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The concept of chirality, conserved in interactions with the gravitational field, is formulated for 
the electromagnetic field. The corresponding current turns out to be the one-particle analog of the 
Pauli-Lubanski vector. We determine the anomaly in the divergence of this current in an external 
gravitational field. This result is used to determine electromagnetic radiative corrections to the 
fermion chiral anomaly in a gravitational field. 

1. INTRODUCTION 

At this time the concept of chirality for massless fer- 
mions and bosons is on a quite different footing. For the 
massless fermion field, in interaction with electromagnetic 
and gravitational fields, there exists a well-defined U( 1 ) 
symmetry with respect to chiral rotations. A Noether axial- 
vector current a, can be associated with this symmetry and 
classically this current is conserved. Once the well-known 
triangle anomalies1-"re taken into account the expression 
for the divergence of this current becomes 

where a@ = $y+ ?$, $ is the massless Dirac field with elec- 
tric charge Q, V,, is the covariant derivative 

zero, V,, K1'= - l$,,F1"'/2, chirality conservation leads to 
the "naive" vanishing of the expectation value of V,, K1' in 
an external gravitational field. In this case, too, the triangle 
diagrams turn out to be anomalous and the result for the 
expectation value (V,, Kt' ) has the form 

The existence of the anomaly (4 )  was established in our pa- 
per, Ref. 6, published in the form of a letter to the editor. In a 
different form the chiral anomaly was obtained indepen- 
dently by Endo and Takao.' 

The appearance of such an anomaly is natural. Indeed, 
the term proportional to ~2 in the fermion anomaly ( 1 ) is 
due to the interaction of the spin with the gravitational field, 
and this interaction is universal and takes place for bosons as 

1 well as for fermions. v#=- (-g) K 'P [ (-g) '"1 9 The relation (4 )  constitutes the one-loop anomaly. On 
the other hand, as is shown in Sec. 5, it permits the calcula- 

F , , ,  is the R/,,,;:~ is the tion of the two-loop order a correction to the &iral anomaly 
Riemann tensor, of a fermion in a gravitational field. The answer is obtained 

1 1 by averaging the relation ( 1 ) and substituting for (F , , , .F~"' )  
p w v  = E@vPoF a l r v x h  - &pvplrR xh 

2 ( -g)  '" 
PO3 2 (-g) '" 

PO . from expression (4 ) .  
This article is organized as follows. In Sec. 2 we intro- 

In this paper we study the electromagnetic field in an 
external gravitational field with the aim of extending the 
chirality concept to the case of bosons. As is known, the free 
Maxwell equations, as well as those in a gravitational field, 
are invariant under the duality transformation 

However, this transformation is not formulated in terms of 
the vector potential A,, and, consequently, it is not possible 
to write down immediately the corresponding axial current. 

To overcome this difficulty we make use of the light- 
cone formalism. In this formalism the photon is described by 
a complex field A, and the action is linear in A and A *. Fol- 
lowing this the introduction of conserved chirality is fully 
analogous to the fermion case. 

The noncovariance of the Lagrangian density in this 
formalism results in noncovariance of the conserved axial 
current of the photons. The Lorentz-covariant current, 
which gives rise to the same generator, has the form 

Although the divergence of this current is, evidently, non- 

- 
duce the chirality concept for the photon field in the light- 
cone formalism and verify the conservation of this chirality 
for a photon interacting with gravity. In Sec. 3 we discuss the 
expression for the chiral current, and in Sec. 4 we calculate 
the anomaly in the divergence of this current. In the short 
fifth section we find the electromagnetic correction to the 
chiral fermion anomaly in a gravitational field. In conclu- 
sion (Sec. 6)  we discuss certain unsolved problems, as well 
as previous papers on bosonic chiral anomalies. 

2. CHIRALITY OFTHE PHOTON FIELD 

We begin the discussion with the case of a free photon 
field. Since the free Maxwell equations have the form 

the symmetry with respect to the duality transformations 
(2 )  is obvious. 

The fields of definite duality are the combinations 

which may be viewed as fields with positive and negative 
chirality. 
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The problem lies in the circumstance that the transfor- 
mation (2)  is not formulated as a transformation of the vec- 
tor potential A, which is the object of quantization. More 
than that, although relation (2)  viewed as an equation ex- 
pressing A ; in terms of A,,  has solutions for A, satisfying 
Maxwell's equations (i.e., on the mass shell), for arbitrary 
A, solutions don't exist. 

