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An analysis is made of the dynamics of dislocations governed by fluctuation-induced overcoming 
of point obstacles distributed at random in the bulk of a metal. It is shown that an elementary 
event of fluctuation-induced detachment of a dislocation from a pinning center depends strongly 
on the stochastic dynamics of the center. A study is made of low-temperature anomalies of 
temperature-independent behavior of the plasticity of materials and also of the superconducting 
softening effect in a metal. The temperature at which temperature-independent behavior of the 
yield stress appears is related to quantum fluctuations of a dislocation or a pinning center, 
depending on the ratio of the masses of the atoms of the matrix and of the point defect. In the case 
of sufficiently heavy obstacles this temperature is given by the frequency of a quasilocal mode and 
is of the order of tens of kelvin. On the other hand, the softening of a metal as a result of a phase 
transition to the superconducting state is attributed to the exponential dependence of the velocity 
of dislocations on the viscosity determined by quasiparticle excitations. 

1. INTRODUCTION 

In developing a physical theory of the strength and plas- 
ticity of solids we have to exhibit the mechanisms of micro- 
scopic processes limiting the dislocation dynamics, because 
it is this which determines the process of plastic deformation 
of a crystal. The difficulties encountered in experimental and 
theoretical investigations of the dynamic behavior of dislo- 
cations are due to the great variety of factors influencing 
their mobility. Under a given external load the deformation 
conditions depend on the type of a crystal, the crystal struc- 
ture of the lattice, nature of the moving dislocation, and on 
numerous mechanisms of the interaction both with the mi- 
crostructure of the stress field (determined by the character- 
istics ofthe real material and by the lattice defects) as well as 
with various quasiparticle excitations. In discussing this 
problem it is usual to separate the main dislocation drag 
mechanisms into two groups (for a review see, for example, 
Ref. 1) .  The first group deals with the effects of barriers 
created at a local obstacle such as impurities, point defects, 
radiation damage, etc. or by the Peierls potential relief, 
which is an unavoidable concomitant of the periodic struc- 
ture of the lattice. As is well known, such barriers are over- 
come by thermal or quantum fluctuations. The second group 
comprises dynamic dissipative processes of the interaction 
between dislocations and elementary excitations in a crystal, 
primarily phonons and electrons. This type of interaction is 
viscous and at low dislocation velocities the drag force is a 
linear function of the velocity, the coefficient of proportion- 
ality representing the viscosity of the quasiparticle gas. 

This arbitrary division has been used for a long time and 
seems very natural. However, in the interpretation of experi- 
mental results the contributions of fluctuation and dissipa- 
tive effects to the physical mechanics of a crystal are fre- 
quently nonadditive. This is manifested particularly in 
low-temperature investigations of the plastic properties of 
metals. 

The first investigations of mechanical properties of sol- 
ids at helium temperatures were made over fifty years ago by 
Meissner, Polanyi, and S ~ h m i d . ~  They found that the plasti- 
city of cadmium and zinc single crystals was maintained 

down to 4.2 and 1.2 K, respectively, and that they deformed 
at stresses lo2-lo3 times less than for an ideal crystal. The 
rate of creep of these materials was found to be independent 
of temperature. At present there are many experimental data 
demonstrating low-temperature temperature-independent 
behavior of plastic properties of a wide range of metals. 

The increase in the plasticity of metal as a result of a 
phase transition to the superconducting state discovered in 
1968 is very interesting.334 Numerous subsequent experi- 
ments described in Refs. 5 and 6 have established that this 
superconducting softening effect may reach 40%. A review 
of experimental and theoretical investigations of these low- 
temperature anomalies of the plasticity of metals was made 
by S t a r t ~ e v . ~  

According to the current theoretical ideas, the tempera- 
ture-independent behavior of the plasticity of metals is a 
manifestation of the quantum effects in the elementary event 
by which a dislocation overcomes obstacles, i.e., it is due to 
deviation from the classical thermal-fluctuation Arrhenius 
law. We shall restrict ourselves to the case when the lattice 
hinders the motion of a dislocation only via local obstacles. 

