turbulence, be a functional of the energy 
E and will depend on the time only through E(k, t ) .  

The first question in which we shall be interested is the 
question of whether S is a regular functional of E ( k )  in the 
vicinity of E = 0.' This question is nontrivial because of the 
essential nonlinearity of the hydrodynamic equations. How- 
ever, a negative answer to this question means that for small 
E one cannot use an expansion of S ( E )  in regular functional 
series, and thus the "thermodynamics" of the turbulent de- 
grees of freedom in the quasi-equilibrium range will be non- 
linear even for small E. 

We consider the functional derivative SS/GE(k) as a 
functional o fE(k)  in the vicinity o f E  = 0 (i.e., for small E). 
We assume that this functional can be expanded in a regular 
functional power series in E,' and we restrict ourselves for 
sufficiently small R to the first term in that expansion: 

6s 
-=- 6S + G ( K T ,  K )  E ( K ' )  dk'. 
6E ( k )  6E ( k )  I .=, I ( 2 )  

The function G(k ',k) describes the action of the degrees of 
freedom characterized by the wave number k ;on the degrees 
offreedom of wave number k. If the main contribution to the 
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entropy comes from the interaction realized through the 
splitting up (cascade), G( k ',k) can be roughly approximat- 
ed by a singular generalized function with its peak at 
k ' = ak,  where a is the multiplicity of the scale splitting in 
the cascade (if the scale is divided into Nparts, a = N - ' ) . It 
follows from the well known theorem about such functions7 
that G(k ',k) can be written uniquely in the form 

where the g, (k )  are functions of k and 6 ( x )  is the Dirac 
delta function. The number Nis called the order of the func- 
tion G (Ref. 7, p. 22) and is determined by the differential 
properties of the functions E ( k )  in the vicinity of k = 0 
(Ref. 5, p. 15 1 of original). One notes easily that the cascade 
representation (3) of G(kl ,k)  is not symmetric under an 
exchange of k ' and k (this is clearly connected with the pre- 
ferred cascade direction-splitting up). However, it is clear 
from (2)  that 

G (k ' ,  k )  =S2S/6E(k ' )6E(k) ,  (4)  

and hence, the function G(k ',k) must be symmetric under 
an exchange of k ' and k. The idea of a directed cascade (split- 
ting up) is thus incompatible with a regular nature of the 
functional S(E) and, hence, in the case of such a cascade the 
functional S is nonregular. This, in turn, leads to the nonlin- 
earity of the thermodynamics in the quasistationary range 
even for small E. 

3. We consider a virtual system in which we combine a 
reverse cascade with the real cascade, i.e., together with the 
splitting up of vortices a merging which statistically is the 
inverse process of the splitting up occurs (one should note 
that the inverse cascade is in fact observed in turbulent 
flows3). In that case, we can write instead of (2)  the entropy 
S,, in the form 

where 

G" ( k ' ,  k )  =G ( k ' ,  k )  +G' ( k ' ,  k )  , (6)  

G(kl ,k)  is given by Eq. (3),  and 

dP6 ( k -ak ' )  

P G N  

a is the multiplicity of the real splitting up (see above), and 
l / a  the multiplicity of the virtual merging of the vortices, 
which is statistically the inverse of the real splitting up. 
G, (k ',k) which is given by Eq. (6)  is now symmetric under 
an exchange of k ' and k and the equation 

G" (k',  k )  = 

does not contradict the representation (6).  For the virtual 
system we can therefore use an expansion of S, (E) in a regu- 
lar series in integral powers of E and the thermodynamics of 
the virtual system is linear for small E. 

By virtue of the additivity of the energy the spectral 
energy density for the regular system differs from the spec- 
tral energy density for the virtual system merely by a factor 
1/2. We shall therefore use below the same sqmbol E for the 
spectral energy density of the virtual system as for the real 
system, since this is unimportant for what follows. 

4. The virtual system is not only thermodynamically 
linear (for small E) but also in equilibrium. Indeed, the pres- 
ence in it of the virtual cascade which is statistically the in- 
verse of the real cascade enables us to consider it to be closed 
and to formulate for it a maximum entropy extremum prin- 
ciple (virtual statistical equilibrium) : 

First of all, it is clear that the state with E ( k )  G O  is the 
state of virtual statistical equilibrium, i.e., 

It follows from ( 10) and (5)  that 

Substituting the representation (6)  into ( 11 ) and using ( 3 )  
and ( 7 )  we get the condition for virtual statistical equilibri- 
um in the form of a differential equation 

dPE ( a k )  
{gp(k)  a-p dkp 

p<N 

Considering in the quasiequilibrium range a scale-invariant 
subrange,' we impose on g, ( k )  the requirement of unifor- 
mity of order p in the variable k [in order that Eq. ( 12) in 
that range be scale invariant]. We must note that Eq. ( 12) 
can be scale invariant while its solutions will not possess 
scale invariance. This phenomenon is connected with spon- 
taneous symmetry breaking and is due to the degeneracy of 
the equation. It enables us to use this equation in a wave- 
number range which is much broader than the scale-invar- 
iant one (see below). 

