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It is shown that in various quantum processes induced by acceleration of a charged particle by a 
constant electric field the spectra of the final particles deviate from the Unruh "thermodynamic" 
distribution. It is emphasized that a substantial role is played by the quantum character of the 
motion of all the participating particles over distances of the order of the reciprocal acceleration, 
and by the forces that transform virtual particles into real ones. The deviation of the results from 
those predicted by the Unruh picture is attributed, in particular, to the fact that the Rindler states 
used in this picture have singularities on the horizonsz = * t, where the composite Rindler- 
Milne coordinate grids have discontinuities in the metric. These discontinuities correspond 
physically to particle sources, so that the Unruh picture describes a different physical system. 

1. INTRODUCTION 

A charged particle in a constant electromagnetic field 
moves with constant proper acceleration. This means that in 
the instantaneously comoving Lorentz system, where the 
particle is at rest in a given instant of time, the acceleration is 
independent of this instant. If the field is a constant electric 
one, and the particle momentum transverse to the field 
p, = 0, the particle's proper acceleration has also a constant 
direction. This is the so-called hyperbolic or equal-accelera- 
tion motion. Emission of a photon by an electron in such a 
motion was considered in Refs. 1 and 2. 

A quantum analysis2 shows that recoil causes an elec- 
tron to go over from the state p, = 0 into an excited state 
With p: #O, and the ratio of the differential probabilities is 
the same in the forward (p, -p; ) and inverse (p; -p, ) tran- 
sitions is equal to 

i.e., it has a Boltzmann form with excitation temperature 
le&1/2rrn if, relativism notwithstanding, the excitation ener- 
gy is taken to be the difference between the nonrelativistic 
transverse energies. 

Starting with Unruh's paper,' it has been customary to 
assume that a particle moving hyperbolically in a vacuum 
with an acceleration a in an accelerated (Rindler) coordi- 
nate frame, where it is at rest in the classical approximation, 
actually behaves as in a heat bath with temperature 
T = a/2r located in a uniform gravitational field character- 
ized by the same acceleration a. Such a bath is filled with 
Rindler photons whose states are characterized by the con- 
served quantum numbers of the solution of the free wave 
equation written in Rindler coordinates. 

It is stated that, from the standpoint of a Rindler ob- 
server moving together with a classical electron, the quan- 
tum transition p, = O+p; #O of an electron can be de- 
scribed as absorption of one of the Rindler photons by which 
the Minkowski vacuum is represented. Such an electron can 
thus be regarded as a relativistic Unruh counter. 

The Unruh picture is used to simulate, in Minkowski 
space, particle production by a black hole. The equivalence 
principle is thereby extended to quantum processes.& Such 

processes, however, are formed in a finite space-time region, 
and the use of the local equivalence principle requires that 
the field of the accelerations be constant and uniform in this 
region. 

Analysis shows that space-time regions of the order of 
the inverse acceleration are significant for such processes. 
Yet in Minkowski space it is impossible to produce a uniform 
gravitational field with acceleration a in a 4-space region 
with dimensions of order a - '. Thus, in the Rindler system 
(which is rigid) the variation of the acceleration is inversely 
proportional to the spatial coordinate. A system with identi- 
cal spatial points with proper acceleration (e.g., a system of 
electrons that move hyperbolically in a constant uniform 
electric field) is rigid, viz., the distances between its observ- 
ers vary with time and go through a minimum. Arguments 
are advanced in Ref. 4 in favor of the premise that the gravi- 
tational field of a spherically symmetric body can be made 
uniform over the process-formation length, by a body of suf- 
ficient mass. These arguments, however, are not valid out- 
side the gravitational radius. 

All this shows that, besides the Rindler sector 
R(z>  It I), the remaining sectors F ( t >  lzl), P( - t >  lzl) 
and L ( - z > [ t  I ) should also be subtantial in the Unruh pic- 
ture. 

It is known that a true gravitational field differs signifi- 
cantly from the field to which the accelerated coordinate 
system is equivalent. There is no doubt that the tidal forces 
due to the nonzero curvature of space can transform a virtual 
decay into a real one, in analogy with the ability of an electric 
field to transfer energy to virtual particles in pair production 
by an electromagnetic field. Covering the Minkowski space 
by Rindler and Milne coordinate grids7 

d ~ ~ = d i ' ' -  ( a z ' )  ' d t r Z ,  z'=+ ( z Z - t Z )  "', t'=a-I A r t h ( t / z ) ,  
(2) 

ds2= ( a t " )  2&"2-dt"Z, t " = f ( t ' - ~ ~ ) ' ~ ,  zr'=a-' A r t h ( z / t )  , 

leads, without changing the geometry of the space inside the 
above sectors, to jumps of the metric on the boundaries 
z = f t between them, and to the appearance of forcescapa- 
ble of performing work on the virtual particles and convert 
them into real ones. 

