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Low frequency collective excitations-the so-called edge magnetoplasmons (EMP)-can 
propagate along the edge of a 2D-electron system in a magnetic field. In this paper, we construct 
from first principles a theory of EMP in various 2 0  systems (heterojunctions, MIS structures and 
electrons on the surface ofliquid helium). We obtain an exact solution to the EMP problem at a 
sharp rectilinear boundary between two half-planes with differing conductivities. In strong 
magnetic fields the EMP propagate in a narrow strip near the edge of the system, and are 
characterized by a gapless spectrum and anomalously weak attenuation. We work out an 
approximate method of solution for real structures in strong magnetic fields (e.g., for a system 
with a diffuse edge, for a strip and for a disk). We investigate EMP-like excitations of an 
inhomogeneous 2 0  system in the quantum Hall effect regime, and determine the EMP 
contribution to the response of a 2 0  system in an external AC electric field. Our results agree with 
experimental data. 

1. INTRODUCTION 

The properties of plasma oscillations in a solid depend 
on the solid's band structure, the effective dimensions of the 
sample, the presence of boundaries, and magnetic fields. In 
the three-dimensional case the plasmon energy (volume and 
surface) varies from 0.1 eV for doped semiconductors to 10 
eV for metals. Three-dimensional plasmon frequencies are 
large compared to the cyclotron frequency; therefore their 
properties are only weakly affected by magnetic fields as a 
rule. The situation is otherwise in the two-dimensional ( 2 0 )  
case, which can arise in modulation-doped heterostructures, 
metal-insulator-semiconductor (MIS) structures, etc. The 
2 0  plasmon frequency vanishes in the long-wavelength limit 
q-0 (Refs. 2-6): 

Here q = (q,, q, ) is the wave vector of the 2D-plasmon, n, 
and m* are the number density and effective mass of the 2 0  
electrons, and A ( q )  is a factor which depends on geometry 
and the dielectric properties of the surrounding media (see 
Appendix 1 ) . 

The magnetic field B perpendicular to the plane of the 
2 0  layer gives rise to a gap in the 2 0  plasmon spectrum equal 
to the cyclotron frequency w, = eB /m*c. The spectrum of 
2D magnetoplasmons has the form (Refs. 5,6): 

The plasmons-are weakly damped only in the collision- 
less limit (wr, 1, where T is the momentum relaxation 
time); therefore measurements of ( 1 ) and (2 )  are carried 
out in the far IR band. 

Recently researchers have observed new resonance 
modes in 2 0  systems whose frequencies are smaller than o, 
[which contradicts (2) 1. These frequencies decrease with 
increasing B, and are located in the far IR, microwave and 

even radio-frequency ranges (where the condition or > 1 is 
violated). The new modes are 2 0  analogues of surface mag- 
netoplasmons; in Ref. 7 they are called "edge magnetoplas- 
mons" (EMP). The number of quantitative theoretical and 
experimental papers on this topic is already rather large7-"; 
however, the results obtained and their interpretation are 
very contradictory. 

In this paper we will construct a rigorous theory of 
EMP which applies to all types of 2 0  systems with sharp 
conductivity profiles near a boundary. The properties of the 
EMP are expressed in terms of the components of the con- 
ductivity tensor of an infinite 2 0  system. We will show that 
EMP propagate in a narrow strip along the boundary of the 
2 0  system, have a gapless spectrum (for half-planes), and 
have anomalously small attenuation. In light of this last fact, 
we have paid particular attention to the properties of EMP in 
the regime of the quantum Hall effect (QHE).2X Excitations 
analogous to EMP also exist in infinite but inhomogeneous 
2 0  systems in strong magnetic fields. 

The complexity of the problem is due fundamentally to 
the necessity of including the spatial dispersion of the dielec- 
tric permittivity in the 2 0  case. Formally the problem of 
finding the amplitude of the EMP potential in a system with 
a sharp profile reduces to solving a Wiener-Hopf integral 
equation with a complicated kernel. Approximate or nu- 
merical methods used to solve this equation can lead (and 
often do lead) to results which are quantitatively or even 
qualitatively incorrect. The criterion for correctness of such 
results is comparison with exact results first obtained for a 
special case in Ref. 1 1. 

Section 2 of this paper is devoted to a qualitative investi- 
gation of EMP. The foundation of the paper is Sec. 3, where 
we present an exact solution to the problem of EMP at a 
sharp boundary between two half-planes having differing 
conductivities. An analysis of these general results is con- 
tained in Sec. 4 (for electrons in heterostructures), Sec. 5 
(for electrons at the surface of liquid helium) and Sec. 6 (for 
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electrons in MIS structures). We also investigate the effects 
of image forces at the lateral boundary of the 2 0  system on 
the EMP, of diffusion current, of small-scale fluctuations of 
the impurity potential in the QHE regime and of the finite 
thickness of the substrate. In Sec. 7 we propose an approxi- 
mate method for dealing with more complicated systems, 
and investigate the following problems: EMP in a strip and a 
disk, the contribution of EMP to the response of a 2 0  system 
of finite dimensions in an external AC electric field, and 
EMP at a diffuse' system boundary in strong magnetic 
fields. In Sec. 8 the results are compared with experiment 
and with other theoretical papers. A quantum-mechanical 
interpretation of EMP is given, from which it follows that 
there exist additional low-frequency modes in a quantizing 
magnetic field: the so-called acoustic EMP, which have not 
yet been seen in experiment. Short communications on sev- 
eral results in this paper have been published in Refs. 1 1, 16, 
17, 24. 

2. QUALITATIVE INVESTIGATION 

The origin of EMP can be viewed in the following way. 
Let us assume we have a 2 0  electron layer in, e.g., the shape 
of a disk (Fig. l a ) .  Suppose that fluctuations appear in the 
charge density, and therefore in the electric field E, within a 
narrow strip near the edge of the disk. In a strong magnetic 
field perpendicular to the plane of the disk, when the Hall 
conductivity ux, is large compared to the diagonal conduc- 
tivity a,, , electrons drift in the direction perpendicular to E 
and B, and are stored at the disk's edge; this causes a dis- 
placement of the fluctuation along the disk edge (Fig. Ib).  
Once this happens, the process repeats, leading to a rotation 
of the fluctuation. This rotational motion occurs at the fre- 
quency of the fundamental (Figs. la, l b )  or one of the excit- 
ed (Fig. l c )  EMP modes. In the limit of an infinite-radius 
disk we arrive at an EMP which travels along the edge of the 
half-plane (Fig. 1 d ) . 

Let us investigate in detail the formation of EMP for a 
half-plane {z = 0, x)O, - w <y < + CO) in a magnetic 
field B = (O,O,B). Assume the charge is stored near the 
boundary in a strip of width b, where b # O  (the presence of a 
charged 6-function layer (b  = 0 )  at the edge of the 2 0  sys- 
tem would lead to a logarithmic divergence of the potential 
and electrostatic energy"; in the 3 0  case, in contrast to the 
2 0  case, the charge of a surface plasmon can be concentrated 
in a &function layer at the sample surface when we neglect 
spatial dispersion"'). The EMP potential 

is determined by the amplitude of the linear charge density 
Q: 

2Q 1 
'0 (x, z=O) = - ln ---- 

8 1q81x 
19, I -', ( 3  

where 2 is the mean dielectric permittivity of the surround- 
ing media, and q, is the EMP wave vector. The magnitude of 
Q is controlled by the current which leaks into the strip: 

FIG. 1. Distributions of charge,field E, and current j for the fundamental 
(dipole) EMP mode at an initial (a)  and subsequent ( b )  instant of time; 
( c )  shows the charge distribution and field of the n = 3 EMP mode; ( d )  
shows the charge and current distributions for an EMP wave in a semi- 
infinite ( x  > 0) 2 0  layer (the picture moves with time in the + y direc- 
tion). 

jrX-iqvo,,(p (x, z -0). 

