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A system of truncated Slonczewski equations is derived to analyze the dynamics of a moving 
vertical Bloch line in a domain wall. It is shown that for fields parallel to the wall there is a 
threshold strength, below which avertical Bloch line moves by translation, and above which 2 a  
Bloch lines are generated. 

INTRODUCTION 

Simple finite-dimensional models for the motion of a 
vertical Bloch line (VBL) along a slightly curved domain 
wall are often used to analyze the dynamics of VBL's in 
uniaxial ferromagnetic magnetic bubble films with a large 
Q = K / 2 r M  f, where K is the uniaxial anisotropy constant 
and M, is the spontaneous magnetization of the film. ' 

The purpose of the present paper is to derive a system of 
truncated Slonczewski equations to obtain a "point" model, 
in which the VBL dynamics can be described by solving a 
system of ordinary second-order differential equations. The 
complete (untruncated) system of equations treats the de- 
magnetizing fields due to the finite film thickness and the 
formation of "surface magnetic charges," as well as fields 
whose magnitude relative to the Winter field is Q - ' I 2  (when 
a VBL is present) or Q - '  (for a pure Bloch or Ntel wall). If 
the twisting of the azimuthal angle along the thickness of the 
film can be neglected, the initial system of equations can 
easily be simplified so that the domain wall and the azi- 
muthal angle F depend only on time and a single spatial 
coordinate parallel to the wall. This "point" model is valid 
for weak external fields 5 4aMS (2Q) - ' I2.  

Numerical solution of the truncated Slonczewski equa- 
tions shows that in a strong constant external field H 7 paral- . - 
lel to the wall, the solution undergoes time-periodic bifurca- 
tions which can be interpreted as corresponding to the 
generation of 2n Bloch lines from an isolated moving a 
Bloch line acted on by the field H :  . 

1. THE SLONCZEWSKI EQUATIONS WITH FULL 
ALLOWANCE FOR THE DEMAGNETIZING FIELDS 

Dimensionless will be used in this paper to 
simplify the formulas. The space and time scales are chosen 
to be the characteristic length I, of the ferromagnet and 
To = 2Q/4ayMS, respectively, where y is the gyromagnetic 
ratio. For large Q, the maximum dimensionless Walker ve- 
locity is equal to 1/2. The magnetic field is measured in units 
of 4aMS. The dimensionless (Gilbert) damping factor and 
the constant and characteristic angle for the orthorhombic 
anisotropy are equal to a, &KkP, and p p ,  respectively. The 
dimensionless small parameter is E = ( 2 9 )  - I .  We introduce 
the following notation: ~ ( x , )  is the characteristic function 
of the region G' occupied by the ferromagnetic film: 

where h is the dimensionless thickness of the film. The easy 
axis of the film is parallel to the vector N, = {0,0,1). The 

isolated, nearly planar domain wall is described by the equa- 
t i o n ~ ,  = q( t )  + P(x,,x,,t), where lP I < l .  The spins are as- 
sumed to point up for x, - - w and down for x ,  - m , but 
can vary freely on the film boundary 

= {XE R ,:x, = O)U{XE R 3 : ~ . 3  = h). The boundary con- 
ditions for P(x,,x,,t) and for the azimuthal turning angle 
F(x,,x,,t) of the magnetization vector in the domain wall 
are 

=o, (1.1) 

and the smallness of the wall curvature is expressed by 

dLP 
d P  O(S,). -- q-O(f), P-O(6,), -- 
ax,,, dx1,3' 

0 ( 6 2 1 ,  

(1.2) 

where So, S, ,  6 , s  &'I2.  Throughout the following the symbol 
O ( E ~  ) will denote a bound with respect to the norm in the 
space of continuous functions, i.e., the maximum absolute 
value of the function for all values of its arguments. 

With these notations the complete Slonczewski equa- 
tions are given by 

1 + - k ,  sin 2 (F-9,) =5eL, 
11 

(1.4) 

where the right-hand sides 9, and !!, characterize the in- 
fluence of the complete magnetic field averaged over the wall 
thickness. This field consists of a specified external field 
Ho(x,t)  and a demagnetizing field Hd,  which in turn is de- 
termined by the magnetostatic equations and depends in a 
complicated way on Pand F. We will see below that Hd  has a 
decisive influence on the form of the solution of ( 1.3 ), ( 1.4). 

