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The influence of substrate elasticity on the phenomenon of wetting in two-dimensional systems is 
considered. For the transition of two steps from a bound state to a free state it is shown that the 
interaction of the steps via elastic deformations of the substrate leads to a logarithmic growth of 
the activation barrier for the transition as T -  T, . I t  is found that in a two-dimensional lattice of 
steps the corresponding phase transition should be first-order. For the problem of the wetting of a 
step by a two-dimensional phase it is found that the transition should occur discontinuously from 
incomplete to complete wetting, with a large activation barrier. 

1. INTRODUCTION H = j dx('l,l,[ (V1,)2+(VU21+U(1i-12)). ( 1 )  
The problem of wetting has attracted considerable at- Here 1, and I, are the displacements of the filaments in the 

tention in recent years. A review of the numerous papers on 
direction perpendicular to the filaments. We shall not con- 

this theme can be found in Refs. 1-4. As a rule, the problem 
sider states in which the steps pass through each other, i.e., 

of wetting is understood as that of finding how the thickness 
when "overhangs" are formed on the surface. For definite- 

of an adsorbed film depends on various parameters, e.g., the 
ness, we shall choose I, > 1,. The potential of the interaction 

temperature and chemical potential. The wetting phase 
between two steps at a distance 1 is conveniently chosen in transition is understood as the transition from a thin (two- 
the form 

dimensional ) to a thick (three-dimensional ) adsorbed film. 
The work done in recent years has demonstrated the decisive 00, 1 < 0  

influence of long-range interactions, e.g., van der Waals in- - U , ,  O < l < a ,  
teractions on the wetting a/12, 1 > a 

The problem of wetting can also be formulated in two where a is a distance of the order of several interatomic spac- 
dimensions. In this case we are concerned with the change in 

ings. The potential (2 )  describes attraction at short dis- 
the width of a strip of some two-dimensional phase growing 

tances ( U, > 0 )  and repulsion on account of elastic deforma- 
in the neighborhood of a line defect on a surface. In experi- 

tions17 at large distances. 
ment, this phenomenon has been observed repeatedly on 

The step is displaced as a result of the formation of 
electron rn icrograph~.~- '~  In all the cases investigated the 

kinks ( a  break in the step) with energy E , .  Considering the 
role of the line defects has been played by steps on the surface 

mean square displacements of a filament and a step it is easy of a single crystal, while the role of the two-dimensional 
to relate J, to E, : phase has been played by the adsorbate or the reconstructed 

surface. 
A similar problem is the question of the transition of 

two or more interacting linear entities from a bound state to 
a free state. "-I4 The decay of steps from heights of two or 
three lattice constants to heights equal to one lattice con- 
stant has been observed in the experiments of Refs. 15 and 
16. 

It is natural to expect that in the two-dimensional case, 
as in the three-dimensional case, interactions that fall off 
slowly will determine the behavior of the system in wetting. 
An example of such an interaction in two-dimensional sys- 
tems is the elastic interaction via the substrate. Between the 
steps there is a repulsive interaction that falls off as the in- 
verse square of the distance between them." The energy of 
the elastic deformations that arise when a strip of the two- 
dimensional phase appears increases logarithmically with 
the width of the strip.'' In this paper we shall consider the 
effect of such elastic deformations on the phenomenon of 
two-dimensional wetting. 

2.TRANSlTlON OF TWO STEPS FROM A BOUND TO A FREE 
STATE 

We shall describe this transition by a model of two in- 
teracting filaments, arranged, in the ground state, along the 
x axis. The Hamiltonian of the model has the form 

where b is the lattice constant. Replacing 1, and 1,: 

we obtain the Hamiltonian describing the relative displace- 
ments of the filaments ( J  = iJ, ) : 

One-dimensional systems with a Hamiltonian of the type 
( 5 )  are conveniently studied by going over from the one- 
dimensional statistical problem to the one-dimensional 
quantum p r ~ b l e m . ' ~ - ~ '  Here the free energy of the system is 
P = TE,, where Eo is the energy of the ground state of the 
Schrodinger equation 

In the wetting problem it is customary to characterize the 
behavior of the system by the mean square fluctuation 6: 
and correlation length gII. These are expressed in terms of 
the wavefunctions \V, as follows: 
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where 7 = Jdll\V,(I); 

n 

a exp [ - (E,-Eo) I x I I =exp (- I x I /Ell). (8) 

In the case of the potential ( 2 )  Eq. ( 6 )  can be solved exactly. 
For E < 0 the substitution q = I l l ' f ( p l )  brings Eq. ( 6 )  for 
I > a  to the form 

where 

pZ=lEJ21iT, v= ( 2 1 a l T ~ + ~ l ~ ) ' " .  