The self-consistent EMP potential ( 3 )  takes the form 

(4) 

Setting x - 6, we obtain the EMP spectrum for a half-plane 
when )qy  J b 4 l :  

The attenuation a "  (q, ) Im w (q,  ) is determined by the 
resorption time of the EMP charge under the action of the 
field E x ,  i.e., the Maxwell time, which depends in the 2 0  
case on the wave vector: 

where a:, = Re a,,. The length Iq, I - '  over which the elec- 
tric field of the EMP forms ( (q,  I - ' 4 Iqy 1 - '), is estimated 
from the condition that the normal current vanish at the 
edge of the system (which follows from the absence of 
charged 6-function layers for x = 0) :  q,oxx + q,u,, = 0. 
From this it follows that 

The components of the conductivity tensor at the EMP fre- 
quency enter into ( 5 ) ,  ( 6 ) .  Because oAB =Re oaB is an even 
and aUaB E Im uap an odd function of w, for small w we can 
limit ourselves to the first terms of the expansion of aaB (w) 
for w/w, 4 1 : 

In a strong magnetic field ( lux, /ax, 1 4 1 ), where we have introduced a real parameter T* with the di- 
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mensions of time and a characteristic frequency wo which 
determines the dispersion of uaB ( o ) .  In the Drude model 
the time T* in a strong field B (i.e., w, % (o + i / r ( )  reduces 
to the elastic relaxation time r,  while the role of w, is played 
by w,. In the QHE regime, w, has the meaning of a charac- 
teristic frequency for motion of impurity electrons localized 
by the field3'; e ~ ~ e r i m e n t s ~ ~ , ~ ~  suggest the estimate w,/ 
27  > 35 GHz. 

In the low-frequency limit (wr* & 1 ) we obtain from 
(61, (7) 

i.e., the EMP decay does not depend on the dissipative com- 
ponent of the conductivity 0:. and is quantized in the QHE 
regime. In the high-frequency limit ( w ~ *  9 1 ) 

But what determines the length b which enters into (5 )  
and (9 )?  It follows from the exact solution (Sec. 3) that for 
an infinitely thin 2 0  layer with a sharp boundary the role of b 
is played by a length I I / : 

where 

IIIzl,  for o r * % l  and IlI-I,, for wr*&l. The physical 
meaning of 1, is clarified in the Drude model for w 4 I w, + i/ 
71: 

For Y - 1, I, determines the distance over which the electron- 
electron interaction energy is comparable to the cyclotron 
energy ( Y  is the degree of degeneracy of the Landau level). 

In taking into account the finite thickness d,,  of the 2 0  
layer and the diffuseness of the edge ( h  is the width of the 
region over which the 2 0  electron concentration changes 
near x = O), the role of b is played by the maximum of the 
lengths I,, I,, d,,, and h.  

For w-0 (to be precise, wr* & 1 and b=:I,), after iterat- 
ing (5)  we obtain 

29V(~lY I ax" (0) I 
of - - - In 

a,' (0) , 

In the QHE regime u:, (0)  depends exponentially on 
the electron temperature T; therefore the EMP frequency 
(12) is a power-law function of T, while the EMP attenu- 
ation is independent of T. 

In a sample with finite dimensions the wave vector of 
the EMP takes on discrete values. If the length b is small 
compared to the sample dimensions (along the x and y 
axes), which should hold in a sufficiently strong magnetic 
field, we can expect that the results obtained above remain 
valid if we understand q, to be the quantity 

where P is the sample perimeter, and n = + 1, + 2, ... . 
From (5)  and ( 13) there follows an estimate of the frequen- 
cy of the fundamental EMP mode (w/2~-0.1-10 GHz for 
typical heterostructure parameters and P- 1 cm), which 
justifies the expansion (7)  even in the QHE regime. 

These illustrations allow us to understand some impor- 
tant properties of EMP: ( 1 ) Their frequency is determined 
by the slow (Hall) motion of the electrons (w a uxy a B - ' ) 
and can be very small compared to w, a B; (2)  the low-fre- 
quency EMP propagates only in one direction along the edge 
of the system, determined by the vector eBXN, where N is 
the outward normal to the boundary of the 2 0  system in the 
plane z = 0; (3)  in a strong magnetic field the Hall current 
dominates over the dissipative current and the EMP is weak- 
ly attenuated (of > w") not only for wr* % 1, but also for 
wr* 1; (4)  the appearance of EMP is closely related to the 
Hall effect; therefore o' and o" can take on quantized values 
in the QHE regime. 

3. AN EXACTLY SOLUBLE EMP PROBLEM 

Let us investigate a 2 0  layer (the plane z = 0 )  whose 
conductivity tensor in a field B = (O,O,B) changes discon- 
tinuously at x = 0: 

Here, (4) = ( x , ~ ) ,  ox, = uyy , u,, = - uyx , a,, = 0; 
B(x) = 1 for x > 0,0(x)  = 0 forx < 0; the superscript L ( R  ) 
denotes the left (right) half-plane; in the special case of a 
semi-infinite (x>,O) 2 0  layer do = 0, 4o #O. Oscillations 
of the charge density p(r,t) ,  the current density j(r,t) and 
potential q(r , t )  in a plasma wave propagating along the line 
x = z = 0 (the internal "edge" of the system) satisfy the 
following system of differential equations in 3 0  space: 

with the boundary condition 

lim cp (r, t )  =0, 
/II--tm 

where x(z)  is the local dielectric permittivity of the sur- 
rounding medium. Let us seek a continuous and bounded 
solution q( r , t ) .  We assume 

and after writing the Poisson equation in its integral form, 
we obtain equations for the amplitudes q(x,z) and p(x,z) : 

6 (2) do,, p(x,z)= -- 
io {:(axz &) - q:am+iq, - ax 

where Gqy (x  - x'; z,z') is the Fourier transform of the 
Green's operator V [x ( z )  V 1. By eliminating p from ( 15), 
integrating ( 14) by parts and setting z = 0, we are led to an 
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integrodifferential equation of Wiener-Hopf type for 

In order to solve (16) we introduce the functions 
pi (x)  = 6( x ) p ( x ) ,  whose Fourier transforms 

+- 

m, (q , )  = J cp, ( r )  eiq"dx 
- m 

are analytic in the upper (a,) and lower (@- ) q, half 
planes. With the help of a Fourier transform we are led to the 
form 

where 6 0 , ~  = el, - uf;p, G(q, ,qy ) is the Fourier-trans- 
form of the function Gqy (x; 0,0), while 

is the longitudinal dielectric permittivity of an infinite 2 0  
layer with conductivity ofX or of;,. The explicit form of 
~ ( q ,  ) for various cases is presented in Appendix 1. 