Let us corroborate the foregoing considerations by 
some estimates and equations. We estimate first the length of 

1313 Sov. Phys. JETP 68 (I), July 1988 0038-5646/88/071313-09$04.00 @ 1989 American Institute of Physics 1313 



excitation of radiation from a neutral particle of massp by a 
charged particle of mass m )p  that moves hyperbolically in 
a constant electric field. If we represent it as consisting of a 
charged and neutral virtual particle with masses m,  
= m - p and p ,  acceleration of the entire system by the 

electric field produces an additional force f = p a  = pedm.  
The work of this creative disrupting force f over a length I, 
called the formation length, replenishes the mass defect and 
transforms the virtual particles into real ones. Consequently 
J?-p, i.e. I-a-I. This agrees with the estimate of I obtained 
in Ref. 1, directly from the expression for the probability, for 
photon emission by an electron with constant acceleration. 
The estimate 1 -a - ' remains valid also for more complicat- 
ed processes, in which the accelerations of virtual particles 
differ little from the acceleration of the initial particle, see 
Sec. 6.  

Let us see now whether a gravitational field described 
by the Schwarzschild solution 

can be regarded as uniform over a length -g - I. To this end 
it is necessary that the relative change of g over this length 

be small. It can be seen that this is impossible outside the 
gravitational radius (0  < x < 1 ) . This reasoning shows also 
why it is impossible to draw from the equivalence principle 
any conclusion whatever concerning the emission of an elec- 
tron that falls freely in a gravitational field, e.g., an electron 
on a satellite. The emission and deceleration of such an elec- 
tron are determined (formed) by the curvature of space, i.e., 
by distances much greater than the dimensions of the space- 
time region in which the equivalence principle is applicable. 

Note also that an electron resting on the surface of a 
cold massive star cannot emit a photon as a result of a de- 
crease of the gravitational field and the insufficient work of 
the creative force over the formation length of the process, 
even though in a freely falling system the electron moves 
with an acceleration due to the electric forces of the surface 
on which it is located. 

As to Rindler states, notwithstanding an opinion most 
succinctly set forth in Ref. 8, we assume that they cannot be 
produced in a Minkowski space without sources (of infinite 
power) on the event horizons. The Rindler solution 

t  
K,,  (t) exp ( - i x v f  ip,x,) , v=at' = Arth - , 

Z 

( 3 )  
~=mlz '=mL(z2- t2) 'b ,  

which depends on the Rindler coordinate z' and on the 
Rindler time t ', and is characterized by a transverse momen- 
tum p,, m, = (m2 +p: ) "' and by a Rindler frequency 
o = tta, is an analytic function of the variables x+  = t + z, 
x- = t - z with branch points x * = 0. It can therefore be 
extended from the sector R to all of Minkowski space by 
analytic continuation from the semiaxes x- <O, x+ > 0 to 
the semiaxes x- > 0, x + < 0 through the lower or upper com- 
plex x , planes. Depending on whether the continuation is 
down or up, positive- or negative-frequency solutions are 
produced, which coincide in sector R and differ in the re- 

maining sectors. They can be represented by integrals of 
positive-frequency or negative-frequency plane waves over 
the rapidity 8: 

1 =- exp (F y) J a x p [ i ( ~ , ~ - ~ ~ t )  WXOI.  
2 - w 

These integrals demonstrate clearly the analyticity in x , , if 
it is recognized that p,z - pot = - (p+x- + p-x+ )/2 and 
the signs ofp = p, + p, coincide with the sign ofp,. 

Corresponding to a positive (negative) -frequency solu- 
tion is a positive (negative) total charge, concentrated at 
x > 0 mainly in the sector R (L) ,  where the charge density is 
positive (negative). As the z = + t is approached, the 
charge density executes oscillations of infinitely increasing 
frequency and amplitude, which acquire alternating signs on 
passing over to the right (left)-hand halves of the sectors F 
and P. In the left (right) half of the sectors R and P the 
charge density again becomes positive (negative) and on ap- 
proaching the planes z = f t it executes oscillations of infi- 
nitely increasing frequency and amplitude. On going over to 
the sector L (R)  the density becomes negative (positive) and - 
becomes smaller by a factor exp( - 277%) than at the points 
of sector R (L) with the same lzI. The reversal of the sign of tt 
is equivalent to the reflection z + - z and preserves the de- 
scribed picture apart from an R i=L permutation and a right 
i.= left reversal. 