We would like to introduce chirality in the form of a 
U( 1 ) invariance of the action as a functional of A,, i.e., for 
arbitrary A,. This turns out to be possible in the light-cone 
formalism. As we shall see, in this formalism chiral transfor- 
mations of the vector potential lead to the duality transfor- 
mation (2)  for the field intensity only on the mass shell. 

The light-cone gauge has been discussed in the litera- 
ture in great detail. We shall present here the needed formu- 
las, using spinor notation. Each vector index is replaced by a 
pair of spinor indices with the help of the relation 

b a i = ( ( ~ ' ) a ~ b ~ ~ ,  up= ( I ,  (I). 

The indices are raised and lowered with the help of the ten- 
sors E , ~  and &,a. In particular, the coordinate four-vector 
x p  is replaced by xu". As the "new" time we choose 

~ 1 i / 2 ' ~ =  ( x 0 - x 3 )  /2'ba 

The equation for A, 

becomes in terms of spinor indices 

It is not hard to see that in these equations the time deriva- 
tives of the fields A , i and a ,  i A , i are absent, so that in the 
canonical quantization formalism the field A , i plays the role 
of a Lagrange multiplier and is expressible in terms of other 
fields. 

The gauge condition is chosen in the form 

Thus only the fields A ,i and A ,, remain. The 22 component 
of Eq. (8) gives 

On the assumption that the inverse operator d ;i ' exists we 
obtain 

The equations for A, , ,  A ,, take the form 

and the action S has the following form: 

8 = - % S d4xF,FWv 

Introducing the notation 

A,; = A (2)'11, 

we obtain 

where the bar denotes complex conjugation. This expression 
exhibits in an obvious manner the chiral U( 1) invariance of 
the theory with respect to the global transformations 

We present in this gauge the expressions for the intensi- 
ties F,, in terms of A and 2 

Here we used the notation 

The expressions for& are obtained from ( 17) by complex 
conjugation. It is seen from the relations ( 17) that the corre- 
spondence between chiral rotations of the field A and the 
intensities F,, holds only for fields A obeying the equations 
of motion. 

Of course, the introduction of chirality for the free pho- 
ton field carried out above is a rather banal exercise. More 
complicated from the technical point of view is its general- 
ization to interacting fields. A nontrivial example of conser- 
vation of the above introduced chirality is provided by the 
interaction of photons with the gravitational field. 

To begin with we consider the action 

The symmetric matrix g will be represented in the form 
g = eH, where H is also a symmetric real matrix. Since 
( - g) 'I2 = exp( - Tr H /2), it follows that the action ( 19) 
contains only the traceless part of the matrix H, h = H - Tr 
H / 4  (this corresponds to conformal invariance of the ac- 
tion) 

All contractions in (20) proceed via the flat matrix 
77,V = ( 1, - 1, - 1, - 1 ) . We make use of perturbation the- 
ory and expand S i n  a series in h 

S = '/,I d'x Tr(F2+2hFF+h2F2+hFhF+. . .). (21) 

By going over to intensities with definite duality and 
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using the spinor notation we obtain for terms of zeroth, first, 
and second order in h the following expressions: 

The expression for S "" appears as if it didn't conserve chira- 
lity. However on the mass shell S'"' vanishes, while off-shell 
it conserves chirality in terms ofA and 2 ,  as can be seen from 
the expression ( 15 ) . 

To first order in h one may substitute into S"' expres- 
sions of the form ( 17) for fal,,f,l,, and within the accuracy 
considered terms proportional to UA, may be ignored. 
Then f - A ,  7-2 and chirality conservation takes place. 

The action S'2' manifestly does not conserve chirality. 
However nonmanifest chirality nonconservation is also 
present in S"',  since to this order in h the quantity a is 
already different from zero and inf;,,, is present the field2 of 
the "other" chirality. 

To demonstrate the cancellation of chirality noncon- 
serving terms we use theS-matrix approach. We make use of 
the interaction picture. The actionS'" determines the propa- 
gator for the field A and therefore the Wick contractions for 
faS , f ;r8 Although we are using a noncovariant formalism, it 
can be verified in the usual way that the noncovariant terms 
cancel in the evaluation of the S-matrix and one may use 
covariantized Wick contractions, corresponding to the fol- 
lowing definition: 

a a 
(0 1 TFuv (x) Fxi ( y) 1 0) = -- 

ax. ayx 
(01 TA,(x)A*(y)  10) 

where the A,, propagator has the usual form 

On going over to fel,,fal, we obtain 

The contractions f f a n d 7 3  evidently, do not describe propa- 
gation of particles. As a result diagram lines are contracted 
corresponding to taking into account the fact that fal, con- 
tains the UA-field of the "other" chirality. Taking this con- 
traction explicity into account we obtain to second order in h 
the following addition to the action: 

ha&, .ph L x fafjf ;,j (x) h W. bbfidivb (Y) -L (/ ++ f). 