In order to find functions @+ (@- )  which are analytic 
in the upper (lower) q, half planes and which satisfy condi- 
tion (17) on the real axis (the Riemann boundary value 
p r ~ b l e m ' ~ ) ,  we introduce the functions 

which are analytic and have no zeroes in the upper ( X +  ) or 
lower ( X - )  q, half-planes (see Appendix 2).  Using the 
identity 

which follows from the definition ( 19), we rewrite ( 17) in a 
more convenient form: 

Casting the right side of (21) in the form of a difference of 
the functions \V , and Y -, 

which are analytic in the upper (Y  + ) or lower (Y - ) half- 
planes, we obtain 

The left (right) side of (23) is the boundary value of a func- 
tion analytic in the upper (lower) half-plane q, . According 
to a theorem on analytic continuation and the generalized 
Liouville theorem, under the supplementary requirement 
that @ + (q, - oo ) = 0, which is a consequence of the condi- 
tion that p ( 0 )  be finite, both sides of (23) are identically 
zero.34 Therefore 

. Up until now we have followed the general program of 
the Wiener-Hopf method. For further progress we turn to a 
specific problem. Let us first note that by taking (20) into 
account we can cast the combination of functions which 
stand in the square brackets in (22), and which have branch 
points at + ilqy 1, in the form of a difference of two functions 
which are analytic in their corresponding half-planes: 

Therefore the right side of (22) is a difference of two inte- 
grals. In the integral containing X+ (X- ) , we shift the con- 
tour of integration into the upper (lower) half-plane and use 
the residue theorem at the simple poles q, + iO, + ilqy 1 .  
Expression (24) is then greatly simplified: 

where 

The functions q, + ( x )  which are discontinuous at x = 0 are 
integrals of the Fourier functions (25 ) . Their values at the 
point x = 0 are obtained by integrating over the infinite half- 
circles in the upper (q,, ) and lower ( p -  ) q, half planes: 
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We require continuity of p ( x )  at x  = 0 .  Then 

Transforming ( 2 7 )  and taking into account ( 2 6 ) ,  ( 19) and 
( A 6 ) ,  we finally obtain the exact dispersion relation for de- 
termining the EMP spectrum w  (q, ) : 

The case of an EMP for a half-plane (do = 0 ,  
do =aao # O )  requires a special investigation, because 
X +  (q ,  - cc, ) = 0, X -  (q ,  - cc, ) - a,. In this case condition 
(27)  and consequently ( 2 8 )  (see Ref. 1 1  ) follow from the 
finiteness of p-  ( x )  as x -  - 0.  

I t  is not difficult to show that ( 2 8 )  also describes the 
spectrum w(q, ,  q, ) of EMP which propagate along the lat- 

Here ox, ( x )  = dx for p + ,  Q + ,  and u,, ( x )  = of;, for p - ,  
Q - .  Equation ( 3 2 )  clarifies the meaning of the functions 
X ,  ( q ,  ) which were introduced into ( 19): they are propor- 
tional to the Fourier components of the charge density. 

Up until now we have assumed that the background 
dielectric permittivity x ( z )  does not depend on x  and y. If 
x  = x ( x , z ) ,  then it is necessary to include the influence of 
the image charges which arise near the lateral boundary 
x  = 0  on the EMP spectrum. When the half-space x  > 0  
(x <O) is occupied by a dielectric with permittivity xR 
( x L  1, uczD ( x , w )  = B(x)c& ( w )  and do = 0, it is not diffi- 
cult to obtain a generalization of Eq. ( 16): 

era1 boundary x  = 0  of a superlattice whose axis coincides 01 

with the z axis and which has the dielectric function ( A 5 ) .  rp ( x )  = - 
a' 

4niouR [ I + ~ O  ( - X I  ] ( - q; ) J axrcp ( X I )  

The EMP potential, taking ( 2 7 )  into account, is de- w o 

scribed by the expressions 
+ m  

q ( 0 )  5 d ~ e - ' ~ ~  [ G q  &x-x'; 0 . 0 )  + a 0  ( x )  GqV (x+xr  ; 0,O) I 
q * ( x ) = T -  - {q,Gox,+qxGom-AX~ (9 , )  1, 

2nzGa*,-_ q,8+qV 
-- 4n'(0) [ l + a ~ ( - x )  1 

(29) io 

from which we obtain the value of the EMP electric field at 
x =  + o :  

rp ( 0 )  
( 3 5 )  

[ 2 q v ~ o , , - A X ,  (*ioo) I .  ( 3 0 )  which describes the amplitude of the EMP potential for a 
heterojunction or superlattice (the latter if we replace G,, by 

From ( 3 0 )  it follows that the normal component j, of the GgY+). An exact solution to ( 3 5 )  for arbitrary values of 
EMP current is continuous at the boundary x = 0.  In the a = ( x R  - ,L ) / ( ,R + ,L) is not known. However, in ex- 
case dp = 0  the n ~ r m a l  current 1, ( x  = + 0 )  = 0 ,  which periments we usually find that xR &xL ,and we can then as- 
was obtained by another method in Sec. 2, while the EMP sume that a = 1 .  The method of solving the equation ob- 
field diverges for x  + - 0  but is finite as x  - + 0 :  tained from ( 3 5 )  with a = 1 is discussed in Ref. 35. By direct 

substitution we can show that the Fourier transform of the 
d ~ + / d z  l A = + O = c p  ( 0 )  q,svRlio,". ( 3 1 )  function p+ ( x )  = 6 ( x ) p ( x )  has the form 

+ m 

We now bring in the exact expressions for the charge density eR (9r') -1 
@+ (4.) = 

scourR -- eR(q,')  (q,'2+qv2) 

the linear charge density Q, , and also the charge and char- Again after computing p+ (x- + 0 )  - p ( 0 )  = 2p+ ( O ) ,  we 
acteristic length over which the amplitude of the EMP po- obtain the dispersion relation for the EMP for a = 1: 
tential decreases in "center of gravity" coordinates for + l? 

do = 0:  
+- - 0 ,  ( 3 7 )  

Ao,(x)  1 
p* =*rp (0 )  ------ - j d q X *  (q , )  e-'VxL, 

iw60, 2ni -_ 
( 3 2 )  

where E~ is given by (A1 ) or ( A 2 ) .  

*- 

Q,  - * Jp, ( x )  dx 

Let us turn now to an analysis of these results. 

4. EMP IN HETEROSTRUCTURES 
0 Let us investigate the properties of EMP in a 2 0  elec- 

tron system with dielectric function ( A l )  and a sharp pro- 
Ao,  ( x )  

= Trp ( 0 ) -  
1 

[ X , ( O ) - ~ X , ( ~ ~ = )  I, ( 3 3 )  f i l e f o r u a ~  ( X I .  
w6oxX Edge plasmons in zero magnetic Jield. For dl, = 0, 
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B = 0 (8 iL  = 0 )  edge plasmons can propagate along the 
x = 0 boundary of the system with a spectrum w ( q ,  ) deter- 
mined by an equation derivable from ( 2 8 )  : 

In the collisionless approximation (a,, = in, e2/m*w, 
w r  = co ), ( 3 8 )  has the unique solution 

where 7,) = 1.217 ... is a root of the equation 

J ciz ln {L -. I } =  0,  
sin x 

and w, ( q ,  ), q, is the 2 0  plasmon frequency ( 1 ), A ( q )  = 2. 
Thus, the edge plasmon branch is split off from the edge of 
the 2 0  plasmon continuum by 10%; w ( q y  ) ~ 0 . 9 0 6  
w, (O,q, ). For w r  5 1 the edge plasmon is strongly damped. 
The penetration depth of its field into the sample is deter- 
mined according to ( 2 9 )  by the zero q,, of a (q ,  ) which is 
closest to the real axis in the lower half-plane; for (q,, Ix > 1 
we have 

EMP spectrum for a half-plane (ubo =O). The disper- 
sion relation ( 2 8 )  for B $0 ,  do = 0 ,  do =aao can be re- 
written in the form 

F ,  ( 2 )  = - 1 tanh { J l n ( 1  + )  ( 4 0 )  
sin t 

0 

The length I defined by ( 10) in the collisionless approxima- 
tion is real: 

In this case Eq. ( 4 0 )  has a real solution in the region 
w\w,,p'(O,qy) [see ( 2 ) ] .  Study of the function F, ( z )  
shows (see Appendix 3 )  that the E M P  spectrum consists of 
two branches, w+ (q ,  ) and w - ( q ,  ), which are labelled 
with the sign of their phase velocities (Fig. 2a ) .  The right- 
hand branch w + (q ,  ) is gapless; we note that w + (q ,  ) = w, 
for q, = 2/10, where I,, is defined in ( 1  1) .  The w - (q ,  ) 
branch exists for w > w* = w,  cth ( 2 G / a )  -- 1.905w,. , 
14,i >9.? = 1,;  ' [sh ( 2 ~ / a ) ] - ' - - 2 . 6 2 7 1 ,  ', where 
G = 0.916 is Catalan's constant. For w = w*, q, = - q:, 
the w - ( q ,  ) branch enters into the continuum region of 
@,,,p (qx 3 qy ). 