The solution of (9)  that decreases as I - co is expressed in 
terms of the modified Bessel function K,, (Ref. 22) .  Thus, 
for I > a  the wavefunction has the form 

Y = B l " z K v ( ~ l ) .  

The asymptotic forms of \V are 

In the region 0 <I < a  the solution of ( 6 )  has the form 

Y=A sin ka, k= [21 (Ua+ [ E l ]  Ih/T. 

From the joining condition we obtain an equation for the 
dependence E (  T )  : 

ka ctg ka='l2-paKv-,(Pa)lKV(~a). ( 1 3 )  

The transition point is determined from the condition E, 
= 0. In this case the solution of Eq. ( 6 )  can be expressed in 

terms of elementary functions. The solution that decreases 
as I-. m has the form 

y = ~ ~ ' h - v  , (14)  

and the equation for the transition temperature is 

ka ctg ka=lI2-v ( 1 5 )  

The solution z, of Eq. ( 15) as a function of 6 increases 
monotonically from a / 2  to a: 

Taking into account the dependence J ,  ( T )  given by ( 3  ), we 
obtain an equation for the transition temperature 

where 4 < c < 1 is determined by the quantity S. The approxi- 
mate solution of ( 17) for E ,  / T ,  ) 1 has the form 

Using the wavefunctions ( l o ) ,  it is easy to determine the 
dependence 6, ( T  - T, ) near the transition point: 

For T> T ,  the bound state is separated, because of the elas- 
tic repulsion, from the free potential barrier. We shall calcu- 
late how the height E ,  of this barrier depends on T  - T,. 
The metastable states of the pair of steps in the quantum- 
mechanical analogy correspond to quasistationary levels 
with E > 0, and the probability of formation of a segment 
with free steps is proportional to the probability of a tunnel- 
ing transition from the quasistationary to the free state. 
Therefore, knowing the dependence of the width of a quasi- 
stationary level on E, we can determine E, ( T - T ,  ) .  Per- 
forming transformations analogous to those in the case 
E < 0, we represent the solution of ( 6 )  in the region I > a  in 
the form 

Here H I.'' and H are Hankel functions2' and S i s  the scat- 
tering matrix. The asymptotic form of the solution (20) as 
I -  co is 

From the joining condition we find S: 

where 

and the symbol * denotes complex conjugation. Here J, ,  and 
Y,, are Bessel functions of the first and second kind.22 The 
poles of the scattering matrix ( 2 2 )  determine the energy E,, 
and width y of the quasistationary states. We shall be inter- 
ested in the neighborhood of the transition point, i.e., Eo +0, 
which corresponds to pa < 1 .  The Bessel functions J ,. and Y ,. 
have a simple form near zero2': 

The metastability effects will be manifest in the case of a 
large potential barrier, i.e., for a /a2U0  k 1. We shall consider 
the limiting case a/a'Uo% 1, which corresponds to ~ $ 1  for 
T- T,. In this case, in the scattering matrix ( 2 2 )  we can 
neglect the terms containing Y,,_ , ( f l a ) / Y , .  ( p a )  and 
J,._ , ( f la ) /J , .  ( p a ) .  The imaginary part of the denominator 
of ( 2 2 )  decreases like E2"while the real part decreases like E 
as E-0. In these conditions the concept of a quasistationary 
level is fully applicable. It is not difficult to obtain expression 
for the dependences Eo( T - T, ) and y( T - T, ) : 

T-T, " 

UO Tc Uo 16e2 
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Thus, the probability of a transition from a metastable 
bound state to the free state tends to zero by a power law as 
T-  T,., corresponding to a logarithmic growth of the activa- 
tion energy of the process. The exponent in the dependence 
y (  T - T, ) is easily obtained in the quasiclassical approxi- 
mation: 

2 ( 2 J a )  'Iz T-T, -' 
= e ~ ~ { - - l n [ ( ~ ) ' ~ ~ ] } m E - * i . ( ~ )  T . 