(25) 

Substitution of the contact contractions (24) yields 

In this manner all chirality nonconserving vertices can- 
cel to the order under consideration. We could not find a 
simple method to show that this cancellation happens to all 
orders, although this result is undoubtedly true. 

In this connection one should note the discussion, going 
back to Ref. 7, of reconstruction of vertices with the help of 
various transversality conditions. We consider, say, photon 
scattering in an external gravitational field in second Born' 
approximation. The amplitude is given by a sum of pole dia- 
grams and contact vertices of the form h 'F  '. If the initial and 
final photons have different chirality, then the diagrams 
with the photon pole become contact diagrams and the dia- 
gram with the graviton pole vanishes. But without pole 
terms in the amplitude it is, evidently, impossible to satisfy 
the transversality requirement with respect to the gravita- 
tional field. Consequently the amplitude equals zero. 

We also note Ref. 8, where the effective Lagrangian for 
the photon field, resulting from graviton exchange, is calcu- 
lated. The authors of Ref. 8 emphasize the fact that their 
Lagrangian contains no terms that would violate chirality 
conservation for the photon field. 

3. CHIRALITY CURRENT FOR THE PHOTON FIELD 

We have demonstrated, in the light-cone gauge, chira- 
lity conservation of the photon field in interaction with grav- 
ity. 1t is not hard to write down the charge operator that 
measures chirality ( Q  = + 1 for the left-handed state and 
Q = - 1 for the right-handed state) 

U + t  

where d 3~ = d 2 ~ 1  d{ and d = d - d. The charge Q contains 
the c-component of the conserved current 

1 -  * 
j ,  (x) = -A (x) d,A (x) . 

4 

The current (28),  however, is not a Lorentz vector because 
A and 2 are not scalars. 

I t  is not hard to verify that K, [see formula ( 3 )  ] is the 
Lorentz covariant current, whose {-component coincides 
with j t .  The price paid for its covariance is the loss of the 
equation of continuity, since K, fails to be conserved already 
at the claasical level: 

Nevertheless, matrix elements of V,, Kt' in an external 
gravitational field are naively equal to zero. Indeed, the op- 
erator 

changes chirality by + 2, while the interaction with gravity 
conserves chirality. Therefore a nonzero expectation value 
of V,, Kp in an external gravitational field may be referred to 
as chiral anomaly. 
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We shall evaluate this anomaly later and now make a 
number of remarks with respect to the introduction of the 
chiral current. First, the current K,, depends explicitly on 
the vector potential A, and is therefore gauge-noninvariant. 
It is known, however, that the corresponding charge 

is gauge-invariant. Moreover, as will be seen from the calcu- 
lation in the following section, matrix elements of K, in a 
gravitational field do not depend on the choice of gauge of 
the photon field. 

In the papers of Refs. 9-1 1 an explicitly gauge-invariant 
current is proposed, proportional to the difference between 
the number of left-handed and right-handed photons 

This current is conserved for the free field. However it has a 
noncanonical dimension and the corresponding charge is de- 
fined not by chirality alone but also by the energy of the 
photon. 

The last remark has to do with the analogy between the 
current Kp and the Pauli-Lubanski vector." This vector is 
defined in its most general form as an object constructed out 
of the generators of the Poincare group 

where P, and MxA are the generators of translations and 
Lorentz rotations. For massless single-particle states of spin 
s one has 

wherep, is the four-momentum, p2 = 0, and A = + s is the 
helicity of the state. 

We wish to construct a current such that the integral 
over its zeroth component gives the helicity generator Q, 
Q lp, , A ) = il (p, , il ) . It is natural to take for such a current 

where S,%, is the spin part of the angular momentum den- 
sity 

I;,, being a representation of the generators of Lorentz ro- 
tations MxA for the field pa. We have = (i/2)ax, for 
the spinor field $, while for the vector field 

The current j, may be viewed as the one-particle analog 
of the Pauli-Lubanski vector. It is not hard to see that the 
definition (33), (33a) gives j, = a, /2 for the Dirac field 
and j, = 2K,, /3 for the vector field A,.  Using these defini- 
tions one may construct chiral currents for other spins as 
well. 