The first theoretical investigation of the role of quan- 
tum effects in low-temperature plasticity of metals was made 
by Mott.' He calculated the probability of overcoming of an 
obstacle by a part of a dislocation adjoining directly a pin- 
ning center. Mott assigned an effective mass to this part and 
regarded it as a free particle; in this way he was able to use the 
quantum-mechanical tunnelling effect to explain the experi- 
mental creep rate.') The characteristic temperatures at 
which this mechanism can become dominant are - 1 K. 
However, subsequent experiments have shown that tem- 
perature-independent effects in the plasticity of metals occur 
at temperatures right up to several tens of kelvin. Further 
development of the theory is due to Leibfried," who ana- 
lyzed the force exerted by a dislocation on a defect pinning it 
and showed that the probability of overcoming this local 
obstacle by fluctuations is largely determined by zero-point 
vibrations of dislocation segments adjoining the pinning 
center. The quantum motion of dislocations across a local 
obstacle was considered in Refs. 12-14 and in the case of 
strong coupling it was found that the characteristic tempera- 
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ture for the appearance of the quantum effects is the Debye 
temperature. However, as shown in Ref. 15, a more realistic 
model of weak pinning gives a temperature - 1 K for pre- 
dominance of quantum fluctuations. Mathematically this 
difference reduces to inclusion of more general boundary 
conditions imposed on the field of dislocation displacements 
at the pinning point and, therefore, to a correct allowance for 
the density of the vibrational states of the segments which 
represent distributed systems. A similar result was obtained 
later by LabuschI6 who used the same model. Therefore, a 
satisfactory theoretical interpretation of the temperature at 
which temperature-independent anomalies in the low-tem- 
perature plasticity of metals appear is still lacking. 

Since the superconducting transition is known to affect 
only the state of the electron subsystem, it follows that the 
change (reduction in the flow stress) in the plasticity as a 
result of the superconducting softening effect can be ex- 
plained by the sensitivity of the process of thermal activation 
to a reduction in the electron damping of a dislocation. The 
increase in the plasticity was interpreted in Refs. 17 and 18 in 
the spirit of the Kramers theory19 in terms of the way the 
preexponential factor in the probability for fluctuation-in- 
duced overcoming of a center depends on the viscosity gov- 
erned by the contribution of electrons in the normal state. 
This example is a sufficient demonstration of the nonadditi- 
vity of the fluctuation and dissipative mechanisms contrib- 
uting to the process of dislocation drag. However, direct ex- 
perimental measurements of the ratio of the velocities of a 
dislocation in superconducting and normal phases give w, 
/wN - 7 x lo4 (Ref. 20), which is in clear conflict with the 
predictions of the theories of Refs. 17 and 18, according to 
which we should have w,/wN-20. Such a difference by 
three or four orders of magnitude demands a further refine- 
ment of the models of dislocation motion. An alternative (to 
Refs. 17 and 18) mechanism for the influence of the viscosity 
A on the fluctuation mobility ofdislocations was put forward 
in Ref. 21. Development of the model of Ref. 13 demonstrat- 
ed that in the low-temperature (quantum) range the en- 
hancement of the influence of the viscosity on fluctuations of 
the temperature T i n  the Arrhenius law could be replaced 
with (a)wo ( 1 + 2A /mu, ), where w, is the Debye frequen- 
cy. We can easily show that far realistic values of A 5 10' ' 
s- ' (Refs. 1 and 21 ) we can ensure the observed value of w ,  
/w ,  only if we satisfy a fairly stringent condition w,  < 10 K. 
Here we propose a new mechanism for thermal-fluctuation 
motion of dislocations which makes it possible to allow for 
the quantum and dissipative effects in a unified manner. 