Note that a Rindler solution itself is bounded near the 
horizons z = f t and consists of a continuous and rapidly 
oscillating term. The oscillation frequency of the latter in- 
creases without limit as the horizon is approached, and the 
amplitude has a discontinuity on passing through the hori- 
zon and acquires a factor exp( - m). This factor is indica- 
tive of particle-pair production near the horizon. 

A similar property is possessed by the solutions of the 
Klein-Gordon equation for a particle in a constant electric 
field E, which are characterized by a conserved quantum 
numberp-, see Ref. 9. In fact, pairs with fixedp- are creat- 
ed near the event horizon x- = p - / e ~ ,  and the amplitude of 
their creation is given by the same factor if the Rindler ener- 
gy o and the acceleration a are taken to mean respectively 
the quantities m:/2m and le~l/m in an electric field. 

The described properties of the positive- and negative- 
frequency solutions give grounds for assuming that these 
solutions are the limit of the solutions of the Beltrami-La- 
place equation 

with a smooth metric f P  that differs from the Rindler met- 
ric in the sectors R and L and from the Milne metric in the 
sectors F and P only in the narrow transition region, whose 
width tends to zero, near the planes z = + t. The nonzero 
curvature of the space in the transition leads to particle cre- 
ation that takes place also in the limit of zero width of the 
transition region. 

If the metric (2)  is smoothened in the region 
1z2 - t '1 Sfl- '  <a-'with the aid ofthe continuous function 
f (x), x = f l  lzZ - t 1 'I2, which tends to 0 and 1 as x + 0 and 
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X +  m, respectively, by choosing d3 = f (/3z1) and 
g& = - f (pt ' )  in lieu o f d 3  = -g& = 1, we obtain for 
the curvature-tensor component in the sectors R and F 

which yields, e.g. for f (x)  = exp( - x - ~ ) ,  the value 
R,,,, = a2//3 ( t - 2'). The curvature in the region x 5 1 is 
-a2 and on the planes z = $. t it reverses sign jumpwise. 

Additional evidence favoring particle sources, for ex- 
ample on the z = t plane, is the inequality of the fluxes 
$j,dS" through the hypersurfaces S,  and SF that encom- 
pass the singled-out part of the hyperplane z = t in the sec- 
tors R and F, respectively. An essential role is played thus in 
the Unruh picture by the particle sources. 

We consider in the present paper the emission and de- 
cay of a charged particle in a constant electromagnetic field 
(electric or crossed), and explain the onset of forces whose 
work over the formation length makes the products of the 
virtual decay real. The probability of the process in a weak 
field, when the sum of the masses of the final particles ex- 
ceeds the mass of the initial particles, is described by an ex- 
ponential function but is not, as a rule, with the Unruh expo- 
nent. The extent to which the Unruh-temperature concept is 
general and useful is therefore unclear to us. 

2. CONVERSION OF ACHARGED PARTICLE IN AN ELECTRIC 
FIELD INTO A CHARGED AND A NEUTRAL PARTICLE PAIR 

Assuming the electric field E to be directed along the 3 
axis and using the same procedure as in Refs. 2 and 10, we 
write down the matrix element of the conversion of a scalar 
particle having a charge e, a mass m, and a momentum" p 
into a scalar particle with charge e, mass m', and momentum 
p', and a scalar neutral particle with mass p, momentum k, 
and energy k, 

Here 

+Qp(z)=Bp exp(ip~)D-~~-t,,(exp(in/4) t ) ,  
t=(2)  e~J ) '~ (x ,+p , l ea ) ,  

( 7 )  

is the wave function of a charged particle having a positive 
frequency at + w for the time x,, D, (z) is a parabolic- 
cylinder function, a n d p ~ p , ,  p,, p,. The function + *p(x),  
with positive frequency as x,-+ - a, differs from ( 7 )  by the 
complex conjugation of the D-function and by the reversal of 
the sign of its argument. We write down also the parameters 

which determine both the matrix element and the differen- 
tial probability in terms of the conserved components, per- 
pendicular to the field, of the kinetic momenta of the parti- 
cles. 