Switching on the magnetic field thus leads to a splitting 
of the edge plasmon frequencies (Fig. 2 b ) .  In weak fields 
(0, <w(qy  ) ) this splitting can be determined from the rela- 
tion 

- - apl(Q. qy) - 
o,op(tl, q y )  sign q,. 

n (1~,,'-1) 'I* 

Ilu q o l -  arccos (-q-') 

FIG. 2. The EMP frequencies o,, w _ as functions of ( a )  wave vector for 
B = const., and ( b )  magnetic field for q, = const.; note that 
o(q,  ) = - w( - qy ) .  Dashed curve-the boundary of the continuum 
region of the w,,, (q,, q,) spectrum (which is crosshatched). The dot- 
dashed curve in ( a )  is a plot of [of + (0.906 w, (O,q, ) )'] '/'. 

Let us analyze the properties of the right-hand branch 
in the long-wavelength and low-frequency limit without us- 
ing the Drude model. Equation ( 4 0 )  simplifies for Iq, 1 / < 1 :  

the discarded term in the brackets has the form 

where z = /qy  11, and for / Z / G  1 gives a correction ~ 4 . 5 % .  
The solution to ( 41  ) we obtain by iteration, using the small- 
w limit for aao ( w )  and I [see ( 7 ) ,  ( l o ) ] :  

The function f ( x )  is the solution of the equation f ( x )  = In 
[ x f  ( x )  ] ; for lux, /u:, 1 > 1 it is the limit of the following 
sequence of functions f, ( x )  defined by & ( x )  = ln x ,  
f,, , ( x )  = ln[xf, ( x ) ] ,  which yields f ( x )  z l n [ x  ln x ]  
+ O(ln In x/ln x )  for x >  1.1 The rigorous results ( 4 2 ) ,  
( 4 3 )  agree with the qualitative results ( 5 ) ,  ( 8 )  if we set 
b -  11 1. 

Distributions of  potential, Jeld, charge and current for 
the low-frequency EMP mode w+ fq,) for a$ = O  in the lim- 
its /q,1/(1 and /a:,/a,/4l. The potential distribution is 
determined from Eq. ( 2 9 ) ,  which, when ( 2 0 )  and aL = 1 ,  
E~ ( q ,  ) =a(q ,  ) are taken into account, has the form 

The value of the integral ( 4 4 ) ,  in which we shift the integra- 
tion contour into the lower (upper sign) or upper (lower 
sign) q, half-plane, is determined by the branch points 
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( + ilqy 1) and zeroes (poles) of the function ~ ( q ,  ). The 
latter are absent for w2 < wf. Therefore, in the limit Iqy I I 4 1 
Eq. (44) and the analogous Eq. (32) reduce to integrals 
along the cuts ( f ilqy I, + i ~ ) :  

Taking into account that in the limit in question A =:qy a,,, 
we obtain the asymptotic forms of (45): 

Here, S - wii/2qy uxy is the dimensionless phase velocity 
of the EMP, K, (z)  is the nth order modified Bessel function 
of the second kind (K, (z) = - K 6 (z),  K,(z) -- ln (2/ 
z)  - C for 291 ,  K ~ ( Z ) = : ( ~ T / ~ Z ) ~ / ~ ~ X ~ (  - z )  for ~ $ 1 ;  
C = 0.577 ... is Euler's constant). The rigorous result (46a) 
coincides with the qualitative result ( 5) .  

Our analysis shows that for /qy I I < 1 the EMP charge is 
concentrated primarily near the edge in a strip whose width 
is on the order of 11 I, which validates the qualitative argu- 
ments in Sec. 2. The "center of gravity" of the charge (33) 
for lqy 1 I 4 1 is found at the point ( I  /a) ln(2/lqy 11). 

The components of the field and current are found by 
differentiating (45) or (46a), (46b) (see Fig. 3) .  The EMP 
field decreases algebraically for x 5 Iqy I - ' and exponential- 
ly for x > Iqy / - ' .  The characteristic lengths over which the 
potential, field and current jy decrease for Iqy 1 / 9 1 equal 

The amplitude of the current j, is a maximum (Fig. 3 ) at the 
point x, --SEX = S. 

JY ' 

It is important to note that in strong magnetic fields 
( Iqy I / 9 1 ) the EMP is localized near the edge of the system 

FIG. 3. Amplitude distributions of EMP potential, field, current, and 
charge density for a 2 0  system at a heterostructure. 

over a length which is small compared to the wavelength 2n/ 
Iqy I (in contrast to the surface plasmon for a semi-infinite 
3 0  plasma). This circumstance validates the rule ( 13) for 
quantization of qy in a sample of finite dimensions if the 
length (47) is small compared to the transverse dimensions 
of the 2 0  layer (i.e., in a strong field B).  

The influence of diffusion. In deriving ( 15) we neglect- 
ed the diffusion current, which is correct if I Vp I % I Vpdp/ 
dn, //e2, wherep is the chemical potential, and wr*  4 1. This 
condition is violated, as follows from (46),  when 

Here N ( E F )  = dn,/dp is the density of states at the Fermi 
level. No = m*/2fi2 is the B = 0 density of states, a, = f i2 j i /  

m*e2 is the Bohr radius. Estimates show that in general the 
right side of (48) is small. On the one hand, this justifies our 
neglect of diffusion when calculating the EMP spectrum; on 
the other hand, it also ensures that the divergence ofp, ( x )  
a s x -  + 0 and that of Ex ( x )  a s x -  - 0 are cut off. By in- 
cluding the smearing-out of the edge (n, = n, ( x )  ), we also 
remove the divergence of p + ( x )  as x - + 0 and Ex ( x )  as 
x - - 0. The corresponding length is the width of the transi- 
tion layer h. 

Influence of the image forces a t  the lateral boundary. 
The dispersion relation (37) with the dielectric function 
(A. l )  we will write in the form of (40), where k = x R /  
2 % xL , and in place of F, there stands the function 

The EMP spectrum is qualitatively similar to that shown in 
Fig. 2; however, in contrast to the case a = 0 (xR = xL ) the 
EMP branch w- (qy ) and also the edge plasmon branch 
(B = 0 )  disappear: they are forced down as a - 1 to the low- 
er edge of the w,, (0, qy ) continuum of 2 0  magnetoplas- 
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mons (2).  The gapless EMP branch is changed in a insignifi- 
cant way: 

EMP a t  the boundary between two semi-infinite planes. 
This problem contains two lengths I: an IL for the left half- 
plane and an IR for the right half-plane. The dispersion rela- 
tion simplifies in the long-wave limit ( Iqy lL 1 < 1, 
lqyIR 141) :  

This equation, just as for (41),  is solved by iterations. In 
particular, the EMP attenuation is small for any wr*, and for 
wr; < 1, wr? < 1 is proportional to Sax, and is quantized in 
the QHE regime: 

A two-dimensional system in the QHE regime with 
short-range fluctuations of the random potential contains 
potential regions ("islands" and "hills"), at the edge of 
which the degree of degeneracy of the Landau levels (and 
the conductivity) changes d i sc~n t inuous ly .~~  Along the pe- 
rimeter of these regions EMP-like excitations can propagate 
with the spectrum (49); qy will take on the discrete values 
( 13), if the corresponding lengths (47) are small compared 
to the linear dimensions of the region ( P i s  the region's pe- 
rimeter). If, however, the edge of the region is smeared out 
by an amount h > IIRxL I/T, then the EMP spectrum in the 
region are described by the expression [see (7  1 ) 1 : 

The presence of the discrete low-frequency modes (49),  
(50), and (13) will be manifested in the response of the 
system in the QHE regime. 