2. DYNAMIC DESCRIPTION OF A DISLOCATION 

To study the dynamics of a dislocation we use a chain 
modelz2 which is equivalent (in the long-wavelength ap- 
proximation) to the model of a string. Under the influence of 
a shear stress r which exceeds the Peierls stress r ,  a disloca- 
tion is pressed against a system of local obstacles lying in a 
glide (slip) plane z = 0; it assumes a static configuration 
which depends on the positions and nature of the pinning 
centers (point defects) as well as on the applied force br, 
where b is the Biirgers vector. We shall assume that point 
centers are distributed uniformly throughout the crystal and 
consider the simplest model, in which a dislocation moving 

average length I. The position of an atom along the disloca- 
tion is y = na, where a is the period along the chain and 
n = * 1, * 2 ,..., f N/2  = I /a.  We are interested in the 
process in which a dislocation overcomes a specific obstacle 
located at a pointy = 0, and we construct the following po- 
tential along the direction of motion of the dislocation 

so that the equation of motion [or of the displacement field 
u ( y,t) = u ( t )  ] can be written in the form 

Here, m is the mass of an atom in the chain; A is the kinemat- 
ic viscosity23; f l  is the quasielastic force coefficient; and 
F,, ( t )  is the fluctuation force which generally has, in accor- 
dance with the fluctuation-dissipation theorem,24 the fol- 
lowing statistical properties: 

(F, (r)  F,, ( t f  T )  >=4mhTK(~)  6,,9, 

wc 

Here the angular brackets denote the average of an ensemble 
of realizations of a random quantity. In the classical limit of 
high temperatures, assuming that T>fiw, we find that 
K ( w )  = 1, and the random force F,, ( t )  represents the ordi- 
nary thermodynamic white noise. In the opposite limiting 
case of low temperatures, when T < k ,  and K(w) = w I /  
2T, there are quantum fluctuations due to the zero-point 
vibrations. The frequency w,  is the cutoff parameter, which 
removes the divergence of the energy of a noise source. The 
white noise is an idealization, valid only if the space-time 
scale is sufficiently large. When the correlation scales are 
x c a and t < w, I, the fluctuations are, generally speaking, 
nonlocal and time-dependent." The use of the approxima- 
tion represented by Eq. (4)  makes it possible to consider the 
model analytically on the basis of the generally accept- 
ed13s'"21-26 theory of Gaussian fluctuations. 

The criterion for overcoming of an obstacle is 

The coefficient x = 25/D represents how the dislocation is 
pinned at the point n = 0. In the case of strong pinning we 
havex- 1 ( c i s  large) and u, ( t )  -0. 

Equation ( 2 )  is based on the assumption that the obsta- 
cle has an infinite mass. The solution of the problem of over- 
coming of a local obstacle by dislocation as a result of fluctu- 
ations at high temperatures (corresponding to the range of 
validity of the Arrhenius law) was obtained for this case in 
Ref. 26 and, allowing for quantum oscillation, also in Refs. 
15 and 16. 

A point center of finite mass ,u is elastically coupled to 
the crystal matrix and the coupling is represented by the 
coefficient 7~ SO that fluctuation motion u(t) of such 
a pinning center is possible and this motion is described by 

in the x directionis separated along y into segments with the pv+2pvzi+xv(t) =f(t), ( 6 )  
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where f( t )  is a steady-state random force acting on an obsta- and the dispersion law of dislocation vibrations is given by 
cle and characterized by a zero average the expression 

and by the correlation function 

(f ( t ) f ( t + ~ )  )=4pvTK(~) ,  

where v is the viscosity of the obstacle. In the same approxi- 
mation (4 )  postulating large-scale fluctuations, we shall as- 
sume that the forces F, ( t )  and f( t )  are uncorrelated. For 
simplicity, we shall assume that the coefficients A and v are 
identical and equal to y. This assumption simplifies the cal- 
culations, but does not affect the basic principles of the prob- 
lem discussed here. 