Calculation of the probability leads to the expression 

where T=T(+ + iu, 1 + i (v  - v ' ) ;  - ip) isaconfluent hy- 
pergeometric function, 9 is the angle between the vectors k, 
and p, , and p; = p, - k, . The probability is proportional to 
the proper time T of motion of the initial particle in the elec- 
tric field, so that the integral with respect to 9 and k, in (9) 
and its integrand are respectively the total and differential 
probabilities of the process per unit proper time of the initial 
particle. We denote them respectively by Wand w. The total 
probability is determined by four independent invariants: 

Using the known relation 

Y (a, c; x )  =X~-~Y (a-c+l, 2-c; x) (11) 

(see Eq. 6.5 (6)  in Ref. 11 ), we can relate the differential 
probabilities of the direct and inverse processes (which dif- 
fer by permutation of the charged particles), by means of the 
equation 

which generalizes the result obtained by one of us2>l0 to in- 
clude the case m = m'. Introducing the mass defect 
A = m' - m and the average mass m = f (m + mi) of the 
charged particles, the right-hand side of (12) takes the 
Boltzmann form 

with the parameter l e ~ 1 / 2 ~ E  serving as the temperature. In 
our opinion, this circumstance must not be taken to have a 
profound physical meaning, all the more since the agree- 
ment with the Boltzmann exponent is inexact: relativism 
notwithstanding, the excitation energy contains the differ- 
ence of the transverse kinetic equation in a nonrelativistic 
form, and furthermore with an average mass. 

Note that the existence of both the direct and inverse 
processes is due to the possibility of pair production by the 
field. If the inverse process can take place also in the absence 
of a field (m' > m + p ) ,  its probability is hardly changed by 
a weak field. Relation (12) shows then that in essence the 
entire dependence of the direct process on the field is deter- 
mined by the exponential function above. 

Note that the differential probability of a process that 
proceeds also in the absence of a field can vanish in the pres- 
ence of a field at certain values of the quantum numbers of 
the final particles, i.e., it is an oscillating function of the 
quantum numbers and of the field. In a weak field, the proba- 
bility averaged over the fast oscillations equals the probabili- 
ty when the field is turned off. 

In the general case, the differential distribution in (9) 
has nothing in common with the temperature distribution. 
We shall therefore consider it below for a positive binding 
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energy I = m' + p - m > 0 and a weak electric field, when 
v, v',  1. In this case the process is driven by energy absorp- 
tion from the field, and its probability is qualitatively deter- 
mined by an exponential function with a large negative expo- 
nent, in which we shall in fact be interested. 

2.1. Equal masses of charged particles 

Putting m = m' in (9),  we put alsop, = 0, which corre- 
sponds to uniformly accelerated notion of the initial particle. 
Wehavethenp; = -k,  andv-v l=  - k:le&l.Intheef- 
fective region, we have k : of the order of 2(e&( or less, i.e., a 
difference v' - v 5 1, whereas v, v') 1 and the effective value 
of p depends on the relation between the parameters 

le&lm-* and p/m, which determine the total probabili- 
ty. 

We consider first the classical case, when 

i.e., when the energy lost by the charge in emission of a neu- 
tral particle is small compared with its characteristic energy 
and momentum change in the region where the radiation is 
formed (cf. Eqs. (2) and (3)  of Ref. 12). Then 

v'-v=kL2/21 eel --p/m+1/2pal. (15) 

The conditions ( 14) and (15) allow us to use the equation 

from Ref. 1 1 and replace Y by a Macdonald function (modi- 
fied Bessel function of the second kind): 

1 2K (z) 
Y (- + iv, I+i(v-vf); -ip )= 2- 

2 I? (1/2+iv') ' 
m ( pZ+k,') " 

z =  
lee1 

(17) 

Then, putting x = m,u/le&l, we get from (9)  

This equation agrees with the result of Ref. 12, where the 
probabilities of the emission of scalar and vector particles by 
a uniformly accelerated charge were obtained. 

The differential and total probabilities are exponential 
only if x )  1: 

Although they have a Boltzmann form with respective exci- 
tation energies (p2 + k ) ' I 2 ,  and p ,  the effective tempera- 
ture is .rr times larger than the Davies-Unruh temperature 
leel2.rrm. Note also that the values z- max(1, x )  are signifi- 
cant in the integrals of ( 18) and ( 19), i.e., the recoil energy 
does indeed meet the condition ( 14), and the motion of the 
charge is classical. 