The derivation of ( 1.3) and (1.4) is discussed in Refs. 
2-4. It is based on solving the combined Landau-Lifshitz 
and magnetostatic equations asymptotically in the small pa- 
rameter &. Equations ( l . 3 ) ,  ( 1.4) then appear as a necessary 
condition for the asymptotic solution to exist. Before speci- 
fying : ' 5 ,  and 9, explicitly, we give expressions for the com- 
ponents of the demagnetizing field that appear in them. In 
the context of the asymptotic expansion, each of these com- 
ponents may be regarded as an independent field associated 
with a specific magnetic charge distribution on the film and 
domain wall. 

Using the notation 
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we have the following expressions for the various fields: local components of the fields are 
0)  The Winter field is 

(0, -sin F sin G, 0): where G=2  arctg e x p [ ( x z - q - P )  e-'1. H / ~ " =  - 2 n {PI (zi, 0, t ) l n [  (x2-q)  '+x?]'l1 

- 

dl?, dk ,  
= 5 

I d P  

(1.6) -P' ( x , ,  h ,  t ) l n [  ( ~ , - q ) ~ +  ( h - z s )  'I''), 

f Z ( x L )  = 

This is the principal term in the &-expansion of the local 
( 5 1 )  - 1 ( h - ~ 3 ) 2 +  (58-q-p)' 

demagnetizing field. II, ---In 271 ~ , z + ( x , - q - P ) ~  ' 
1 ) The long-range field H'", collinear with the Winter 

field, is of the form ( 5 1 )  1 x2-q-P 2,-q-P 
H ,  = - (arctp 

H'"= 4- arctg 
(0, Hz('),  O), x h-x,  2 s  

sin F- cos F- a ~ ,  
d  

a ( ~ ) ~ - c o s F ~  
8x1 

d P  x ( ~ 3 )  - 
3x3 

dk ,  dk ,  H;"= J- 
( 2 ~ ) ~  

exp [ i ( k l ,  x,) l f i  (k~) e k o ( e k )  

It describes the nonlocal part of the field Hd due to spatial 
variations in the distribution of the P-charges along the sur- 
face of the wall. 

2)  The local field along the wall is 

It also stems from the nonuniform distribution of P-charges 
along the wall. 

3) The Coulomb field 

H'S' = - 5 dkl  dks 
ik, 

2 ( 2 ~ ) ~  e x ~ l i ( k r , x , ) l f . ( k L ) ~ u ( e k )  

is directed along the wall and is present due to the nonuni- 
formity of the a-charge distribution along the domain wall; 

4) The field 
dk ,  dk, 

s(U= J- Ikl 
(an)' 

exp [ i (k,x,l I f  , ( k J T  exp [ -k 1x2-9-P I I 

(1.10) 

associated with the transverse bending of the domain wall is 
also parallel to the wall. It is due to the presence of an effec- 
tive charge on the surface of the curved wall. 

5 )  The field associated with the surface charge distribu- 
tion is expressible as a sum of local and nonlocal fields, 

Its source is the effective magnetic charge on the surface T. 
Outside an &-neighborhood of the intersection of the 

domain wall with the film surface, the expressions for the 

Similarly, for the nonlocal field components we have 
the expressions 

where K,(z) is the modified Bessel function of the second 
kind: 

KO (2) = 1 dI exp (-z ch El, 

Near the intersection of the domain wall with the film sur- 
face, the leading term in the asymptotic expansion of ( 1.11) 
is obtained by multiplying (1.12), ( 1.13) by the function 
( 2 ~ )  - ' C O S ~ - ~ [ ( X ~  - X; )/&I and integrating over x;. 

Once all the components of the demagnetizing field 
( 1.6)-( 1.1 1 ) have been determined, the right-hand sides of 
the Slonczewski equations ( 1.3), ( 1.4) can be expressed in 
the formZ4 
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1 J + - -(HO+H(~)+H(~)+H(')+H(~), N,) sin G 
2 -- 

a P + - cos 2F,  
3x1 

where 

N2= (-sin F, cos F, 0). 