When we allow for stochastic motion of the pinning 
center, the fluctuation dynamics of a dislocation can be de- 
scribed by two coupled differential equations 

We shall describe the displacement of a dislocation by a sum: 

Then, in the weak-pinning approximation characterized by 
x < 1 the static displacement of an obstacle can be ignored 
and the sag of a dislocation under the action of an applied 
stress r is obtained by imposing on the ends of the segments 
the periodic boundary conditions 

and assuming that (2a/x1) < 1, this gives 

where 

We shall seek l,, ( t )  in the form 

where the sum is calculated using all the permissible values 
of the wave vector 

deduced from Eq. ( 11 ) .  Substituting in the first equation of 
Eqs. (9 )  the above expansion for f,, ( t ) ,  multiplying it by 
N -- I1 '  exp( - iqn'a), summing over n ,  and assuming that 

n 

we find that, instead of Eq. (9 ) ,  we now have 

where 
i'+2yC+oU2v(t) =mp-'aZ(uo-v)+p-'f ( t) ,  

a2=2t/m; F. (t) =N-" F,, (t) exp (-iqno) , 
n (17) 

It should be noted that the deviation of the dispersion law of 
dislocation vibrations from the linear one w (q )  = sq, wheres 
is the velocity of sound, is sensitive at  short wavelengths to 
the selection of the model and in the case of dislocations it 
may be more complex. However, as shown below in Sec. 5, 
the effects of the temperature-independent behavior of the 
plasticity, and of the influence of the viscosity on quantum 
fluctuations are determined by the low-frequency part of the 
spectrum of vibrations of a dislocation: w-iS2/w, <a,. 

Therefore, an investigation of the fluctuation dynamics 
of a dislocation reduces to an analysis of a system of stochas- 
tic ordinary differential equations. 

3. ANALYSIS OF CORRELATION FUNCTIONS 

In studying how a dislocation detaches from a fluctuat- 
ing obstacle, it is important to consider their relative motion 
and, in contrast to the case ofa  static obstacle with an infinite 
mass, the criterion for overcoming the obstacle is now 

We shall determine the correlation functions or moments 
~ ( t )  and G(t)  using the spectral theory ofstationary random 
functions. Using the Wiener-Khinchin theorem,*' we shall 
introduce spectral expansions of fluctuating quantities em- 
ploying the usual Fourier expansion formulas. For example, 

m 

Q.. = J ~ . ( t )  exp ( ia t )  at. (20) 
- m 

Then, u,,, = N - I" B Q,,, and v,, can be found from Eq. 
(16):  

Subtracting Eq. (22) from Eq. ( 2  1 ), we find that the quanti- 
ty v , ,  of interest to us is described by 

where 
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Allowing for the uncorrelated nature ofF,, and f,, we apply 
the flucutation-dissipation theoremz4 

which in the case of the mean square of a fluctuating quanti- 
ty = 

yields 

where the retarded (advanced) function is 

1 m a' +- 
o2 ( q )  - 0 2 ~ 2 i y o  p oo2-02r2iyo ' 

If we regard the integrand in Eq. (27) as a function of a 
complex variable in accordance with the Cauchy theorem, 
we find that the expression for (y2  ( t )  ) can be represented by 
a sum of the Matsubara frequencies w,, i.e., by a sum of 
residues at points 

io,=ZzinT/A, 
which are governed by simple poles of the denominator 
c o t h ( h / 2  T) . We thus obtain 

ce 

In the low-temperature limit T-0 (i.e., at temperatures 
lower than all the characteristic energies) allowing for 

we can go over from summation to integration in Eq. (29) : 

1 
<q2 ( t )  )= - S du 

nmazo 

Equations (29) and (3  1 ) are derived assuming that the kine- 
matic viscosities of a string and an obstacle are the same and 
amount to 2y. In general, the expressions retain their initial 
form apart from the replacement y d/ l  in the first term of Eq. 
(28) and y + v in the second term. 