I fp<  i ,  andp/m is not small, the motion of the charge 
is not classical. In this case the values k : - le&l are effective. 
The parameters in the function Y are of the following order 
of magnitude: 

An asymptotic expression for the confluent hypergeometric 
function in this region is given in Sec. 8 of the book by Buch- 
holz. l3  Assuming 

p=2(v+v')cos2 a and p=2(v+v')chZ a (21) 

corresponding to the cases (p/2m) < 1 and (p/2m) > 1, we 
obtain for the first of them 

exp (nv-2nv') I Y ('l2+iv, l+i(v-v') ; -ip) l a  
=exp [-2nv'+ (v+v1 ) 61 Ip tg a, (22) 

where S = 2a  - sin2a. Expanding the argument of the ex- 
ponential function in (22) in powers of k : we get 

xexp [ - - I:; [arcsin E+E (I+') "1 

If, however, (p/2m) > 1, we get in place of (23) - 
f rn2+kLZ W -  j dkLz sxp ( - n --), 

16nmp2th a, , 1.98 1 

For p/2m very close to unity, it is necessary to make in the 
"dangerous" places of the pre-exponential factors of Eqs. 
(23) and (24) the substitution 

tg a,, th ao+nl?-z('/3) (38) ", (25) 

and put in the remaining ones a, = 0. As a result, these equa- 
tions are continuously transformed into one another when 
the parameter p/2m is changed. As seen from (23) and 
(24), the values k : - 1 e&l are significant, as assumed above. 

Note also that if P(p/2m ( 1, then cos a becomes a 
small parameter. In this case S Z T  - 4cos a and we obtain 
Eq. (19) for the probability. The classical approximation 
( 14), ( 17) and the approximation (20), (22) are different 
particular cases of the semiclassical approximation, and are 
contiguous in the region 

Thus, the argument of the exponential function in both 
the total and the differential probabilities depends on the 
mass p of the neutral particle only in the region 0 <p < 2m 
and ceases to depend onp  a t p  >2m, where it coincides with 
the exponent of the differential probability of pair produc- 
tion by an electric field. The emission of a neutral particle 
with mass p > 2m proceeds in two stages: the field creates 
first a pair with probability - exp( - n-m2/)e&) ), and next 
the initial charged particle annihilates with one of the pair 
particles into a neutral particle with a nonexponentially low 
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probability, so that the two annihilating particles are real 
and can be accelerated by the field towards each other to an 
energy sufficient to overcome the neutral-particle creation 
threshold. 

On the other hand, emission of a neutral particle with 
mass p < 2m proceeds via annihilation of an initial particle 
by an oppositely charged particle of virtual pair that has 
acquired from the field a kinetic energy + p/2 (if it is re- 
garded as a hole, it is located on a level - p/2). The energy 
m + p/2 released thereby goes over into the energy m - p/2 
needed for conversion of a virtual particle having the same 
charge (and located on a level + p/2) into a real particle, 
and into the energy p needed for production of a neutral 
particle: 

The probability of this annihilation is - f 2m -2, so that the 
total probability is determined by multiplying f 'm - 2  by the 
probability of production, by the field, of a virtual pair of 
particles with kinetic energiespl2 (particle and hole on lev- 
els f p/2). The latter probability can be calculated semi- 
classically, as was done in $ 129 of Ref. 14, the only differ- 
ence being that the integration over the coordinate z must be 
carried out in the interval (z, , z2 ), where according to the 
single-particle theory the kinetic energy 
+ (m2 + p: (z) ) 'I2 = p, + e&z changes from a value 
- p/2 to a value + p/2. We have then for the exponent of 

the sought probability 
IS 22 

-2 jdzlp,(z) 1 =-2 1 d~[m~- (~~+eez ) ' ] '  
I, 21 

2m2 =-- P [arcsin g+t (1-g2) '1, = - 
l ee l 2m ' (25) 

i.e., the same expression as contained in the probability 
(23). 