The first term in 9, describes the effects of the Winter field, 
while the local field along the wall ( 1.8 ) is accounted for by 
the last terms in 9, and 9,. The origin of the remaining 
terms in (1.14), (1.15) is clear from Eqs. (1.7), (1.9)- 
(1.11). 

The self-consistent description of the dynamics of a 
nearly planar domain wall containing a Bloch line in a mag- 
netic bubble film thus reduces to solving two integro-differ- 
ential equations in a region, with the boundary conditions 
( 1.1 ), for two scalar functions: q( t )  + P(x,,x,,t) and 
F(x,,x,,t). The latter determine the position and the struc- 
ture of the domain wall, respectively. 

Because of the great difficulty in analyzing the full sys- 
tem of Slonczewski equations, to obtain specific results we 
are forced to make further simplifications. In this paper we 
consider the situation when the dependence of P and Fon the 
spatial coordinate x, can be neglected on physical grounds. 

2. TRUNCATED SLONCZEWSKI EQUATIONS 

We express the external field Ho(x,t) as the sum of a 
spatially uniform field HO(t)  and a quadrupole field 

Hq= (0, - (x3-hI2) H', -x2Hr), Hr=const. 

The latter is known to stabilize the domain  all,^.^ and in 
addition we can choose H' so as to make the field 
Hi5') + H 4 small even in an &-neighborhood of the intersec- 
tion of the domain wall with the film boundary r. To first 
order, we therefore need not consider the twisting of the 
wall.'.' If dF/dx, - O(E) and dP/dx, - O(E), then the 
Slonczewski equations ( 1.3 ), ( 1.4), averaged over the thick- 
ness of the film, depend only on a sing!e spatial variable x,: 

1 -- aP 
k,  sin 2 (1: - y,) + - cos 2F 

8x1 
n 7 

-- 
2 

[(Iflo + (11~'))sinF - (112 + ( H ~ ) ) c o s F ] ~  

(2.2) 
where the overbars and angle brackets indicate averages 
over the thickness of the film and wall, respectively: 

where CE = 0.5772 ... is Euler's constant, 
- 1 d <HY') = -2- $ d i  [e - cos F ( E ,  t )  (x  - 5)-lh-1 a5 I 
- n dk, ( H P )  = 5 ot*lxlfl (k,) o I k ,  1 o2 ( E  I kl 1 ) .  (2.5) 

dP 
f I (k.) = 5 d ~ ~ e - ~ * ~ ~ ~ ( s i n  F - - axI cos F )  . 

The contribution from the component ( 1.10) of the de- 
magnetizing field to 9, and disappears after averaging 
over the thickness of the film. 

It can be shown that if H :  (x,t) -0( 1) and H :  - H :  
-o(E'/'), then ~ q .  (2.1 ) is correct to within o(E~/ ' ) ,  while 
(2.2) holds to within O(E). If on the other hand we assume 
that H:'" + H ;  -O(E ' /~ ) ,  then Eqs. (2.1) and (2.2) both 
have the same error O( .E~ '~ ) .  The equations (2.1 ), (2.2) ad- 
mit several types of solutions which describe small flexural 
oscillations of the Bloch wall as well as complex motions 
involving several vertical Bloch lines. 

In this paper we will treat only the following two prob- 
lems in detail. 

1. Find the behavior of an isolated VBL in a nearly 
planar domain wall in a ferromagnet with weak rhombic 
anisotropy (k ,  5 ~ ' ~ ' )  in fields lHOl 5 ~ ' ~ '  for HI- 1. 

2. Study the generation of VBL pairs from a single mov- 
ing VBL. 

3. DYNAMICS OF AN ISOLATED VERTICAL BLOCH LINE 

We will henceforth omit the subscript 1 in the spatial 
variables and write simply x for x i .  

