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The transport cross sections have been obtained for elastic scattering of electrons and positrons by 
complex atoms in the quasiclassical approximation, in the energy range from several tens of 
electron-volts to several tens of kiloelectron-volts. A simple analytical formula has been found for 
the transport cross section, which goes over to the well known Born approximation result at high 
energies. For the first time, the transport cross section for elastic scattering of electrons has been 
shown to be a universal function of the reduced particle energy in the medium energy range. The 
values of this function have been tabulated. It is shown that the stopping power of matter for slow 
ions, attributable to elastic collisions, can be determined by measuring the transport cross section 
for scattering of positrons by complex atoms. The theoretical conclusions are in good agreement 
with the abundant experimental data and with the results of computer calculations. 

1. INTRODUCTION 

Many problems of modern electron physics and astro- 
physics require the study of elastic scattering of electrons 
and positrons by atoms at energies ranging from several tens 
of electron-volts to several tens of kiloelectron-volts. In par- 
ticular, electron scattering plays an important role in inter- 
pretation of the data obtained through the use of x-ray-elec- 
tron and electron-probe microanalysis, Auger-electron 
spectroscopy, Mossbauer conversion electron spectroscopy, 
etc.'-4 Elastic scattering has to be taken into consideration, 
when building various types of ionizing radiation detectors, 
electron multipliers, and industrial applications of the low- 
lying energy band of the beta-isotope spectrum. 

In recent years the cross sections for elastic scattering of 
electrons and positrons by complex atoms have been studied 
extensively, both experimentally5-' and in theory.'-" Var- 
ious approaches have been used to compute the differential 
cross sections, such as the R-matrix method,' the polarized 
orbitals method9, and the optical model with exchange and 
polarization All these methods involve some 
quite complicated mathematics, and ultimately require the 
use of computers. 

In the meantime, it turned out that the transport cross 
section for elastic scattering of particles a,, can be found 
with sufficient accuracy by solving the Schrodinger equation 
with the regular one-particle Thomas-Fermi potential (as a 
first approximation of the optical model). We note that both 
the transport length 1 ,, -a,, ' and the mean free path R, of 
a particle represent the most important parameters deter- 
mining electron and positron transmission through the me- 
dium. I3 . l4  In the present paper the transport cross section for 
elastic scattering of electrons and positron by complex 
atoms is obtained in the quasiclassical approximation. 

2. QUASICLASSICAL APPROXIMATION 

The condition for the applicability of the quasiclassical 
approximation to scattering of electrons (or positrons) with 
energy E by the screened Coulomb field of a nucleus has the 
form 

where Z is the nuclear charge of the target atoms (it is as- 
sumed, that 2 )  1) and, for simplicity, atomic units have 
been used. The right inequality in expression (1)  ensures 
applicability of the quasiclassical description in the range of 
radii r 5 Z -'I3, where the screening of the nucleus by atomic 
electrons is small and the potential of interaction is close to 
the Coulomb potential (See Ref. 15). The left inequality in 
expression ( 1 ) means that the particle wavelength A is small 
compared to the screening radius a, ar Z - I 1 ' ,  which coin- 
cides with the characteristic length over which the Thomas- 
Fermi potential varies. Besides condition ( 1 ), for the quasi- 
classical approximation to be applicable, the uncertainty A0 
of the scattering angle should be much smaller than 0-the 
scattering angle itself. That yields the inequality 

where 1 is the orbital quantum number and 6, is the corre- 
sponding phase shift. Thus, the phase shifts S, found in the 
quasiclassical approximation should, generally speaking, 
satisfy condition (2).  However, it will be shown below that 
due to the properties of the Thomas-Fermi potential, the 
quasiclassical phase shifts can still be used to determine the 
transport cross sections, even when inequality (2)  is not sat- 
isfied. 

We shall show, that the effects of both exchange inter- 
action (for electron scattering) and correlation interaction 
on the transport cross section are negligible in the energy 
range ( 1). The value of the exchange interaction is of the 
order of the reciprocal of the mean atomic electron radius 
and is proportional to p'I3, where p is the electron charge 
den~ity.'~.'' Let V denote the absolute value of the potential 
interaction energy of a particle in the screened field of a nu- 
cleus. sincep'13 - v '/', it is obvious that the exchange inter- 
action is of order V only at the distances rX 1, when 
V- v'I2- 1. Small scattering angles, whosecontributions to 
the transport cross section are insignificant in the energy 
range ( 1 ), correspond to impact parameters b k 1. 