4. TRIANGLE DIAGRAMS 

The anomaly calculation, given below, is based on the 
dispersion approach of Ref. 13. To demonstrate the similar- 

A ] I I I 

I I 

FIG. 1. 

ity between the bosonic and fermionic cases we discuss them 
in parallel. 

First, a few words about the description of triangle dia- 
grams in general (Fig. l ). We note that in the presence of 
contact vertices one must also consider the diagram shown 
in Fig. 2. We discuss the production of two photons and two 
gravitons by the currents a,, and K, . Each matrix element is 
determined by one form-factor 

where q,, is the four-momentum transferred by the corre- 
sponding current. The fact that there is only a single struc- 
ture is a consequence of gauge invariance with respect to 
external lines. We emphasize here that the external photons 
and gravitons lie on the mass shell. 

We make use of dispersion relations to find f ,-, . The 
imaginary parts are given by tree diagrams, which at first 
sight agree with all invariances of the classical theory. It is 
not hard to see, however, that if that were the case then we 
would have Im f ,_, = 0. Indeed, the four-dimensional longi- 
tudinal parts of the currents produce in Born approximation 
intermediate particles with total chirality + 2. But annihila- 
tion into photons and gravitons is only possible for states 
with zero chirality. 

In the dispersion approach the anomaly manifests itself 
in the need for infrared regularization. With the masses of 
the intermediate particles set equal to zero from the very 
beginning we run into the problem of the imaginary part 
being ill-defined, because the singularities due to the ex- 
change of massless particles come up to the boundary of the 
physical region. To regularize this infrared region we intro- 
duce infinitesimal masses m for the intermediate particles. 
Such a regularization respects gauge invariance with respect 
to the external photon and gravitational fields, but gives rise 
to nonconservation of the chiral current. In the language 
used here the anomaly manifests itself in Im f, (q2) being 
different from zero; moreover, it is clear from the above con- 

/ .' Q \ \ 
FIG. 2. 
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siderations that the imaginary parts off; (q2) can differ from 
zero only in the region q2- m2, which tends to zero. 

The evaluation of the imaginary parts of the form-fac- 
tors f ,_, is carrizd out in the usual manner. 

The final result for the imaginary parts looks as follows: 

1 l + v  1 
Im f 2  ( q 2 )  = lim - (1-v2)"n-= - 6 ( q 2 ) ,  

m+o 128nq2 I-v 192n 
1 1+v 1 

Im f a  ( q 2 )  = lim - vvl-v"1n- = - 6 ( q 2 ) ,  
m,o 128nq2 I-v 96n 

where v = ( 1 - 4m2/q2) ' I2  is the velocity of the intermecii- 
ate particles in the center-of-mass frame. 

Using dispersion relations to obtain the real parts <!f 
f, -, we arrive at Eqs. ( 1 ) and (4).  In this manner, from the 
technical point of view, the fermionic and bosonic chiral 
anomalies arise in a completely analogous way. 

We next make a few remarks regarding the evaluation 
of the relations (35).  I t  is convenient to consider directly 
matrix elements of the divergences, and not of the currents 
themselves. Since in all cases we have to deal with a single 
form-factor, the relation between the imaginary parts of the 
matrix elements of the currents and of their divergences is 
trivial. 

The next remark consist in the observation that in the 
case of the form-factor f2 the contact term (Fig. 2)  gives a 
nonvanishing contribution. 

Some discussion is needed regarding the introduction of 
a photon mass. A direct addition to the action ( 19) of the 
mass term 

corresponds to the use of the Proca formalism for the de- 
scription of a massive vector field. Of course, in the process 
one introduces into the theory an additional dynamical de- 
gree of freedom, which describes quanta of the vector field 
with zero chirality. 

We want to emphasize, however, the fact that the quan- 
tity Im f,, determined by formula (35), turns out to be 
gauge-invariant, i.e., the same answer as is obtained in the 
Proca formulation is also obtained by an addition to the ac- 
tion of the following type 

where S, is the mass term (36) and 6 is a gauge parameter. 
We remark that the same answer is obtained also in gauges 
that are noncovariant with respect to the external field 

Gauge invariance of the calculation shows that the in- 
troduction of the mass ensures a redefinition of the infrared 
singularity without introducing new degrees of freedom. 