Effect offinite substrate thickness. A more realistic situ- 
ation is one where the semi-infinite 2 0  layer (x>O) is locat- 
ed at the surface of a dielectric layer (of permittivity x )  
which occupies the region O<z<d. Let us analyze Eq. (28) 
with the dielectric function (A.2); dD = 0, dD =caD. In 
the limits d--0 and d -  W ,  (A2) reduces to the case investi- 
gated earlier, ( A l ) ,  ifwe replace 2 by 1 and 2 by ( x  + 1)/2, 
which is physically obvious. The most interesting case is that 
of a moderately thin substrate: I1 1 g d  < lqy 1 - I ;  here 
I = 2~ic , ,  /w2, k = ( x  + 1 )/2. Using the tanh qd approxi- 
mation 

in the limit Iqy 12 I g 1, K > 1 we obtain for the gapless EMP 
branch 

where 

F,(z) =(I-z2)-" 1n[ (I+ (1-z2)'")/z]. 

5. EMP FOR THE 2DELECTRON SYSTEM AT THE SURFACE 
OF LIQUID HELIUM 

Let us investigate the properties of EMP in a system 
with the dielectric function (A3) and a sharp profile 
cnD (XI; do = 0, do = cap. 

Edge plasmons (B=O). Equation (28) for B = 0 has a 
solution in the collisionless approximation 

=2nn,ezqy tanh (q,d)lm'i~cq(I qudI), (53) 

where w, (q, , qy ) is the spectrum of normal 2 0  plasmons in 
this system, y (z) -- yo for 2% 1 and r ]  (2) =: 1 + (2  In 2/7) ,z2 
for z < 1. In the general case y (z) is the solution to the equa- 
tion 

n/Z 

tanh ( th in  x )  ! sinxxtanbr -I]= 0. 
The potential of an edge plasmon (53) decays into the interi- 
or of the 2 0  system exponentially for large x with a charac- 
teristic length 7 / ( 2  In 2q:d) for Iq,d I -4 1, which is far larger 
than that of a heterostructure. This coincides with the re- 
sults of Ref. 26. 

EMspectrum (B#O). For Iqy d 1 9 1 the results reduce to 
those obtained earlier. In the long-wavelength limit, 
lqy Id g 1, (qy I I g 1, we can write the dispersion relation in the 
form (40) by replacing F, (Iq,II) by F,(l /d) ,  where 

h e r e A , =  1 + C  + l n ( 4 / 7 ) ~ 1 . 8 1 8 ,  where C=0.577 ... is 
Euler's constant and A ,  = 2 In 2 z 1.386. For comparison 
with experiment, it is convenient to use an interpolation for- 
mula for F,: 

which is obtained by using approximation (5  1 ) . 
We obtain the following results for the dependence of 

the relation between d and I = I, + il, from (54). For large w 
(wr*> I ) ,  large B (I,<d), and I, <I,<d: 
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For small w (WT* & 1 ), large B, and 1, &I,  & d  [the function f 
is defined in (43) 1 : 

For large w (wr*> l ) ,  small B, and I,,>max(l,, d ) :  

In the last relation, we have used the Drude model, and 
c, = (2an, e2d /m*ii) ' I 2  is the velocity of the "screened" 2 0  
plasmon. 

In the remaining case, i.e., 1, >max(lO, d ) ,  the EMP is 
strongly damped: 

where pi, = uL/(ui: + & ) is the diagonal resistance. 
The attenuation time is the product of the resistance of a 
conducting strip of width I I I and length I qy I I (pi, / I  qy 1 1 ) 
and capacitance ii 1 I 12rd lqy I .  

Thus, the presence of metallic electrons near the 2 0  
layer leads to softening of the EMP frequency for lqy d I < 1 
and to the appearance of considerable attenuation for small 
w. In a weak field (I,,>d) the EMP attenuation is large for 
WT* < 1 (as for a normal plasmon), while in a strong field 
(I, & d )  the attenuation is large for COT* 5 l(,/d & 1. 

Distribution of potential andjield for the wl, (qy ) EMP 
mode. The behavior of p ( x )  as x-0  is determined by the 
asymptotic form of ~ ( q ,  ) as q, - a, which is the same for 
all 2 0  systems, i.e., (A1 )-(A5 ). Therefore y, + ( x ) ,  p ,  ( x )  
are described by the expressions (46) for 1x1 & 11 1, d and 
lqyl- '%IIl ,d.  

The behavior of p ( x )  for x > 0 is determined by the 
simple zeroes 

of the function ~ ( q ,  ) see (A3)  in the lower half-plane (the 
y, (x) are roots of the equation tan(ry,, ) = x / ( r y ,  ) ) ,  
while for x < 0 it is determined by the simple poles 

of the function ~ ( q ,  ) in the upper q, half-plane [in contrast 
to (A1 ), there are no branch points in (A3)  1. The asympto- 
tic form of p ( x )  as 1x1 - cc is determined by the singularity 
of ~ ( q ,  ) which is closest to the real axis. For Iqy Id& I, 
Iqy lI& 1, inastrongmagneticfield (i.e., 11 / g d ) ,  when (55),  
(56) are applicable, then a,  --Dl =:a/2d and 

in a weak magnetic field (i.e., 1,,>1,, d )  under conditions 

such that ( 57 ) is applicable, a ,  zz (dl,,) - 'I2, 8, z a/2d and 

cp+ ( x )  I .,d~~=cp (0) exp (-x/ (dl ,)  I"), 

The local capacitance approximation. Equation (60) 
for y,+ (x) satisfies the boundary condition j, ( + 0 )  = 0 
[see ( 3  1 ) 1, and therefore is applicable not only for x > d / T ,  
butalsoforallx>O. Itwasobtainedasd-0 ( d & / I / ,  Iqy I-', 
to be more precise). In the limit d -  0 the kernel of Eq. ( 15) 
becomes a 8-function (G, (x; 0, 0 )  -d8(x)/27t); ( 15) re- 
duces to the equation for a parallel-plate capacitor p ( ~ ) /  
p ( x )  = ii/2ad, and the EMP problem reduces to solution of 
an ordinary second-order differential equation with the 
boundary condition jx ( + 0 )  = 0. This local-capacitance 
approximation is often used in calculating the dynamic 
properties of 2 0  systems with metallic electrodes (one or 
two] y.26.37. , its applicability requires not only the condition 

/qy Id& 1, but also the stricter inequality d < 11 1. A part of the 
information is lost when this approach is taken, e.g., the sin- 
gularity in p+ (x-0) is not described. 

6. EMP IN METAL-INSULATOR-SEMICONDUCTOR 
STRUCTURES 

Let us analyze the EMP spectrum in a MIS structure 
with the dielectric function (A4) .  For Iqy I d s 1  the results 
reduce to those obtained earlier. We denote the ratio x2/xI 
byp. Let us write the dispersion relation in the small-q, limit 
( Iqy I - '  s d ,  Dd, 11 I ) in the form (40),  replacing F, with 
Fs ( l /d ) :  

( 1  + p ) l n ( l / x ) d x  
'(')=! (cosh x + f l  sinh x) '  ' 

The function g ( p )  possesses the following properties: 
g ( O ) = C + l n ( 4 / r ) ~ 0 . 8 1 9 ,  g ( l ) = C + l n 2 = 1 . 2 7 0 ,  
g(D) =In b' + B - ' ( l n  fl + 0.568) asB- C C .  With the help 
of ( 5  1 1, we obtain the interpolation formula 

We now present a summary of the results for the spec- 
trum of the gapless EMP mode in the long-wavelength limit: 
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For I, >lo, d the EMP is strongly damped. The asymptotic 
form of q,, (x )  as x- cc has contributions both of the form 
(46) determined by the branch point of the function ~ ( q ,  ) 
and of the form (59), (60) determined by the screening ef- 
fect of the metallic electrode. 