To make the formulas more compact, we first introduce 
some auxiliary functions qi ( t ) ,  Fo(x;t), Po(x;t), R (x,t), and 
X(t).  We define Fo(x;t) and Po(x;t) by 

2 " 
Fo ( x ;  1 )  =2 wctg exp{ (- E ) [ x - ~ ( t )  I ) ,  (3.1) 

Po ( x ;  t )  =2"?&'sin F,- (2H') '"e2 

H ' "  -(+) exp[-2(n++)(f)* , x - ~ ( t )  I ] } ,  
(3.2) 

while q, ( t ) ,  R (x,t), and X( t )  satisfy the equations 
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1 1 + - k ,  cos (E, sin I.', $ (2e)-'12 [ X  - X  ( t ) ]  cos (F, sin 2F,],  
4 

( 3 . 4 )  

1/3n (kp,/4)? sin 29 ,  

It can be shown that the functions 

F = F 0 ( x ;  t ) + ~ l ( t ) + ~ d ~ / d t + ' / z n ( H , a + ( ~ ) ) c ~ s  Fa 
sin cpp+i/lkp C O S ( P ~ ( ~ ! & ) ' ~  [ x - X ( t ) ]  s inF ,+~f  ( 3 . 7 )  

satisfy the system ( 2 . 1 ) ,  ( 2 . 2 )  to within terms o ( E ~ / ~ ) .  The 
function q ,  ( t )  describes the spatially uniform motion of a 
domain wall subject to the bias field H :  ( t ) .  The functions 
P o ( x ; t )  and ER ( x , t )  respectively characterize the static and 
dynamic bending of a domain wall with a VBL, and X ( t )  
gives the position of the VBL along the wall. 

The static bending of the domain wall in the vicinity of 
the VBL is due to the component ( 1 .8 )  of the demagnetizing 
field, which appears in 9, and 97, locally through the first 
spatial derivatives a F  / a x ,  and a P  / a x , .  

The averaged fields appearing in ( 3 . 4 )  and ( 3 . 5 )  have 
the form 

where 

T(f) is the gamma-function. This result can be proved by 
substituting ( 3 . 6 ) ,  ( 3 . 7 )  into ( 2 . 1 ) .  ( 2 . 2 )  and estimating 
the remaining terms. Equation ( 3 . 5 )  is a necessary condition 
for the existence of the correction &fin Eq. ( 3 . 7 ) .  

The region of validity of Eqs. ( 3 . 4 ) ,  ( 3 . 5 )  can be found 
more precisely by comparing them with Eqs. ( 1 I ) - (  1 3 )  in 
Refs. 9 ,  10. To do this a further simplification is necessary, in 
which we neglect all but the leading terms in E in ( 3 . 4 ) ,  
(3.5). 

We begin with Eq. ( 3 . 4 ) .  The integral term on the left in 
( 3 . 4 )  is just the field E- '  H :5n')  produced by the dynamic 
bending of the domain wall. For small H ', it leads to flexural 
instability of the  all.^.^ However, for values H ' > 0 such 
that 

holds for all k~ R I ,  the field H :'"" can be neglected, as we 
will see below that its magnitude is actually - O ( E ) .  NU- 
merical analysis of the condition ( 3 . 9 )  reveals that for a 
fixed h,  it holds for H' > H A,,, . If H ' = HA,  , the left-hand 
side of ( 3 . 9 )  vanishes at the single point I k I = zmin . Figure 1  
shows how H kin and zmin depend on the thickness h of the 
film. 

Retaining only the leading terms in E in ( 3 . 4 ) ,  we obtain 
a much simpler equation for the dynamic wall bending, 

Similarly, if we discard all but the leading terms in E in ( 3 . 5 ) ,  
we obtain the following integro-differential equation for the 
position of the VBL: 

Equations ( 3 . 1 0 )  and (3 .11  ) can be obtained from the 
initial equations ( 2 . 1 ) ,  (2.2) by keeping only the terms 
through order O ( E )  ." We will confine ourselves to this ap- 
proximation in what follows, so that our starting point is the 
system of the three equations ( 3 . 3 ) ,  ( 3 . 1 0 ) ,  ( 3 . 1 1 ) .  Using 
( 3 . 3 ) ,  it is easy to show that the velocity of the domain wall 
as a whole is q, - o ( E ' / ~ ~ - ' ) .  The static bending P , ( x ; t )  of 
a wall with an isolated VBL is due to the correction ( 1 . 8 ) ,  of 
order & ' I 2 ,  to the local Winter demagnetizing field, and 