It is convenient to consider the short-range ( r  < 1) and 
the long-range (r)  1) parts of the correlation interaction 
separately. The long-range correlation interaction mainly 
reduces to the polarization of the high-lying atomic shells, 
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and has an order ofmagnitude l/v < 1, where v is the velocity 
of an incident particle. Hence, the polarization correction to 
the potential becomes significant only in the region rS1, 
which is unimportant for calculations of a,, . The short- 
range interaction has been shown in Ref. 12 to be less than V 
everywhere in the region r 5 1. This comes as little surprise, 
since the correlation interaction at such distances consists of 
deviations of the potential from its statistical mean due to 
fluctuations, which should be small for the system with the 
large number of particles. l 6  

Since the scattering takes place against a background of 
inelastic processes, it is important to estimate the effect of 
the inelastic channels on the probability of inelastic interac- 
tion. We shall show that the cross section a,, for elastic scat- 
tering is significantly larger than a,,,, for the total energy 
range ( 1 ). To derive this estimate, we will use the explicit 
form of the cross section for elastic interaction between fast 
electrons and complex atoms. It is given in Ref. 15 

Correspondingly, for inelastic scattering we have": 

where Ui and ni are the binding energy and the number of 
electrons in the ith atomic shell, N is the total number of 

To calculate a,, we have used the expression for elastic cross 
section, which, generally speaking, had been derived for fair- 
ly fast electrons, so it will be helpful to compare the obtained 
estimate with the results of numerical calculationsR~' in the 
energy range E-z 213.  In particular, in the case of electrons 
with energy 100 eV the inelastic cross section for scattering 
by neon ( Z  = 10) is a,,,, = 0.88," while the elastic cross 
section is a,, = 8.0.' These results hold also for other ele- 
ments" at energies E-z 2 1 3 .  

Thus, even at moderate energies, the probability of in- 
elastic scattering still remains far smaller than the probabili- 
ty of elastic scattering. One can expect the effect of inelastic 
channels on the value of transport cross sections to be even 
less pronounced. In fact, inelastic scattering leads mainly to 
the ionization of an atom, which is accompanied by the 
emergence of the slow secondary electrons with speeds v - 1. 
Collisions which cause scattering at small angles 8< 1 (Ref. 
15) play a major role here. This is why inelastic processes 
will mainly affect those partial amplitudes f, with large 
numbers I> 1, which correspond to scattering at small an- 
gles. The contribution of these members to the sum over I 
determining the transport cross section is insignificant. Tak- 
ing into consideration the above arguments, we shall neglect 
inelastic processes when calculating a,, . 

Making use of the estimates of the potential energy of 
interaction, we can set 

U x ( O l  UJO)=UTF, 
shells, and f(E/Ui ) is a function which grows proportional- 

where the averaging is taken over the wave functions of elec- 
ly to ln(E/Ui ) ' I 3  for large values of the argument. Weakly 

trons in the ground state of the atom and UTF is the potential 
bound electrons, with binding energy Ui - 1, provide the 

energy in the Thomas-Fermi model. Next, using the expres- 
main contribution to a,,,, . According to the Thomas-Fermi sion for U,, in the approximation of Lindhard, et a1.,I8 
model, their number is of the order of Z ' I 3 .  Hence, the cross 
section for inelastic interaction is of the order of magnitude U,,=*ZX(x)/r ,  x=rZ1"/0.885, (3)  

we obtain for the transport cross section 
One can easily deduce from this that the ratio of the cross m 

sections over the full range of energy ( 1 ) is 

u i , , l / o e I - z - ~ ~  1. where 
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here k is the particle momentum, 

signs " + " and " - " correspond to positrons and electrons. 
The dimensionless parameters x and ,u have an obvious 
physical meaning. Specifically, x is the reduced particle mo- 
mentum, i.e., the momentum expressed in the characteristic 
units for fixed electrons in a Thomas-Fermi atom. Similarly, 
,u is the impact parameter corresponding to the quantum 
number I and the Fermi momentum k,, divided by the 
screening radius a,. 

It follows from Eqs. (6)  and (7) ,  that the quasiclassical 
phase differences (A, = S, + , - S, ) are essentially different 
for positrons ( + ) and electrons ( - ). This difference is 
totally attributable to the sign of the interaction potential 
energy. In view of this fact, it is of interest to analyze the 
results in more detail. Expression (6a) is meaningful only 
when ? t 2 > f i  - 1. A positron with such values of ?t2 can ap- 
proach the nucleus to within the distance r , < Z I J 3 .  It is 
clear that at such short distances the field is close to the 
Coulomb field, and for this reason, the phase difference is 
close to the Coulomb value as well. We note, that for 
?tZ<0 - 1, a positron is unable to penetrate the region 
r < Z -IJ3, due to the strong Coulomb repulsive force from 
the positively charged nucleus. The phase difference is en- 
tirely determined by Eq. (6b). It can be readily observed, 
that in fact this expression coincides with the phase differ- 
ence for scattering by the potential field, inversely propor- 
tional to the squared radius. This result is in complete agree- 
ment with the functional dependence of the potential energy 
on radius specified in (3) .  The same is true for Eq. (7c) 
applied to electrons. 