The condition for applicability of the quasiclassical approxi- 
mation is the requirement v$ 1. We note that in the general 
case of an interaction potential of the form a / x n  between the 
steps the quasiclassical approximation is applicable only for 
n = 1, 2 (Ref. 23).  For n = 1 the tunneling probability is 
proportional to exp [ - const/( T - T,. ) "'1. For n > 2 the 
quasiclassical formula gives a finite tunneling probability as 
E-0 (T- T,. ), in contradiction to the exact ~o lu t ion .~ '  

As T- T, the size L, of a critical nucleus of a state with 
steps that have dissociated, as follows from (25) ,  has the 
behavior 

I>,- (alE)'" a (T , / lT-T , I )Y .  (26) 
The kinetics of the process by which the steps pass from a 
bound to a free state (and back) is determined by several 
factors. The results obtained above make it possible to distin- 
guish two factors that lead to a growth of the relaxation time 
as T- T,. . These are, first, the activation barrier (24),  (25),  
and, second, the growth of the size LC of a critical nucleus. 
The second factor is associated with the necessity of diffu- 
sion of surface atoms through distances at least of order LC in 
the rearrangement of the steps. The probabilities of both pro- 
cesses have a power dependence on T - T, and T- T,. 
Therefore, we may expect that the total probability offorma- 
tion of a nucleus will vary as a power of T - T, and the 
corresponding relaxation time will satisfy 

where v, > v. The exact relationship between v ,  and v can 
depend on the details of the relaxation mechanism, about 
which little is known, and can differ, therefore, from the very 
simple relation v, = v + 1. 

As noted above, metastable phenomena should be ob- 
served only for v>  1. At the same time, this condition should 
correspond to the parameters that obtain in experiment. In 
this case, the contribution to the exponent v,  from the kinet- 
ics of formation of the nucleus-a contribution connected 
with the fact that LC - cc as T- T,, will be small in compari- 
son with the contribution from the activation barrier. 

This approach does not permit a rigorous investigation 
of the kinetics of the system, and the accuracy of the estimate 
of the kinetics corresponds essentially to the accuracy of the 
quasiclassical approximation (25).  However, solving ( 13) 
exactly makes it possible, on the one hand, to investigate 
accurately the thermodynamics of the problem, and, on the 
other, to justify the results of the quasiclassical approxima- 
tion. 

In experiment the transition of steps from a bound state 
to a free state has been observed on vicinal faces with angular 
inclination 5-15" (Ref. 16). In this case the system is two- 
dimensional and one may speak of a phase transition. We 
shall consider the question of the order of the phase transi- 
tion in the case when L -  a, w here L is the period of the 
lattice of steps in the free state. We shall write a phenomeno- 
logical expression for the free-energy density of the lattice of 
steps in the free state: 

Here A, and B, are certain constants. The first term in (27) 
describes the elastic repulsion, and the second describes the 
contribution to the free energy from thermal fluctuations of 
the steps. This term is simply the kinetic energy of a quan- 
tum particle in a box of width L. In the bound state the free- 
energy density can be represented in the form 

Here D= 1. The other constants can be related to the con- 
stants in (27).  For simplicity we shall assume that 
A2 = L IA I ,  since the energy of the elastic interaction of the 
steps is proportional to the square of the step height," and 
that B2 = B,  and J2 = 2J,. The third and fourth terms in 
(28) describe the free energy of the steps in the bound state 
and correspond to the contribution of thermal fluctuations 
and the binding energy. Equating F, and F2, we can obtain 
an equation for T,, analogous to ( 17) : 

The temperature dependence of the free energy is connected 
with the second term for F, and with the second and third 
terms for F2. These dependences differ only by a factor of 
order a/L2 1. Consequently, the entropies of the phases at  
the transition point will differ sharply. This implies that, in 
the framework of the model considered, the phase transition 
in the lattice of steps for large values of L will be first-order. 