Finally, the last remark refers to the establishment of a 
direct connection between the answers (35) for the fer- 
mionic current Im f, and the current for the vector field 

Im f,. Let us introduce a current S, for the fermions, analo- 
gous to the Pauli-Lubanski vector, 

Making use of the equations of motion we can express 
this current in the form 

We show first that the matrix elements (O/S, /2g) and 
(OIK, 12g) differ only in sign. Using perturbation theory we 
suppose that the gravitons have the same, say left, helicity. 
Then the Riemann tensor for each graviton is anti-self- 
dual," and the right-hand connections w, irB equal zero. The 
indices ir, b are tetrad indices. We shall describe the photon 
by the field A,, = ( d ) a a e A , ,  , where e: is the frame field. 
Since wEB = 0, it follows that the dotted indices are sterile 
with respect to interaction with left-handed gravitons. 

Therefore the expression for (K, ), describing propaga- 
tion in the loop of the fields A,, and A,, , looks the same as in 
the case of the loop in which two Weyl fields are propagat- 
ing. But the evaluation of (S, ) corresponds precisely to the 
latter case. As a result matrix elements of the currents K, 
and S, differ only by an overall sign due to anticommutation 
of fermion operators. 

On the other hand, direct calculation of the imaginary 
part of (a, S, ) yields 

Making use of the explicit expression for Im f2, and changing 
the sign in accordance with what was said above, we arrive at 
the previous answer for Imf ;  [see formulas ( 35 ) 1. 

5. ELECTROMAGNETIC CORRECTION TO FERMION CHIRAL 
ANOMALY IN A GRAVITATIONAL FIELD 

Relation (4 )  permits an easy evaluation of the electro- 
magnetic correction to the usual fermion chiral anomaly in 
an external gravitational field. To  this end we construct the 
average of relation ( 1 ) in the external gravitational field. 
Using formula (4 )  for ( F F )  we obtain 

where Q is the electric charge of the fermion. 
This result corresponds to a particular infrared regular- 

ization of the two-loop diagrams, namely when the infrared 
photon mass m, is assumed to be much larger than the fer- 
mion mass mJ 

In that case only the two-photon intermediate state (Fig. 3 )  
contributes to the two-loop result for Im f2. 

Indeed, let us consider the three-particle intermediate 
state (Fig. 4 ) .  The corresponding imaginary part is unam- 
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1 I 

FIG. 3. 

FIG. 5 .  

biguously determined for m, $0  and mf = 0 and equals 
zero, since the finite photon mass has no effect on the conser- 
vation of the current a, for mf = 0. This duscussion is an 
obvious analog of the Adler-Bardeen theorem. l 4  

And so it remains to deal with two-particle cuts. As 
regards the fermionic intermediate state of Fig. 5, its contri- 
bution vanishes too. Indeed, the relevant region in the dis- 
persion integral is q2 - m; 4 mt . Therefore to determine the 
imaginary part it is necessary to in fact evaluate the renor- 
malization of the current vertex for q = 0 (accurate to cor- 
rections of order -q2/m$). In our regularization, when 
mf = 0 and m, #O, this renormalization coincides with the 
renormalization of the vector current vertex and cancels 
against the Z-factors of the external lines. 

Lastly, the two-photon intermediate state (Fig. 3 )  con- 
tributes to the anomaly. It is relevant that in the divergence 
d,,ap the first loop gives rise to a polynomial in the mo- 
menta, d,ap = ( a ~ ' / 2 a ) ~ F ,  and therefore the two-loop 
calculation reduces to a consistency check of the one-loop 
calculation. 

6. CONCLUSION 

Although the existence of the boson chiral anomaly is 
established, there remain some questions that need further 
study. 

First, it cannot be said that the definition of the chiral 
current is as satisfactory as in the fermion case. The problem 
lies in our inability to come up with a field-theoretical for- 
malism, in which manifest Lorentz covariance is compatible 
with chiral invariance of the action. In the framework of the 
light-cone formalism the chiral current is conserved, but 
manifest Lorentz covariance is lacking. On the other hand in 
the usual covariant description the current K, is not con- 
served. 

It is natural to seek a way out of this situation by means 
of increasing the number of auxilliary fields, as is done, for 
example, in the case of supersymmetry. 