The dynamic twisting of a domain wall with a moving 
VBL is given by E R  ( x , t ) ,  and we have the estimates 

I R (x, t )  I G const . max ( X ( t )  1 (H' )  -I", 

1 

( 3 . 1 3 )  

FIG. 1 .  Dependence of H;,, and x,,, on film thickness 
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3I 
JR (x, t) dr = - Jdv X(Y) exP[ - z(t-v) ] , 

a 0 

Equations (3.12) and (3.13) show first that the dynam- 
ic bending of the wall is roughly E - " ~  times greater than the 
static bending, and second that Nikiforov and Soninlo were 
correct in suggesting that the spatial scale of the bending 
caused by the motion of the VBL is much greater than the 
width of the VBL. 

Like the orthorhombic anisotropy in the above approxi- 
mation, the long-range fields (HI") and (H:") do not 
contribute to the VBL dynamics, owing to the symmetry in 
Eqs. (3.8); they significantly affect only the distribution of 
the azimuthal angle F along the wall. 

We now discuss Eq. (3.1 I ) ,  which describes the dy- 
namics of the VBL. It can be simplified substantially for 
small and large times by using asymptotic formulas for the 
dynamic bending R (x,t). For t<Ea, 

so that the principal term in the integral in (3.11) is equal to 
2 3 1 2 ~ " 2 a - 1 ~ k  The VBL thus moves without inertia at small 
times (we have a first-order equation), and the onset of dy- 
namic bending effectively amounts to a renormalization of 
the damping factor, with a replaced by a + am'. If the func- 
tions q , ( t )  and H le'(t) are both constant for t#a /H1,  then 
the velocity x of the VBL is constant and satisfies 

and the dynamic bending is given by the expression 

The first two terms in (3.15) have an obvious physical 
interpretation; they correspond to inertialess VBL motion in 
the field H y ,  which acts to increase the size of an energetical- 
ly favorable subdomain. The third term accounts for the gy- 
roscopic pressure on the Bloch line exerted by a planar do- 
main wall moving as a whole. The fourth term describes the 
dissipative nonlinearity caused by the gyroscopic pressure 
on the Bloch line (averaged over the width of the line) exert- 
ed by the moving curved region of the domain wall, the cur- 
vature itself being determined by the VBL dynamics. 

It is clear from Eq. (3.16) that for a uniformly moving 
VBL, the bending is not symmetric in the variable x - X(t) ,  
the asymmetry being proportional to the damping constant 
a. The stage of nonuniform VBL motion is more complicat- 
ed, and the reduction of the integro-differential equation 
(3.11) to a second-order dynamic equation, as was done in 
Ref. 12, requires further assumptions regarding the orders of 
magnitude of the higher time-derivatives ofX( t ) .  If it is legi- 
timate to neglect all the derivatives of order higher than two 
then the term linear in X, which serves as a correction on the 

FIG. 2. Steady-state VBL velocity versus field H': in the plane of the wall 
for several different damping factors a. The points give values obtained by 
solving the Slonczewski equations numerically; the solid curves give the 
results of the point model (3.15);  the dashed curves show the onset of 
generation of 2 0  Bloch lines. 

left-hand side of the steady-state equation ( 3.15 ), will have 
the form 

Formally, the term (3.17) appears in (3.15) because of 
the time dependence of the averaged gyroscopic pressure ex- 
erted on the Bloch line by a bend in the wall moving with a 
nonuniform velocity. The form of the term (3.17) permits us 
to introduce an effective VBL mass, for which a physical 
interpretation was suggested in Refs. 9, 10. 