2.2. Mass difference of charged particles small compared 
with their masses 

Let now 0 < A=m' - m (m, m'. Assuming a weak 
field, we put 

In this case we can again use Eq. ( 16), but the index of the 
Macdonald function is no longer small. We get thus for the 
probability 

We assume next for simplicity thatp, = 0, so that the differ- 
ential probability does not depend on 6, but depends only on 
k, (p; = - k, ) via the quantities 

The Langer asymptotic representationI5 of a Macdonald 
function with large index and argument 

expresses it in terms of the Airy function 
OD 

1 
D ( u ) =  Jdtcos(ut+--ts) 

0 3 
(31 

with a real argument 

the sign of which coincides with the sign of w2, - 1 (02 < w . 
It is known that the Airy function becomes exponential- 

ly small only for u > 1. It follows therefore from (28) and 
(30) that the differential probability is -exp( - 2 ~ s )  at 
u 5 1 and -exp[ - 2 s ( r  + w - arctanw)] at u )  1. If A2 
/leg1 is assumed small and the parameter 
wi = (p2 - A2)/A2 is introduced, the exponent of the total 
probability is equal to 

2nmA -- tor - (  I ~ E I  " 1 ,  (33) 
lee1 

2nmA 2mA !h 
---- (w. - arctg wo) tor ( s) < w:. 

lee1 lee1 

It can be seen that the exponent agrees with the Davies- 
Unruh exponent - 2 ~ m  (A + p)/leel only i fp 4 A. I fp  - A 
its dependence on p and A is essentially nonlinear, and al- 
though it becomes linear in A and p for p) A, 

the "temperatures" are not equal to the Davies-Unruh tem- 
perature; see also Ref. 16. 

3. SPLITTING OF A CHARGED PARTICLE IN AN ELECTRIC 
FIELD INTO TWO PARTICLES OF LIKE CHARGE 

We denote the charge and mass of the initial particle by 
e and m, and of the final particles by e', m' and e", m". 
According to Refs. 2 and 10, the matrix element can be ex- 
pressed in the form 

In this matrix element, which is more complicated than ( 6 ) ,  
it is more convenient to use the eigenfunctions of the con- 
served operators II ,, II,, P- = II- + e&x- with eigenvalues 
p,, p2, p-  designated in (36) by the single symbol p. Such 
symbols have a semiclassical form and are treated in detail in 
Ref. 9. 

Calculation of the e+ef + e" splitting probability per 
unit proper time of the initial particle leads to the following 
result: 
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X I ,  dpi' d~z' I Q I 
I e ' ~  I [ 1 + exp (-2nv') ] [I  + exp (-2nv") ] ' 

1-4 I Z  
- 2n [ I  - exp (-2n (v'+vU) ) ] 

(v'+vrl) [ I  + exp (--2n (v1+v"-v) ) ] [I  + exp (-2nv) ] 

if the integration with respect top' , which led to the proper 
time of the initial particle, was carried out in the interval 

and to 

X J  d~l' dpz' 1 ? 1 
I e " ~  I [ 1 + exp (-2nv') I [ 1 + exp (-2nv") ] 

if the integration with respect top' was carried out in the 
interval 

The conservation laws p, = p; + p;' and p- = p '  +pY 
hold. In (37 )  and (39 ) ,  F(a ,  6; c; z )  is a hypergeometric 
function; its argument z takes on values e/ef and e/e" larger 
than unity on the upper edge of the cut 1 <z < a, S - + 0. 
The parameters v' and v" differ from the value of v defined 
by Eq. ( 8 )  in that e, m, p, are replaced be e', m' p, ' or by e", 
m",p, ". 

Thus, the distribution of the final particles over the per- 
pendicular momenta and the decay rate depend on which of 
the two intervals (38 )  and (49 )  the numberp-' is located, 
i.e., there are two modes of the reaction e-e' + e". The dis- 
tributions corresponding to them differ by permutation of 
the final particles: e ' s e " ,  v ' s  v". 

The two-mode character of the splitting of particles into 
similarly charged particles will be the subject of a separate 
paper. Here we are interested in the form of the dependence 
of the differential or total probability on the rather weak 
field c.  To this end we must investigate the asymptotic be- 
havior, at v, v', v" > 1, of the integral 

and of the integral Q which differs from Q by the permuta- 
tions e ' s e " ,  v ' e v " .  

3.1. Weakly differing charge accelerations 

Consider the particular case when 

i.e., the charge accelerations differ little and the binding en- 
ergy I = m' + m" - m = mS <m is low. Using for the cal- 
culation of the integral Q the saddle-point method and the 
smallness of certain linear combinations of the parameters v, 
v', and v" compared with the parameters themselves: 

it can be shown that the real part of the function if ( 6 )  at the 
saddle point 6 = 6, is equal to 

I 

The three dots denote terms -ST compared to those written 
out. The argument of the exponential function that deter- 
mines the differential probability is then 

where the term -6 can be neglected and the exponent of the 
total probability is - a m I / l e ~ l .  Consequently, under the 
chosen conditions (42 ) , which make the reaction e - e' + e" 
an ideal detector of uniformly accelerated motion, the effec- 
tive excitation temperature turns out to be double the Da- 
vies-Unruh temperature. Obviously, the exponent of the sec- 
ond mode, defined by the integral Q, coincides in this 
approximation with (45 ). 