Since in the case of stationary random functions, we 
have27 

it follows that the mean square of the rate of change of the 
fluctuating quantity we can readily obtain expressions anal- 
ogous to Eqs. (29) and ( 3  1 ), which are convenient for ana- 
lyzing the correlation functions in the limits of high and low 
temperatures. 

4. PROBABILITY OF A FLUCTUATION TRANSITION 

Before we calculate the values of the variances (172(t)) 
and ( i 2  ( t ) ) ,  we shall consider the values of the frequencies 
characterizing the model and the approximations which al- 
low us to greatly simplify the procedure and thus identify the 
range of validity of our results. In connection with the prob- 
lem of thermal-fluctuation detachment of a dislocation from 
a harmonically vibrating obstacle, it was pointed out in Ref. 
15 that for typical values of the crystal parameters, we have 
the inequality 

where w, is the limit of the spectrum of dislocation oscilla- 
tors (Debye frequency). This inequality, equivalent to 

implies that the pinning center is highly compliant, i.e., that 
the obstacle-dislocation coupling is weak compared with the 
rigidity of a string as a whole. This assumption underlies the 
formulation of the problem. The coefficient representing the 
rigidity f l  of the string is of the same order of magnitude as 
the rigidity of the matrix (or  of the coupling of an obstacle to 
the matrix), K, i.e., 

Hence it is clear that, depending on the ratio of the masses of 
an obstacle and the lattice atoms, the frequency w, of vibra- 
tions of an obstacle can have various values. If a local obsta- 
cle is a heavy impurity ( p ) rn ), we have a quasilocal mode 
w,=wQ <a,. In the other limiting case, when p <m, we 
have a local mode w, = w, > w, (Ref. 29). 

The system we are considering consists of a central dis- 
location oscillator, coupled to a fluctuating pinning center, 
is characterized by a system of linear coupled differential 
equations. The response of such a system to an input in the 
form of the Gaussian noise is G a ~ s s i a n . ' ~  In our case this 
response is a two-dimensional normal process {y ( t )  ,$(t) 1. 
The joint probability density (distribution function) of a 
random quantity y ( t )  and of i ( t ) ,  uncorrelated with that 
quantity, is therefore 

where the mathematical expectation y [because of (v( t ) )  
= ( & ( t ) )  = 0]  according to Eq. ( 12),  is 

( q  ( t )  ) = ( U ~ " = T X ~ / ~ T , .  (36) 

Here r, = Cxjc,/b1 is the critical shear stress. 
The two-dimensional distribution function of Eq. (35) 

is simply the Wigner function which describes the joint dis- 
tribution of the probabilities of the coordinate and momen- 
tum." It appears naturally in semiclassical studies of the 
stochasticity of a dynamic system described by a Hamilto- 

"nian which is a quadratic function of the coordinate and 
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momentum. The Wigner representation is based on general 
principles which apply both in quantum and classical me- 
chanics, and it is particularly convenient in discussing a sys- 
tem in which one of two interacting systems is classical and 
the other quantum. It is this case, which is encountered in 
studying how quantum fluctuations arise in the dynamics of 
a dislocation, which is regarded as a classical system. 

The probability that a dislocation overcomes a local ob- 
stacle at a pointy = 0 as a result of fluctuations in the direc- 
tion of application of an external load T is equal-in accor- 
dance with the criterion of Eq. ( 19)-to the probability of a 
random event q ( t )  )x,, i.e., it is equal to the number of inter- 
sections 9 of a given level x ,  by a random function 7 ( t )  per 
unit time. According to the theory of large excursions of 
random quantities3', we find that - 

a =  J J i ( t ) 6 ( q ( t ) - x c ) w . ( q 9 i ) d q d i .  
0 

Simple integration readily yields the required probability 

(51 
*=-exP[- 2no - exp ( - ~ ' / 2 ~ o ~ ) ,  (37) 

202 

where 

is the effective activation energy of the process. 