7. PROBLEMS WHICH CAN BE SOLVED BY APPROXIMATE 
METHODS 

The Wiener-Hopf method cannot be applied to find the 
properties of EMP in a 2 0  structure of complicated geome- 
try; therefore it becomes necessary to perform the analysis 
by approximate methods. The simplest of these methods- 
the local capacitance method-is applicable only in struc- 
tures with metallic electrodes and only in sufficiently small 
fields B ( d <  11 1, I q y  I- '). 

Let us investigate another approximate method which 
is suitable for strong magnetic fields, when the width of the 
region in which the EMP is localized is smaller than the 
remaining lengths of the problem. In this case, for a hetero- 
structure with a sharp profile (see Appendix 4)  

Near the edgeofthe 2Dsystem theasymptotic form (A12) is 
valid; from (63) and (A12) it follows that q,, ( x )  zq,(O) at 
least for x <  /IS (/T. For IS I 1 the region of applicability of 
the latter equation and (63) overlap. Therefore, setting 
x = yol ( 1 <.rryo<S) in (63) and cancelling the factor 
p ( 0 )  =:q,(y,,l), we obtain the dispersion relation for S, 

which coincides to logarithmic accuracy ( IS I % 1 ) with the 
exact form (41). The constant A ,  = ln(2/y0) - C remains 
undetermined using this approach. The value 
y,, = y = exp ( - 1 - C) z 0.207 corresponds formally to 
the exact value A ,  = In 2 + 1 which follows from (41 ). Let 
us apply this approach to the solution of the EMP problem 
for samples with the shape of a strip or disk. 

EMP in a strip offinite width. Let us investigate a sys- 
tem with the dielectric function (A 1 ) in a strip 

For / x  L, /21>ll I/T, we obtain in analogy with (63) 

After substituting x = + (L,/2 - yol) for 

we have an eigenvalue problem; from these eigenvalues we 
find two EMP branches: 

FIG. 4. Amplitude distributions of EMP potential for the two gapless 
branches in the strip - L, < x < L , ,  - m <y < m. 

Corresponding to branch w2 (w, ) there is an EMP traveling 
along (opposite to) the y-axis and localized primarily near 
the left (right) edge of the strip (see Fig. 4). As L, + co 
L, ,SEX = T - I  1 ln(5.4/(qy 11 to be more precise), both 
branches (65) reduce to (41) if yo = y = 0.207. For 
L, 4 Iqy I - ' the dependence of the EMP frequency on wave 
vector is similar to the spectrum of a 10 plasmon (w2 cc q2 
ln( l/q) 1: 

The attenuation of the EMP in cases (65), (66) is small 
(w"<w') ;  however, for very small a ,  when 
I I I =:I, = 277oiX/w2 is comparable to L, , the solution (64) 
is inapplicable and the EMP begins to be strongly damped. 
In the QHE regime o:, (0)  is very small and the EMP is 
weakly damped for o/2a>oi,/2LX - 1 Hz, if 
a;, - 10-"R-I, L, - 1 cm, and 2-  1. 

2 0  disk in an external$eld. Let us investigate the re- 
sponse of the 2 0  layer having the form of a disk of radius R 
and the dielectric function ( A l )  in an AC electric field of 
frequency w lying in the plane of the disk. The first of Eqs. 
( 15) now determines the potential q,,,, induced by the exter- 
nal potential q, ,,, = pe,, + q,,,, . In cylindrical coordinates 

q ( r ,  0, L E O )  = qn ( r )  erp ( in0)  
n 

for / I  I/.rr<R and R - r %  11 I / P  we obtain for 47'' (x)  

2nux, d0 cos n0 
'P:""~) = x " ( ~ )  I [ 1- (27-/R) cos 0 + '1 1.  (67) 

where n = f 1, + 2 ,... . After we set r = R - yOlin the inte- 
gral (which we denote by I,) and assume 
p n d  (R =: p kd (R - y,l), we express q, :,, in terms of q, 2, : 

The quantity E(n, w) = 1 - w + (n)/w is in some sense the 
dielectric function of the disk, and vanishes at the EMP fre- 
quency 
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After estimating I,, for lyOl /R I ( 1 and using the value 
yo = y = 0.207 for yo (in this case (69) reduces to (41) in 
the limiting case of the half-plane, i.e., R -+ CQ, n - C U ,  

qy = - 2an/P = - n/R = const.), we find the spectrum 
of discrete EMP modes of the disk 

where \y is the digamma function. We note that (69) is very 
close to (41), (13) not only for n - cu but also for n = 1. 
This is still another confirmation of the applicability of con- 
dition ( 13 ) for 11 / T I  (R for finite-dimensional samples. The 
response to the real harmonic e, :,, ( r )  is obtained by adding 
p:', and p ,;", taking into account that 
a+( - n) = - w*, (n ) .  

Effect of a projle in oap (x). In real 2 0  systems the 2 0  
electron concentration n, ( x )  near the boundary varies 
smoothly over a length h. It is necessary to include this, espe- 
cially for electron systems at the surface of helium, in which 
h is on the order of the distance to the metallic electrodes 
d.9,26 For 11 I % h the effect of smearing out this boundary is 
small and the theory of Sec. 3 is valid. In a strong magnetic 
field, the role of the transition layer becomes important 
when 11 I 5 h. Let us investigate the EMP spectrum ofa semi- 
infinite 2 0  layer with a smeared-out edge in a strong field B 
in the long-wavelength limit. The transition layer will be 
described by a function 8(x/h) (see Appendix 4).  For /IS I /  
T( h,d the following equationisimplied by (15) and (A14): 

4 n ~ ~ ( ~ ~ ~  
q(x) a -- dxlGqu (x-x'; 0,0) cp (XI) 

d8;(x1/h) 

.-m 
dx' ' 

Let us first investigate the case of a heterostructure 
(i.e., G ,  (x - XI; 0,O) = KO( lqy I I X  - x ' I  )/2712). When the 
potential p varies smoothly over the length h, we can evalu- 
ate it at the point x' = 0 and take it outside the integral (it is 
easy to verify that this is permissible when Iq, I h 4 1 ). We 
then set x = 0, cancel the p ( 0 )  factors, and obtain 

Expanding the integral for Iqy jh 4 1 gives 

The value of the constant A, depends on the explicit form of 
8(x/h): 

For the electron system at the surface of liquid helium, 
the condition Iq, Id 4 1 implies 

Substituting x = dc, x' = dg ' into (70), we obtain 

From this it follows that S = - w2/2qy uxy is a function of 
the ratio h /d: 

In order to calculate F6(x) it is necessary to solve the com- 
plicated integral equation (72). However, in the case of a 
weakly smeared-out profile ( h g d ) ,  after solving (72) by 
using the same method as for the heterostructure, we obtain 
an estimate for the EMP frequency: 

Comparing (71 ) with (41 ) and (74) with (54), we can 
conclude that in systems with weakly smeared-out edges and 
in the case where 11 I is smaller than all the remaining lengths 
in the problem, the effect of the profile n, (x )  reduces to 
replacing I by h. This implies that in such systems the EMP 
charge is localized in a strip whose width is of order 
b = max( 11 I, h) (compare with (A14) and Sec. 2).  

8. DISCUSSION OF RESULTS AND COMPARISON WITH 
EXPERIMENT 

In an inhomogeneous 2 0  electron gas collective excita- 
tions can thus propagate along a line separating regions of 
differing conductivity (in particular, along the boundary of 
the 2 0  system); the appearance of these excitations (called 
edge plasmons and magnetoplasmons) is connected with the 
loss of translation invariance. In a strong B field their fre- 
quencies can be considerably less than w,; the direction of 
their propagation is given by the vector [Vn, ( r ) ,  eB] . 