The reasoning given is based implicitly on the assump- 
tion of a large barrier between the bound state and free state 
of the steps. Such a barrier, as indicated above, arises for 
v $1. In the opposite case of small v, pronounced fluctuation 
phenomena, which are not taken into account in the above 
phenomenological analysis, will be present in the system. In 
this case it is also possible that the transition of the decou- 
pling of the steps is a second-order transition. Unfortunate- 
ly, in the case of the second-order transition we have not 
succeeded in identifying the universality class. 

For a system of two steps the relaxation time T tends to 
infinity as E-0 [see (26) l .  In a two-dimensional lattice of 
steps E is bounded by the quantity a/L2. Therefore, the max- 
imum relaxation time attainable in experiment will behave 
as 

3. TWO-DIMENSIONAL WETTING 

We turn to the problem of the wetting of steps by a two- 
dimensional phase. As shown by observations in an electron 
m i c r o s c ~ ~ e , ~ - ' ~  in many cases the phase wetting a step forms 
a strip of width I to one side of the step. We shall consider 
such a strip on a terrace of width L. The Hamiltonian de- 
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scribing the system will also have the form ( 5 ) ,  but with a 
different dependence U(I), which can be chosen in the form 

wherep is the chemical potential, a > 0, and Uo describes the 
energy gain upon wetting of the steps. The logarithmic term 
in (3  1) is connected with the energy of the elastic deforma- 
tions that arise because of the difference between the surface 
energy of the phase being formed and the surface energy of 
the remaining substrate." Suppose, for definiteness, that we 
are concerned with the wetting of a step by a commensurate 
two-dimensional phase. Then the constant J can be repre- 
sented in the form (3).  Unfortunately, it has not been possi- 
ble to obtain an exact solution in the case of the potential 
( 3  1 ) . In certain cases, however, one can obtain approximate 
solutions by using the expansion of the potential ( 3  1 ) about 
the boundaries of the terrace, and the quasiclassical approxi- 
mation. 

We shall consider the case of a rigid interphase bound- 
ary ( J B  T2/aa2)  and a broad terrace (L  % a ) .  We approxi- 
mate the potential at the right and left boundaries of the 
terrace by a linear potential ( p > 0) ;  

Expressions for the energy levels in a field of the form (32) 
are given in, e.g., Ref. 23. Using them, we obtain for the 
ground-state energies in the wells 

Here A, = - 2.338 is the first zero of the Airy function. At 
the transition point, as will be seen below, the wells are sepa- 
rated by a large potential barrier. Neglecting the tunneling 
splitting of the levels, we obtain, by equating E,, and E,,, an 
equation for the equilibrium curve p ( T) . We seek the solu- 
tion in the form 

p=gL-'a In (Lla) . 
Neglectingp in the second term in the expression for E,, and 
in the last term in E,,, we obtain 

Neglecting the last term in (34),  we obtain an approximate 
expression for g and E, : 

The inequalities in (35) and (36) follow from the condition 
that the interphase boundary be rigid. The latter inequality 
confirms the applicability of the linear expansion used for 
the potential. We now calculate in the quasiclassical approx- 
imation the tunnel integral determining the activation ener- 
gy E, for the appearance of a region with the two-dimension- 
al phase covering the whole terrace, i.e., for the transition of 
the interphase boundary from the left well to the right well: 

=I 

X T' 'h 'h 

= ( 2 4 %  [ - p ( z - a ) +  a ~ n -  - a(--;-) ] dr, 
a 

0 ,  
2 Jaa 

where a ,  and L ,  are the zeros of the expression under the 
square root. The integral (37) can be estimated by the meth- 
od of steepest descent. Finally, we obtain the approximate 
result 

By virtue of the assumptions made, E, > T. This implies that 
on the transition curve the time of establishment of equilibri- 
um can be too long. In experiment the transition itself will 
then be observed from a metastable state. 

Thus, elastic deformations lead to the result that the 
width of the strip of adsorbate on the terrace should change 
discontinuously, from an almost empty to an almost filled 
terrace. In addition, in experiment pronounced hysteresis 
phenomena should be observed. When elastic deformations 
are not taken into account, the width of the strip should grow 
continuously as a function of p (Ref. 14). 

The author is grateful to B. Z. Ol'shanetskii, 0. M. 
Pchelyakov, and S. I. Stenin for explaining the experimental 
situation, and to V. L. Pokrovskii for discussion of the re- 
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