5. TEMPERATURE-INDEPENDENT BEHAVIOR OFTHE 
PLASTICITY AND THE SUPERCONDUCTING SOFTENING 
EFFECT 

It is not always possible to calculate the variances u and 
uI  , SO that we shall consider only various limiting cases. It is 
particularly interesting to discuss the case of a fixed obstacle 
(p --r oo ) in the limit of low viscosity y-0 .  A calculation of 
o ' in accordance with Eqs. (29) and (3  1) in the limiting 
cases of high and low temperatures gives 

Similarly, the variance 8: of the velocity is 

and temperature-independent anomalies can be expected at 
temperatures T < x w ,  /an- 1 K, when the zero-point vi- 
brations of dislocation oscillators become important. It 
should be noted that in the strong-coupling limit character- 
ized by 

it follows from Eq. (29) that the deviation from the linear 
temperature dependence of the variance occurs at T <  w,. 
Such a result is obtained in Refs. 12-14. However, as pointed 
out above, such a strong coupling between a pinning center 
and a dislocation can hardly be regarded as a realistic inter- 
action. 

We shall assume that the obstacle has a finite mass and 
consider the limiting case when the second term is important 
in the expression for T t ' A '  given by Eq. (28). Ignoring in 
the weak-coupling limit the quantity mp-'ij2 compared 
with w,, we can readily show that in the case of a low viscos- 
ity characterized by y-0, we have 

ii qu2 =- 
& . TaR coth - lim - - 

2 imz2  ZT r-o( l+TaR C.C. ) 

Thus, we find that 

u 2  = - & coth 3. 
2 ~ ~ 0  2 T 

Similarly, we obtain 

This result has a clear physical meaning. In fact, in the case 
of high-Q oscillators characterized by y (w , ,  the spectral 
density of 7: in a small range Aw - y of frequencies f w, 
assumes large values, which are nevertheless finite because 
of ( f ' ( t ) )  - y. In full agreement with the fluctuation-dissi- 
pation theorem, the external action is replaced by white 
noise with spectral density equal to the spectral density of 
the input process at an eigenfrequency of the system. This is 
true also of a system of oscillators with variances described 
by Eqs. (39) and (40) and representing the sums of contri- 
butions of normal vibrations each of which has an "equiva- 
lent temperature" corresponding to its normal coordinate. 32 

It follows from Eqs. (37), (43), and (44) that 

00 
6=-exp - 

2n 
2v* ) .  ( pb,, coth ( &,J2 Tl 

These values of the variance were obtained earlier15s'6'26 em- 
ploying a model which ignores the fluctuation dynamics of Comparing Eqs. (41) and (45), we can easily see that at 
obstacles in the continuum string approximation, confirm- high temperatures because o f x <  1, we again have the Arr- 
ing that the results obtained are insensitive to the selection of henius law, Eq. (41 ), i.e., the dynamics of the transition is 
a specific dislocation model (as discussed at the end of Sec. now influenced by thermal fluctuations of the dislocation 
2 ) .  It follows from Eqs. (39) and (40) that at high tempera- oscillators and not those of the obstacle. At low tempera- 
tures the Arrhenius law applies tures such that T <  To, where 
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fioo fio 1 X - c o t h L =  1, To%- 
2 To 2 To 2 

xfioo, 

the dominant effect is due to quantum fluctuations, which 
are manifested experimentally as temperature-independent 
anomalies in the plasticity of materials. It is clear from Eqs. 
(45) and (46) that the higher the frequency of the vibrations 
of an obstacle w, (i.e., the lower the mass of the obstacle), 
the easier it is to overcome and the higher is the temperature 
below which the quantum effects appear. The fact that ex- 
periments fail to reveal temperature-independent effects at 
high temperatures shows that such obstacles are ineffective 
compared with the heavy ones. This conclusion is important 
in analysis and identification of the role of various dopants in 
the dynamics of dislocations. It follows from Eqs. (39) and 
(46) that the intensity of quantum fluctuations of an obsta- 
cle predominates over the intensity of quantum fluctuations 
of a dislocation if 