EMP also have the following quantum interpretation." 
It takes an energy h, to create a single-particle excitation in 
an infinite sample, which leads to the gap w, in the magneto- 
plasmon spectrum (2). The presence of a boundary in the 2 0  
system gives rise to a kink in the Landau levels and to the 
appearance of Fermi points (i.e., points in the space of 
centers of the Landau oscillators at which the Fermi level 
intersects a Landau level); that is, the system acquires the 
properties of a low-dimensional metal. This means that the 
presence of gapless boundary electronic states at the Fermi 
level, which correspond to electrons "hopping" along the 
edge, gives rise to the appearance of gapless (or, in finite 
samples, low-frequency) EMP. The direction of their mo- 
tion coincides with the direction along which the electrons 
"hop". When N Landau levels are occupied there are N Fer- 
mi-points in a semiinfinite sample. The EMP correspond to 
in-phase oscillations of electrons at all these points. In addi- 
tion, for N >  1 there are also N - 1 branches of lower-fre- 
quency excitations with acoustic spectra. These correspond 
to out-of-phase oscillations of the Fermi electrons (in Ref. 
1 1, these are called acoustic EMP). These excitations have 
not yet been seen in experiments. 

Let us compare the EMP in a 2 0  system with the analo- 
gous modes in the 3 0  case-the surface magnetoplasmons. 
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The primary difference in the 2 0  case is the presence in the 
problem, along with the wavelength 277/Iqy 1 ,  of (at least) 
one other complex length I(w, B ) ,  which determines the spa- 
tial dispersion of the dielectric permittivity (in the simplest 
case, ~ ( q ,  W )  = 1 + 91). Including the latter in the 2D-case 
has a fundamental effect. On the one hand, this strongly 
complicates the problem, while on the other hand it leads to 
nontrivial features in the EMP. In particular, the EMP in a 
strong B field is localized much more strongly compared to 
the 3 0  case over lengths which are small compared to the 
wavelength. 

The first time that EMP were actually detected experi- 
mentally to our knowledge was in Ref. 8, during the investi- 
gation of IR light absorption in a GaAs-AlGaAs hetero- 
structure consisting of a set of disks with diameter 2R = 3 
pm. As B was increased, there appeared a splitting of the 
resonance frequency of the type shown in Fig. 2b. Compari- 
son of the theory (69) with experimentX using the frame- 
work of the Drude model (this is possible for the three points 
which have w < w, , see Fig. 4 in Ref. 8, and which lie in the 
region of applicability of (69 ) since for them I I 1 /TR 5 0.1 ) 
gives agreement to an accuracy of better than lo%, where 
the accuracy is determined by the size of the points on Fig. 4 
of Ref. 8. In Refs. 23-25 the fundamental EMP mode is in- 
vestigated at radio and microwave frequencies (Pz  1 cm) 
for heterostructures in the QHE regime. For the low-mobil- 
ity electron gas in Ref. 24 the condition wr* < 1 holds, and 
the functions wl(B) and w" (B)  are in qualitative agreement 
with Eq. (43). For a quantitative comparison it is necessary 
to include the real geometry of the dielectric substrate. In 
samples with high-mobility  electron^^^,^^ it is clear that the 
condition wr* > 1 holds. A comparison of (42), ( 13) with 
the data from Refs. 23, 25 allows us to obtain a reasonable 
order-of-magnitude estimate of the parameters of the theo- 
ry: ~ * - R - ' . 1 0 - ~  sec. wfr*- 12/52, IqyI / < lop3 for an oc- 
cupation of v = 2; here R - 1 (see the discussion in Ref. 24) .' 

In Ref. 8 a theory was formulated to explain the results 
of experiments on the basis of the effect of the depolarizing 
field which arises in a 2 0  disk, where the latter was modeled 
as an oblate conducting (Drude model) ellipsoid. Indepen- 
dently, a similar approach was used in Refs. 13, 25, and 27 
for calculating the frequency l 3  and at ten~at ion*~ of charac- 
teristic oscillations of such a disk (in Ref. 27 the system was 
a superlattice in the shape of an ellipsoid) in a strong mag- 
netic field (ox, /a,, = 0 ) .  Among other peculiarities of the 
ellipsoid model we should mention the strong inhomogene- 
ity of the concentration n, ( r )  (Ref. 22) of2Delectrons (and 
consequently of ox, ( r )  1, and the homogeneity of the field 
for n = 1. For the low-frequency branch (o<w,  ) this ap- 
proach gives (for n = 1 ) : 

[the results obtained in Refs. 8, 13, and 25 differ from (75) 
by a numerical factor which was introduced in Ref. 221. 
From this it is clear that the results of calculating the EMP 
frequency w' in the ellipsoidal model differ from (42), (43) 
by a factor which is weakly (i.e., logarithmically) dependent 
on the parameters of the problem, while the differences in 
the EMP attenuation w" calculated from (75) and (42), 
(43) can be very important, especially in the QHE regime 

where o;, -0. In the  experiment^^.^^,^^ the values of q,, n, 
and B do not vary over a very large range; therefore, Eq. 
(75) for w' should agree rather well with experiment. How- 
ever, measurements of the EMP attenuation show that Eq. 
(75) gives much too low a value for w" (several orders of 
magnitude for v = 2). 

Thus, the ellipsoidal model cannot be applied to a real 
2 0  system with a homogeneous concentration of electrons in 
a strong magnetic field ( 11 I & R ) .  Apparently, this approach 
can claim to explain the experiments only in the weak mag- 
netic field regime, when ) I I X R and the localization length of 
the EMP field is of order Iqy I - ' - R. 

The most complete experimental data has been ob- 
tained for the 2 0  system at the surface of liquid h e l i ~ m ' . ~ . ' ~  
with metallic electrodes in the form of a rectangle7 or a disk 
of radius R 9,'s. Let us investigate the experimental points 
which lie in the region Iqy Id < 1, Iqy I I < 1; here, qy = 2m/P.  
In a narrow interval of magnetic field, i.e., when 
d - h < 11 1 z lo< R /n, the experimental dataYs1x are de- 
scribed satisfactorily by Eq. (5  ), which gives corrections to 
the result w+ = c, qy first obtained by the authors of Ref. 9 
in the collisionless limit by using the local capacitance ap- 
proximation. 

The strong magnetic field region ( 11 I 4 h -d),  in which 
Eq. (73) holds, was investigated in Refs. 7, 18. In this case 
we have w a B - '. From the slope of the line w(B I )  as 
B - ' - 0 (see Fig. 2 in Ref. 18 ) and from comparing with 
(73), we obtain F,(h /d) ~ 2 . 9 ;  the radius of the 2 0  disk 
R = 0.83 cm was obtained by comparing the measured (Ref. 
18, Fig. 1 ) and calculated9 values of the resonance frequency 
for B = 0. A summary given in Ref. 7 of data obtained in a 
strong magnetic field (see Fig. 2 of Ref. 11 ) demonstrates 
that wB/n, is directly proportional to the mode index 
n = qy P/2a.  Unfortunately, there was no data given in Ref. 
7 which would allow us to determine unambiguously the 
index of the excited EMP modes. Therefore, there are two 
possible ways to understand and fit the experimental data. If 
we assume (see Ref. 11 ) that the lower excited mode in Ref. 
7 corresponds to n = 2, while the size of the region occupied 
by the 2 0  electron gas equalled the size of the metallic elec- 
trodes ( 1.78 X 2.5 cm2, P = 8.56 cm), then from comparison 
of the slope of the straight line on Fig. 2 on Ref. 11 with Eq. 
(73) we obtain F,(h /d) z 1.25. If, however, we assume that 
in Ref. 7 EMP modes are excited starting with n = 1, then 
we obtain a value of F,( h /d) ~ 2 . 5  which is closer to the 
results derived in Ref. 18. We remark that in reality the pe- 
rimeter P of the 2 0  system in Ref. 7 can exceed the value 
P = 8.56 cm used above, because of the specific (see Ref. 38) 
position of the guard electrode in Ref. 7. This circumstance 
may possibly explain the discrepancy in the values of F,(h / 
d )  derived in Refs. 7, 18. 