The fact that electrons can penetrate the region 
r < Z - ' I3  around the nucleus due to their negative charge, 
regardless of the values of their kinetic energy, constitutes an 
important property of electron elastic scattering. This is why 
there always exists range of impact parameters correspond- 
ing to scattering by a nearly-Coulomb nuclear field if the 
particle momentum is k B Z  'I3. The number of I values such 
that the phase differences A; are still close to the Coulomb 
ones increases with increasing electron energy (i.e. increas- 
ing parameter x ) .  Expressions (7a) and (7b) correspond to 
these values of I. Thus the values of A,' are comprised of the 
Coulomb phase differences and the phase differences corre- 
sponding to scattering by a field varying a I/?, as expected. 

We note that for 1 4 2  'I3, the phase differences A,, de- 
fined by formulas (6)  and (7), become much less than unity 

In this last case condition (2)  is violated, and the expressions 
derived earlier for A,* formally, cease to hold. However, the 
phases S, are easy to find in the Born approximation for the 
values 1% z 'I3 (See Ref. 15). The appropriate calculations 
show that the values of IS, + , - S1l obtained from perturba- 
tion theory, coincide with the values of A,, accurate to with- 
in 2%. Since the transport cross section at, depends only on 
the absolute value of the phase differences, this discrepancy 
can be neglected, and the summation over I in formula (5)  
can be extended to arbitrary values of I, however large. 

3. TRANSPORT CROSS SECTION 

In subsequent discussions it will be advantageous to go 
over to the ordinary units and introduce the reduced particle 
energy 

where a, and e are the Bohr radius and the electron charge. 
For E > 1, the incident particles energy exceeds the average 
kinetic energy of the atomic electrons. Then expression (5 )  
simplifies significantly, and we obtain for the transport cross 
section 

Here m is the electron mass. If the reduced particle energy is 
sufficiently large E $  1, the difference between the transport 
cross sections for electrons and positrons becomes negligi- 
ble. Making use of expression (9) ,  we find 

which agrees with the results of Ref. 16, obtained by a quali- 
tative approach. 

We stress here, that even though expression (9)  has 
been derived under the assumption E 4 Z  'I3, it holds true for 
any E >  1, including &9ZZt3 (for non-relativistic values of 
energy). This follows from the fact that scattering of high- 
energy particles takes place mostly in the nuclear Coulomb 
field. However, as is well known, both the classical and 
quantum-mechanical approaches to scattering by the Cou- 
lomb field yield identical results.15 In connection with this, it 
is of interest to analyze Eq. (9) in the limiting case E ~ Z  'I3. 
Expression (9)  gives for the energy range in question 

In essence, Eq. ( 1 1 ) coincides with the formula for the trans- 
port cross section for elastic scattering obtained in Ref. 15 in 
the Born approximation. We note that in the intermediate 
region of velocities v-  Z 213e2/fi(~ - Z 'I3) expressions ( 10) 
And ( 1 1 ) yield practically the same values of o,, . Thus, for- 
mula (9)  describes the behavior of the transport cross sec- 
tions for electrons and positrons in a wide range of non- 
relativistic energies. 

In the limit E < 1 the transport cross sections can be 
presented in the form 

where a, = 0.885aJ -'I3 is the Thomas-Fermi screening 
radius, S' ( E )  is the reduced energy function, which is tabu- 
lated in Table I. The functions S* (&)  have been obtained by 
going from summation over I in Eq. (5 )  to integration over 
the continuous variable p. It follows from Table I, that the 
transport cross section for electrons is approximately 2.5 
times larger, than the corresponding value for positrons. 
Thus, for example, for E 4 1 we have S - ( E )  z 1.7/&, while 
S + (E)  ~ 0 . 7 / & .  It is interesting to note, that the functional 
dependence of a,, on energy is essentially different for the 

1572 Sov. Phys. JETP 67 (8), August 1988 1. S. Tilinin 1572 



TABLE I. Values of the function S* ( E ) .  

ranges of small E & 1 and large E $1 energies. While for E ) 1 
we have at, oc ~ - ~ l n . c ,  for E < 1, the cross section is inversely 
proportional to the reduced energy, utr a 1 / ~ .  The relation- 
ship (12) has a universal nature. Namely, for any arbitrary 
combination of the nuclear charge of the target atom Z and 
the energy of the incident particle E, the value of utr/7ra2,, 
depends only on the reduced energy E. This makes expres- 
sion ( 12) very useful indeed for practical computations of 
the transport cross sections in the range of small and medi- 
um E. 