An indication that such a reformulation might be natu- 
ral is provided by the interpretationI5 of the anomaly (4) in 

FIG. 4. 

terms of zero modes. In a Euclidean space with nontrivial 
topology, such that the invariant J ~ ~ x ~ ~ ' ~ R R  is different 
from zero, the coefficient in the anomaly (4)  can be ex- 
pressed as the difference of left and right zero modes of the 
antisymmetric tensor field p,,. We recall that the field A, 
has no such zero modes.I6 

We note one more circumstance, called to our attention 
by Duff. The chiral anomaly for massless Weyl fermion 
fields of spin s is described by the single formula1' 

It turns out that the photon anomaly (4)  also satisfies this 
relation if it is modified by the natural factor ( - 1 ) 2'. 

To conclude we say a few words about previous work on 
chiral anomalies for bosons. The first example of this kind 
was discussed in Ref. 4, which dealt with the antisymmetric 
tensor field. 

A second example is the non-Abelian vector field. The 
generalization of expression ( 3 )  for K, to the non-Abelian 
case is well-known: 

Further, as was noted in Ref. 19, the triangle diagrams aris- 
ing in the evaluation of the average value of K, in the exter- 
nal non-Abelian field agree [up to a factor ( - 2)  ] with the 
corresponding fermion diagrams for the current a, in the 
same external field. In this way the calculation demonstrates 
the presence of the anomaly in a, K, . It should be noted that 
in the external field of an instanton this anomaly counts the 
number of zero modes of the boson field, analogously to the 
case of d,,a,. The status of the anomaly is, however, not 
entirely clear since the "naive" Ward identities have not 
been formulated. 

The anomaly for the non-Abelian vector field is inter- 
esting also because an analogous situation is to be expected 
for the chiral current of gravitons. The anomaly of this cur- 
rent has not been obtained as yet. 

The authors are grateful to I. V. Kolokolov and V. A. 
Novikov for useful discussions. 

"This procedure is analogous to the choice of the anti-self-dual external 
field in the Euclidean approach. As is well known, however, such a field 
as a result of the reality condition cannot be weak. But for gravitons there 
is no such restriction. 

'S. L. Adler, Phys. Rev. 177,2426 (1979). 
*J. Bell and R. Jackiw, Nuovo cim. 60A, 47 ( 1969). 
3T. Kimura, Progr. Theor. Phys. 42, 1191 (1969). 
4R. Delbourgo and A. Salam, Phys. Lett. B40, 381 (1972). 
'T. Eguchi and P.G.O. Freund, Phys. Rev. Lett. 37, 1251 ( 1976). 
'A. D.  Dolgov, V. I. Zakharov and I. B. Kriplovich, Pis'ma Zh. Eksp. 
Teor. Fiz. 45,511 (1987) [JETP Lett. 45,651 (1987)l; R. EndoandM. 
Takao, Progr. Theor. Phys. 78,440 (1987). 

1331 Sov. Phys. JETP 68 (I), July 1988 Valnshtern etal. 1331 



'I. Yu. Kobzarev and V. I. Zakharov, Ann. Phys. 60,448 (1970). 
'S. Deser and P. van Nieuwenhuizen, Phys. Rev. D10,401 ( 1974). 
'D. M. Lipkin, J. Math. Phys. 5,696 (1964). 
"'M. G. Calkin, Amer. J. Phys. 33,958 (1965). 
"A. Gersten, preprints CERN-TH. 4687/87,4688/87. 
"K. Lubanski, Physica 9, 310 ( 1942). 
"A. D. Dolgov and V. I. Zakharov, Nucl. Phys. B27, 525 (1971). 
I4S. L. Adler and W. A. Bardeen, Phys. Rev. 182, 1517 ( 1969). 
ISM. Reuter, preprint DESY 87-053. 

1332 Sov. Phys. JETP 68 (I), July 1988 

IhS. M. Christensen and M. J. Duff, Nucl. Phys. B154, 301 ( 1979). 
"M. J. Duff, Supergravity 81, Proc. of 1st School on Supergravity, Ed. by 

S. Ferrara and J. G. Taylor, Cambridge Univ. Press, 1982 [see: Intro- 
duction to Supergravity, Moscow, Mir, 1985 (in Russian) 1. 

InR. E. Kallosh, Pis'ma Zh. Eksp. Teor. Fiz. 37, 509 ( 1983) [JETP Lett. 
37,607 ( 1983)]. 

I9M. A. Shifman and A. J. Vainshtein, Nucl. Phys. B227,456 (1986). 

Translated by Adam M. Bincer 

VaYnshteTn etal. 1332 