The anomalously small EMP attenuation measured in 
Ref. 7 agrees qualitatively with the results obtained in Sec. 5. 

The authors of Ref. 7 also formulated a theory of EMP 
based on a solution to an integral equation of type ( 16) in 
which the logarithmically divergent kernel was approximat- 
ed by a simpler (exponential) kernel (see also Ref. 10). Al- 
though the authors of Ref. 7 were able to reconcile the theory 
with experiment by using fitting parameters, their incorrect 
dependence of w (qy ) (which is a q: in place of = qy under 
the experimental conditions of Ref. 7 )  casts into doubt the 
correctness of this method. A similar approximation gives 
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an expression (see Ref. 12) for the EMP spectrum of a het- 
erostructure which agrees with (75) in strong magnetic 
fields with an accuracy up to a coefficient. In Refs. 14, 15 the 
integral equation was solved numerically (an  analogous 
method for superlattices was used in Refs. 19-21 ). However, 
several results of the numerical calculation contain qualita- 
tively nontrivial conclusions. For example, a confirmationI4 
of the possible presence of a considerable contribution from 
a 6-function-like EMP charge at  x = 0 would contradict the 
finiteness of the field energy of the EMP at the boundary." 

To  summarize, we can state that the principal defi- 
ciency of the modeling calculations of Refs. 7, 8, 10, 12, 13, 
and 25 is the neglect of the length I which figures into the 
exact formulation of the problem, which is characteristic of 
the 2 0  electronic system, and which plays an important role 
in the formation of the spectrum, potential, and field distri- 
bution of the EMP. 

The authors are grateful to V. B. Sandomirski, and also 
to L. A. Galenkov, S. S. Nazin and V. B. Shikin for numer- 
ous discussions, and to A. V. Chaplik for useful comments. 

APPENDIX 1 

The dielectric function of a 2 0  system ~ ( q ,  w )  is defined 
by Eq. ( 18); its explicit form depends on the form of G(q,, 
qy ) and on q = (q: + q: )"*.After solving the electrostatic 
problem for a layered system with dielectric permittivity 

and a 2 0  layer in the plane z = 0, we obtain 

1 x I tanh & I  + KO + X2 x2 tanh qd2 + x,, 
A(q)  = T { X ' ~ ,  +x,tanh qd, x2 + x,, tanh qd2 

Using this expression, we obtain for the 2 0  layer at the 
boundary of two semiinfinite dielectrics ( d l  = d, = co ), 
which is typical of modulation-doped heterostructures 
( 2  = (HI + x2)/2); 

A more realistic model of a heterostructure includes the fi- 
nite thickness of the dielectric substrate ( d l  = 0, dz  = d, 
x o =  l , x , = x ) :  

2nia, ( a )  
e(q, @ ) = I  + - 2 q 

o 1 S x  ( X  tanh gd + I ) / ( %  + tanh qdi 

For electrons at the surface of liquid helium a metal 
(xo = a, )-dielectric 1-dielectric 2-metal structure is typi- 
cal, with d l  = d, = d: 

E(Q, ~ ) = 1 +  2niu,(w) q tanh gd. 
o a 

In a MIS structure (x , ,  = CC, d l  = d, d, = co ) 

For a superlattice (i.e., a set of 2 0  layers located at 
z, = na in a dielectric ( x ) ,  where a is the superlattice period 
and n = + 1, + 2, ...) 

2nio, (a) q sinh qa 
(q, qz, a )  = I  + x u  cosh qa - cos q,a (A51 

APPENDIX 2 

We list here several properties of the functions 
X ,  (q, ), which are proportional to the Fourier components 
of the charge densities p + ( x ) .  From the definition ( 19) it 
follows that 

After casting ( 19) in the form of a principal-value integral 

we find the asymptotic form of Xi (q, ) 

(A71 

Using (A1 1-(A5), we obtain for the case d.y, u:,X, # O  

and in the case ex = 0, ocx #O, 

APPENDIX 3 

Let us use the function Fl (z) defined in (40).  In the 
region 0' < (0, qy ), in which the EMP can exist, the pa- 
r a m e t e r ~  varies in the intervals ( - a ,  - 1 ) and (0, + cc ) .  
The integral appearing in F, (z)  can be expressed3' in terms 
of a special function-Clausen's integral,4" whose asympto- 
tic form is given by ( G  = 0.916 ..., rlo = 1.217 ...) : 

2G ~ ( 2 ( - z - I ) ) ' ~  Fl= ncoth -4- , 1~+11<1. 
;I sinh2(G/.ir) 

A graph of Fl ( z )  is shown in Fig. 5. The singularity of F, for 
z = - 7,) describes the edge plasmon (39). The regions 
( - m ,  - rlo) and (0, + c o )  correspond to the branch 
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FIG. 5 

w+(q, ) ,  theregion (-v,,, - 1)  t o t h e b r a n c h w -  (q,), 
the region ( - 1,O) to the 2 0  plasmon continuum (2 )  (here 
Im F, ( z )  #O, which corresponds to collisionless attenuation 
of the EMP due to decay into 2 0  magnetoplasmons). 

APPENDIX 4 

Let us investigate the behavior of p ( x ) ,  p ( x )  in the 
limits /qy 1 1 < 1, lqy Ih < 1. The transition layer will be de- 
scribed by a smooth function B(x/h), which varies from 0 to 
1 in the interval 1x1 5 h /2. The charge density p ( x )  [see 
(15)]  we will write in the form of a sum of 
P I  +P2 +P3 +p4: 

For large x, ( 15 ) implies a multipole expansion of the poten- 
tial 

cr (n) = 4nQG ( . r )  - pi/ 

where Q and D are the linear charge density and dipole mo- 
ment of the EMP. 

Let us first investigate the case of a heterostructure with 
a sharp profile (h  = 0) .  From the requirement that the S- 
function-like contribution vanish (p2 + p4  = O, i.e., 
j, ( + 0 )  = 0)  we derive condition ( 3  1 ) and an expansion of 
p ( x )  for small x ( x >  0): 

In this case the principal contribution to QandD for Iq, 1 / < 1 
comes from the termp,  in (A10): 

(A131 

If we take (A1 1) into account, it follows from (A13) that 
the first term in the expansion ( A  1 1 ) dominates for x $11 I / T  
[compare with (63) 1 : 

Let us now investigate the case of a 2 0  layer with a 
smooth profile in a strong magnetic field ( I1 / is smaller than 
all other characteristic lengths). The principal contribution 
top  is given by the termp,, which does not contain the factor 
I: 

Estimatesfor electronsonliquidhelium (e, ' 5 e, /d, 8 ' 5 I /h)  
show that ( A  14) is valid for I IS l/a < h -d. Analogous esti- 
mates for heterostructures give / IS  I / T < ~ .  

'Taking into account a smooth profile for n, ( x )  can be important in de- 
scribing EMP in real 2 0  systems at the surface of liquid helium and in 
MIS structures. 

'Use of a local approximation for a,, limits the region of applicability of 
the theory developed here to the strong magnetic field side: the character- 
istic length over which the electric field decreases [ 11s / r  in a strong B 
field, see (47) ] should exceed thecyclotron radius r, . In the Drude mod- 
el, for w, T ' <@, we have r,/l,, = fiwic/ez(2vn, ) ' I 2 .  References 8, 24, 
and 25 used r,v/llS 5 r,/l, 50.2. 
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