To within the above approximation, Eq. (3.15) with the 
inertial term (3.17) coincides with the Zvezdin-Popkov 
equation." A derivation of this equation for HO-a, 
0 < a  < 1, is given in Refs. 13 and 14. Note that we have taken 
E"' as the small parameter in Sec. 3, so that we are implicitly 
assuming that ~""a < 1. The fact that the same equation 
for the VBL dynamics was obtained in Refs. 13, 14 with a as 
the formal small parameter (for starting equations simpler 
than the system (2.1 ), (2.2) ) indicates that the result is also 
valid for 0 < a  5 E"' when IHy / 5 a. In other words, Eqs. 
(3.15) and (3.17) correctly describe the VBL dynamics for 
arbitrary ratios a/&"' and fields IH',') 5 min(a, E"". Nu- 
merical calculations" show that the steady-state result 
(3.15) agrees closely with the solution of the starting system 
(2.1 ), (2.2). Figure 2 shows how the velocity of the vertical 
Bloch line depends on the external field H :' for E = 0.1, 
H ' = 1, H: = 0, HI: = 0, and k, = 0 for several values of a. 
In these results we have neglected the fields -- 
His"/) , (Hi" ) ,  and ( H i " )  in (2.1), (2.2). The solid 

curves show the steady-state VBL velocities calculated from 
(3.15) as a function of the field H:, and the points show the 
results obtained by numerically solving the Cauchy problem 
for the system (2.1 ), (2.2) with the boundary conditions 

and with initial distributions P and F corresponding to an 
isolated VBL at rest. 

According to Fig. 2, Eq. (3.15) closely approximates 
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FIG. 3. Time evolution of the generation of 2n Bloch lines in a field direct- 
ed in the plane of the wall. The solid and dashed curves show F and P, 
respectively. 

the steady-state velocity of a VBL for a wider range of pa- 
rameter values than was assumed in the derivation. Numeri- 
cal investigation of the above Cauchy problem is thus neces- 
sary in order to determine the range of a and H :  values 
beyond which Eq. ( 3 . 1 5 )  for steady VBL motion deviate 
substantially from the results found by solving the truncated 
system of Slonczewski equations (2.1 ), ( 2 . 2 ) .  

We note that for all the values 10-*<a<0.5 and 
1 0  ' <H ' ~ 2 . 5  investigated, there exist in-plane fields H  :> 0 
above which the notion of an isolated VBL becomes mean- 
ingless due to the onset of generation of 2 7 ~  Bloch lines. A 
typical sequence by which this happens is shown in Fig. 3  
( ~ = O . l , a  =O.5, H ' =  1, H :  = H y  = kp = O ) .  Thispro- 

-**- 

FIG. 4. Schematic diagram showing a auasistatic VBL lattice. The arrows 

cess is repeated at later times, and the newly generated 2 7 ~  
Bloch lines form a quasistatic lattice (Fig. 4), in the sense 
that its parameters change too slowly to be detectable within 
our numerical accuracy. An isolated 2 7 ~  Bloch line is a static 
solution of the system (2 .1  ), ( 2 . 2 )  when a field Hy is pres- 
ent; Fig. 3  therefore illustrates how the motion of the VBL is 
accompanied by a transition of the distribution F from a 
stable state with Hy = 0 to a stable state with nonzero Hy . 
This transition is driven by the gyrotropic force. 

We also see from Fig. 2  that the region of validity of Eq. 
( 3 . 1 5 )  is further restricted by the requirement that the 
damping coefficient a be small ( 5 0 . 0 5 )  for fields which are 
reasonably large ( H y  $-a) but below the threshold for gen- 
eration of 2 7 ~  lines. 

Our numerical experiment, starting with an isolated 
vertical Bloch line, does not give the characteristic cluster 
distribution described in Refs. 13-15, where solutions of the 
truncated Slonczewski equations were considered without 
damping or an external field. Those solutions were self-simi- 
lar, the x and t variables occurring only in the form x - ut. 
The velocity u of the VBL was a free parameter, whereas in 
our case it is determined by the external field Hy and the 
dissipation. I t  is possible, as suggested by A. F. Popkov, that 
a stable self-similar cluster with H  y #O and a $0  might be 
detected numerically by choosing a more complicated initial 
angular distribution F. However, this conjecture requires 
verification. 

We observe in closing that to discuss actual physical 
experiments, one must also estimate how the dynamics of a 
horizontal Bloch line affects the behavior of a VBL when H  y 
#O. However, this would require that we consider a more 
complicated problem involving two spatial dimensions and 
no averaging over the thickness of the film, which lies be- 
yond the scope of this paper. 

"The calculations were carried out by E. E. Kotova, a student at the 
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