If the mass of an obstacle is so large or if the relative strength 
of the coupling is so low that the inequality of Eq. (47) is 
disobeyed, the plasticity of a material is governed entirely by 
the fluctuation dynamics of a dislocation when the obstacle 
is fixed. It should be pointed out that the experimentally 
observed temperature-independent anomalies of the plasti- 
city of lead, cadmium, silver, zinc, copper and aluminum 
occur at temperatures (respectively 8, 14, 16,26, 30, and 40 
K )  much lower than the Debye value. In full agreement with 
these observations, the temperature of Eq. (46) characteriz- 
ing the effects associated with quantum fluctuations in a 
crystal with heavy obstacles is proportional to and much less 
than the Debye temperature. 

We have considered so far only the limit of low viscos- 
ity. However, in the case of superconducting materials char- 
acterized by a high value of the electron-phonon interaction 
constant, we can also encounter high viscosity. Since we are 
interested in the softening of metals as a result of the transi- 
tion from the normal to the superconducting state, we shall 
consider the range of fairly low temperatures. If we assume 
that the obstacle is fixed, so that p $ m ,  we find that the 
variance governing the dissipative fluctuation dynamics of a 
dislocation is given by the following expressions, which ap- 
ply to limiting cases: 

Similarly when the inequality of Eq. (47) holds and the dy- 
namics of a dislocation is governed by fluctuations of the 
obstacle the dependence of the variance of an obstacle on its 
viscosity v is described by 

It readily follows from Eqs. (48) and (49) that a strong 

reduction in the viscosity due to the transition of a metal 
from the normal to the superconducting state increases the 
plasticity of a material limited in the A = 0 or v = 0 cases by 
the quantum fluctuations of the dislocation oscillators or the 
obstacle, depending on the mass ratio m/p.  Note that the 
superconducting softening effect is stronger in nonrigid ma- 
terials containing light obstacles and thus exhibiting a 
stronger plasticity at low temperatures. 

An exponential dependence of the probability of the 
transition on the viscosity can be explained by a major 
change in the ratio of the velocity of motion of dislocations 
w,/w, in transitions from the normal to the superconduct- 
ing state. Using typical values for the parameters of a metal, 
we can readily see that when the inequality y , / y , ,  < 1 holds 
we find from Eqs. (37),  (48) ,  and (49) that W , ~ / W ,  - 10', 
i.e., we now obtain the value found experimentally."' In the 
strong-coupling limit corresponding to x - 1, the variance 
(48) of the viscous-dissipation fluctuation of the dislocation 
agrees, to within logarithmic accuracy, with the results of 
Ref. 21. However, as already pointed out in the Introduc- 
tion, in this case the experimentally observed value of the 
ratio w,/w, cannot be explained for any reasonable values 
of the parameters A and w ,  . 

6. FINAL COMMENTS AND CONCLUSIONS 

Our analysis is limited on the high-temperature side 
and also in respect of the applied stresses by the condition 

When this inequality is satisfied the temperature must be low 
compared with the effective height of the barrier to be over- 
come and this ensures, on the one hand, that we can use the 
quasistationary approximation in the calculation of the tran- 
sition probability and, on the other, it allows us to ignore the 
nonlinear effects. The simplest among these effects are "rela- 
tivistic" and they appear in the dynamics of a dislocation at 
velocities comparable with the velocity of sound in a crystal; 
another nonlinear effect is the breakdown of the Stokes law 
due to turbulence in the establishment of the viscosity of a 
quasiparticle gas. 