It follows then from Euler's theorem about homoge- 
neous functions that g, ( k )  = a, kP, where the a, are con- 
stants. We get then from ( 12) 

dPE ( a k )  dPkPE ( k l a )  
dkP 

+ ( -1)  papa-P ]= 0. 
* < N  

dk* 

Equation ( 13) is a linear homogeneous differential equation 
with a divergent argument of the Euler equation type (Ref. 
9, p. 96). This equation has a solution of the form (Ref. 9, p. 
96 

where q is the multiplicity of the root y of the characteristic 
equation and L a constant with the dimensions of length. 
The case 0 = 0, i.e., power law solutions E a kY, is known 
for the scale invariant range [see Eq. ( 1 ) and Ref. 81. But 
there are solutions ( 14) withp = 1, ... which are unusual for 
the theory of uniform turbulence. It is interesting to com- 
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pare solution (14) with f l  # O  with the modified Kolmo- 
gorov-Obukhov theory .598 In the present approach the spon- 
taneous symmetry breaking (scale invariance) leads to 
violation of the power law nature of the spectrum, but in the 
modified Kolmogorov-Obukhov theory the spectrum con- 
tinues to obey a power  la^.^.^ 

We turn to experiments. It has been possible in experi- 
ments to observe power-law solutions of the form ( 1 ) (Kol- 
mogorov-Obukhov law) over a rather broad range of wave 
numbers in shear flow for very large values of the Reynolds 
number. However, in experiments behind hydrodynamic 
grids (which model uniform isotropic turbulence) so far one 
has not succeeded in doing so. A verification of the fact that 
power laws are satisfied experimentally is accomplished by 
choosing a doubly logarithmic scale. In these graphs the data 
fit a straight line if they obey a power law. To verify the 
dependence ( 14) with /I = 1 we must choose semilogarith- 
mic scales: k YE and Ink. In these scales the experimental 
data lie on a straight line, if they satisfy the relation 

For y we choose the value y = - 5/3 (corresponding to the 
Kolmogorov-Obukhav hypothesis5). We show in the figure 
the data described in Refs. 10 and 1 1. The straight lines cor- 
respond to sections where the relation ( 15) is satisfied. 

5. Vortices with scales larger than the correlation (inte- 
gral') scale have low probability in uniform turbulence so 
that their contribution to the integral characteristics of uni- 
form isotropic turbulence is unimportant. In the model con- 
sidered this is reflected by the fact that E (k )  -0 as k- 1/L, 
if we use solution ( 15). Therefore, in the given model it will 
be natural to identify L with the correlation (integral) scale. 
That this identification is adequate can be checked by com- 
parison with experiments. Indeed, the correlation (integral) 
scale of uniform isotropic turbulence in an incompressible 
fluid is connected with the spectral energy density through 
the equation (Ref. 5, p. 54 of original) 

m m 

3n 
L = -  J k-'E (k) dk l3nS k-iE (k) dk/2<uz) ( 16) 

2<uZ> 
L-1 

(longitudinal scale). 
We substitute into ( 16) the representation ( 15) recon- 

ciled with the Kolmogorov-Obukhov approach, i.e., 

FIG. 1 .  Verification of the relation E a  k -'/'ln(kL) by experiments be- 
hind grids: @-Ref. 10, Re = 1 . 0 5 ~  lo4; 0-Ref. 1 1 ,  Re = 3.4X lo4; (7 
is the Kolmogorov length scale, E ,  ( k ,  ) the one-dimensional density; one 
proves easily that if E ( k )  is described by a relation of the form (15),  
E,  ( k ,  ) is also described by a relation of that form). 

where c=: 1.5 (Refs. 5 and 12) and E = id  (u2)/dt. We get 

where 
m 

In experiments one usually measures the longitudinal com- 
ponent of the velocity pulsations (u: ) which is connected 
with (u') through the relation 3(uf )  = (u2). For it we can 
rewrite Eq. ( 18) in the form 

where A = OA, .  Substituting for c its value 1.5 we find that 
A = 0.85. In a recent experiment described in Ref. 13 (u: ) 
and L were measured in flow behind a grid which models 
uniform isotropic turbulence. In this experiment the quanti- 
ty L ( d  (u: ) / d t )  (u: ) -312 was indeed practically constant 
and the value of this constant was in that experiment 
Az0.78. 

We must note that Eq. ( 19) has been known (as a semi- 
empirical relation) for a very long time14-although the val- 
ue of the constant A had not been evaluated theoretically. 
Earlier experiments gave for the values of the constant A a 
spread from 0.8 to 1.4, with A tending to 0.8 as the Reynolds 
number increased.I4 However, the experiments indicate also 
a dependence of the exponent in the energy degeneracy law 
on the conditions at the grid ("initial conditions") and 
changes in the law for the increase in L are not always corre- 
lated with changes in the energy damping law in such a way 
that Eq. (19) is satisfied. This problem has not yet been 
cleared up. 

6. The problem of whether some solution or other from 
the set ( 14) is realized can apparently be solved theoretically 
by a study of the stability. However, to do this one must 
know theformofS2S,/SE(k ')SE(k) not only forE = 0, but 
also for E (k )  given by ( 14), since the stability condition is 
given by the relationI5 

G2S, 
6's. = 

6E (k') 6E (k) 
6E (k') GE (k) dk' dk<O 

in the situation of virtual equilibrium which we studied. 
The author is grateful to a referee of the paper for useful 
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