4. COMPARISON OFTHE THEORY WITH EXPERIMENT AND 
WITH OTHER CALCULATIONS 

At the present time, measurements of the transport 
cross sections for elastic scattering of electrons have been 
carried out mainly for the noble (He, Nr, Ar, Xe) and mo- 
lecular (O,, N,, N,O) gases. As it was pointed out earlier, 
the ratio of the transport cross section to the cross section of 
the Thomas-Fermi atom is a universal function of E in the 
range ofmoderate energies E 5 1. The function S - (E), calcu- 
lated by using Eq. (S ) ,  is plotted on Fig. 1, together with the 
experimental  result^.^-^ The values of a,; /n-a:, calculated in 
Refs. 8, 19,20 for various elements of the periodic tables, are 
also listed there. One can see that the same curve fits to the 
vast majority of data points in the region E < 1 (taking into 
account that the measuring errors for transport cross sec- 

tions a,; are of order 20-30% ). When E Z ~ ,  the function 
S - (E) lies approximately 10% higher than the data ob- 
tained by other authors, which can be accounted for by the 
fact that the universal relationship is violated when E grows 
larger. 

It is important to note, that the transport cross section 
a,, at the fixed value of Z is determined only by the reduced 
energy E and does not explicitly depend on the mass of the 
incident particle in the region E 5 1. This indicates that Eq. 
( 12) is applicable for calculations of utr for both negatively 
and positively charged particles with arbitrary masses. In 
particular, the function S + (E) describes elastic scattering of 
slow ions by complex atoms. The problem of elastic scatter- 
ing of ions by complex atoms has been considered using the 
classical approach in Refs. 18 and 21. For the function 
S + (E)  Firsov2' found the following approximation 

which is in good agreement with our result, obtained for 
E < 1. At the same time, the values of S ,+ differ from S + by 
roughly 30-40%. This difference gets smaller again with the 
increase in E. 

In the paper of Lindhard, et al. (Ref. 18) the average 
energy losses by slow ions, incurred through elastic scatter- 
ing by atoms, have been tabulated as a function of the values 

FIG. 1 .  Universal function dependence of the reduced 
transport cross section for elastic scattering of elec- 
tronsS - = a,; / ~ a :  on the reduced energy E. Compu- 
tations using Eq. (5 )  are plotted on the curve 1 .  Ti; 2. 
Cu; 3. Mo; 4. Ag; 5. Sn; 6.  Ta; 7. Au; 8. Pb; 9. U- 
Results of numerical calculations, E = 1.0-8.0 keVg9; 
10. Ne-R-Matrix Method, E = 50-200eVS; 1 1 .  Xe- 
Calculations based on the generalized experimental 
and theoretical data, E = 0.3-10.0 keVzo; 12. N,-Ex- 
periment, E = 50; 75 eV5; 13. 0,; 14. Ar-Experi- 
ment, E = 0.3-1.0 keV" 15. Ne-Experiment, 
E = 100 e ~ . '  
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of E. Since these losses are unambiguously related to the 
transport cross section for elastic scattering, one can easily 
construct the corresponding function S ,+ ( E )  using the re- 
sults obtained in ~ e f :  18. The values of S + (&) and S ,+ (&) 

differ only slightly, the maximum discrepancy being less 
than 15%. This implies an interesting conclusion: it is possi- 
ble to determine the stopping power of matter for slow atom- 
ic particles attributable to elastic scattering by measuring 
the transport cross section for positrons in the region of me- 
dium energies. 

In the region E > 1 the results of the calculations of CT; 
using Eq. (9), are in good agreement with the data from Ref. 
19, obtained numerically. For instance, when the electron 
energy is E = 8.0 keV the transport cross sections for alumi- 
num ( E  = 8.58) and copper(& = 2.94), obtained through 
the use of Eq. (9),  coincide with those quoted in Ref. 19 
through the third decimal place. The same energy for the 
case of silver(& = 1.54) yields, using (9),  a; = 3.17 lo-'' 
cm2, while Ref. 19 gives u; = 3.10. 10-18 cm2. 

In conclusion, I take pleasure in thanking S. L. Du- 
darev, D. B. Rogozkin, M. I. Ryazanov, 0. B. Firsov for 
useful discussions of the present results. 
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