If we consider the conditions for the oscillator approxi- 
mation to be a valid description of the dynamics of a disloca- 
tion and its obstacle, we note that in view of the smallness of 
w ,  and Tcompared with the barrier height {xjrf, describing 
their interaction, the potential can be represented by the first 
term of its expansion at zero [Eq. ( 1 ) 1.  Since the difference 
u, - u reaches a comparatively large value of x, - a  when 
the vibrations are small and we ignore the anharmonic ef- 
fects, we are justified in using the Gaussian distribution for 
the probability of such a large fluctuation, which is derived 
above. 

The criteria for the appearance and predominance in 
lattice dynamics of local and quasilocal vibrations of isoto- 
pic defects are discussed sufficiently thoroughly in the 
monograph of Kosevich." In contrast to a local mode, sepa- 
rated by a gap from a continuous spectrum of vibrations, 
which appears in the case of a light impurity, a quasilocal 
mode with wo < w, ,  suffers from broadening T - C ~ ; / W , , ,  be- 
cause of the interaction with crystal vibrations. Therefore, as 
pointed out in Ref. 33, in view of the condition r <w,,, we can 
ignore the width of a quasistationary packet and consider 
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only the single-mode approximation regarding the contribu- 
tion of the quasilocal mode w, to be considerably larger than 
the contribution of ordinary normal vibrations of a crystal 
with frequencies from the continuous spectrum. It should be 
noted that the neglect of quasilocal mode correlations with 
the motion of the rest of the lattice corresponds to the same 
approximation of large-scale fluctuations, valid in the long- 
wavelength case wo < w,, . 

Another natural limitation is the validity of the descrip- 
tion, in the continuum approximation, of a dislocation by a 
mathematical string which is assumed to be inextensible so 
that (du/dy).<l. According to Eqs. (12) and ( 1 3 ) ,  at the 
pointy = 0, where du/dy attains a maximum, this condition 
takes the form 

We can easily see that if 7 - 7 ,  and x, -b, then f < x ,  which 
means that a dislocation cannot be described by an inextensi- 
ble string in describing how it becomes detached from a rigid 
obstacle. 

The main conclusions derived from this model are as 
follows: 

1 ) in studies of the fluctuation-induced overcoming of a 
pinning center by a dislocation we must allow for the sto- 
chastic dynamics of an obstacle due to its finite mass; since 
the probability of overcoming of a light obstacle is greater 
than that of a heavy one, the plastic properties of a material 
are governed by the system heavy obstacles; 

2)  the quantum effects in the case of light obstacles oc- 
cur even at high temperatures, but the experimentally ob- 
served temperature-independent anomalies are manifested 
only at low temperatures because of the dominant role of 
heavy centers pointed out above; 

3 )  the characteristic temperature corresponding to the 
onset of quantum fluctuations in real crystals is governed by 
the frequency of a quasilocal mode of the obstacle and tem- 
perature-independent anomalies occur at temperatures 
To -xh,,, on the order of tens of kelvin; 

4) at sufficiently low temperatures the probability of 
fluctuation-induced overcoming of an obstacle is governed 
by dissipative effects and depends exponentially on the vis- 
cosity determined by quasiparticle excitations; 

5 )  the superconducting softening effect is limited by the 
finite yield stress, due to the quantum fluctuations of the 
dislocation of the obstacle, depending on the mass ratio 
m / p ;  

6)  the strong exponential dependence of the rate of the 
process on the viscosity accounts for the large ratio of veloc- 
ities of single dislocations in a metal in the transition from 
the normal to the superconducting state. 

Our analysis of low-temperature anomalies of the rates 
of the processes is based, by way of example, on the dynamics 
of dislocations governing plastic properties of materials. 
However, the predicted quantum and dissipation effects are 
fairly general and may be exhibited also by various chemical 
and biological  system^.'^ 

The authors are grateful to L. P. Gor'kov, S.V. Ior- 
danskii, V. Ya. Kravchenko and Ya. G. Sinai for discussing 
the results and advice. 
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