3.2. Noticeably different charge accelerations 

We consider now a second particular case, when 
e' = e" = e/2, m" = am', m = ( 1  + a - S)ml .  Since 

the charge accelerations differ substantially when a differs 
noticeably from unity and S <  1, and the binding energy is 
low: I-m' + m" - m = Sm1<m', m",m. Without loss of 
generality, it can be assumed that a > 1, so that the largest 
acceleration is that of the charge e'. Since the field is assumed 
weak, it follows that v, v', v"  $ 1  and that the integral Q, in 
which now 

can again be evaluated by the saddle-point method. 
The value of the function 2 Re if (6 )  at the saddle point 

6 = l , ,  which is the exponent of the differential probability, 
is in the lowest approximation in S :  

We have put here for simplicity p, = 0, so that p; = - p;'. 
The exponent of the total probability is obtained from (48 )  
by puttingp; = 0. At a > 1 it coincides with the atom-ioniza- 
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tion exponent: 

where co = (2m11) 3 1 2 / 1  e' 1 m' is the characteristic atomic 
field (see $77 in Ref. 17). This is as it should be, for in this 
case m, m " > m l .  It is difficult to compare the probability 
exponents with temperature ones, since they are nonlinear in 
the excitation energy Am'. If the comparison is nevertheless 
made, we get for the temperature 

which is much higher than the Davies-Unruh temperature 
since S is small. 

Note that the second mode defined by the integral Q is 
much less probable and has an exponent equal to 

2 Re ir(g,) =2n (v-v'-v") + . . . 

Assumingp; = 0 we obtain the exponent - a(a - 1 )2/2fl ' 
of the total probability of the second splitting mode. 

4. EMISSION OF A NEUTRINO PAIR BY AN ELECTRON IN AN 
ELECTRIC FIELD 

Since the lightest charged particle is the electron, the 
most realistic examples of the reactions considered in Sec. 2 
are e 4 e + y and e + e + v + +. The first was already ac- 
counted for in Ref. 2. We shall therefore dwell here on the 
second, which is of interest also because the neutrino pair 
v + + can be regarded in it as a neutral particle with mass 
p = [ - ( k t +  k")2]112(k ' ,k"  arethe~momentaofvand 
+), having a continuous spectrum of values O(p < oc and 
playing the role of excitation energy. The probability is then 
an integral with respect top2 of an excitation spectrum in the 
form of the right hand side of Eq. (9) ,  with corresponding 
complications due to the electron and neutrino spins and to 
the nonscalar character of their interaction. 

In fact, starting with the matrix element 

in which v,, v,, e, and e' are the wave functions of the neu- 
trino, antineutrino, and initial and final electrons in the field, 
and 6 = sin28, is the Weinberg parameter (see pp. 130 and 
183 of Okun's book"), we obtain for the probability of emis- 
sion of a neutrino pair by an electron per unit of its proper 
time 

-t [ (p2--kLZ) (v-v') - (2p2+kla) p] Re Y Y" + (k,z-pa))pl Y' 1'. (55) 

Here Y = Y(iv, 1 + i (v  - v ' ) ;  - ip) is a confluent hyper- 
geometric function, Y' is its derivative with respect to - ip , 
and k = p - p' is the momentum of the neutrino pair. On the 
basis of Eq. ( 1 1 ) we can prove again relation ( 12) between 
the differential probabilities of processes that differ by per- 
mutations of the states of the initial and final electrons. 

In the weak-field region, when v and v') 1 and Y and Y' 
assume exponential forms, the argument of the exponential 
function that determines the differential probability does not 
differ from the one obtained in Sec.2.1. We confine ourselves 
therefore to a region that is classical with respect to the elec- 
tron motion: v) 1, v - v'- 1, vp- 1. Using (16), we obtain 

p,'+ml v-v' ' + -(K" - (T) K2)]+ +[ (kL2+2p') Ka 
ma 

Here K = Ki,,  - ,., (z) is a Macdonald function, K ' its deriva- 
tive, z = 2(vp) 1'2, v - vt=pL kL/Ie&I and in contrast to 
( 18) we have preserved p, #O. It can be seen that in the 
excitation region where z)  1 the integrand becomes expo- 
nential and the exponents of the differential probability and 
of the distribution in p are, respectively, 

-2rnL(p2+k,2)'h/(e~I II -2rn,p/Ie~ 1, rn,=(m2+p,2)", 

(57) 

i.e., the effective temperature le~1/2m, differs from the Da- 
vies-Unruh temperature even ifp, = 0. 

Note that the probabilities (52) and (56) can be trans- 
formed into the probabilities of photon emission e + e + y by 
retaining in them only the terms proportional to6 2, omitting 
the integration with respect to ,u2, making the substitutions 
G -+ 2e2, ,u2/357- 257, 6 -+ + and putting ,u = 0 in the pa- 
rameter p. 

5. SPLITTING OF A CHARGED PARTICLE IN A CROSSED 
FIELD 

We have seen that the exponents of the probabilities of 
various processes in an electric field depend substantially on 
the relation between the proper accelerations of the charges. 
We shall show now that they are quite sensitive to a change 
of acceleration in the region where the reaction is formed. To 
this end, we consider the charged-particle splitting 
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e-e' + e" in a crossed field (ElH, E = H), where the prop- 
er acceleration [ (eF,,p, ) '] 'I'm -' is constant and the di- 
rection changes with the proper time. 

Starting with the matrix element 

in which 

eaP e2a2 Q.(x)= (2p0)-'" erp ipx+i- (kx)'-i- (kx)'] , (59) [ 2kp 6kp 

etc., are the wave functions ofscalar particles with charges e, 
e' and e" and momenta pa,  p i ,  and p:: in a crossed field 
FaB=k,aB-kpa, ,  described by a potential 
A, = a, (kx), k ' = ka = 0, it is easy to obtain the following 
expressions for the splitting probability per unit proper time 
of the incident particle: 

~rn"~I rn~+ (I-V) m'Z/m2-v (1-V) 
z(v) = - 

[XU (1-v) I v-e'le I 1% (61) 

Here 

is an integral of the Airy function, x = [ (eFapps )I] 'I'm-', 
and Y = p l  /p-. Note that p i ,  p,, p- are the eigenvalues of 
conserved operators n ,, nz ,  n- = n,, - II,, if E and H are 
directed along axes 1 and 2. One more component p, of the 
4-vector is set by the condition p' = - m2. The following 
conservation laws hold: p i  =pi  +p;', pz = p; + p;, 
p-=p'-  +p" .  

The function @,(z)  in (60) is thus the distribution of 
the final particles inp: andp? Recall that @, (z) for realz 
is positive, falls off exponentially as z- + m ,  and tends to a 
as z- - UJ while executing damped oscillations of increas- 
ing frequency l 9 3 l 5 :  

We assume that the binding energy 
I = m' + m" - m > 0, i.e., there is no reaction in the absence 
of a field. In that casez(v) > 0 in the physical region 0 < u < 1 
and becomes infinite at its end points u = 0 and u = 1. For 
splitting into particles of like charge, z(u) becomes infinite 
also at the point v = el/e, inside the interval 0 < v < 1. There- 
fore the distribution in v vanishes at the points v = 0, el/e, 1 
and consists thus of two spectral lines with maxima in the 
ranges O < p '  <p-e'/e and p - e1/e<p1 <p-. If x < l ,  
thenz(v) S 1 and the spectral lines are described by the expo- 
nential function (62). Its maxima are located at the minima 
ofz(v). The positions of the minima ofz(v) are given by the 
roots of the equation z' ( v )  = 0 that reduces to a cubic one. In 
view of the complexity of the latter, we confine ourselves to 
particular cases. In the case e' = e" = e/2, m' = m" = 1/ 

2m( 1 + S), I = mS<m, which is a particular case of (42), 
the equation zl(v) = 0 reduces to a quadratic one. For the 
positions v,,, of the maxima of the distributions and for the 
corresponding exponents we obtain 

where the triple dot denotes terms of order -8 relative to 
those written down. Comparison with (45) shows that the 
difference between the probability exponents for splitting in 
an electric field and in crossed fields is that a in the former is 
replaced by 2 0  in the latter (the parameter x must be iden- 
tified here with P, since both represent the electric field 
strength in the proper system of the incident particles in 
units of m2/e or the proper acceleration of the charge in units 
of m). 

Inthecasem" = e V  = O , e f = e , I = m ' - m = m 8 4 m  
the equation zl(v) = 0 becomes linear. For the position of 
the distribution maximum and of the probability exponent 
we get 

Finally, in the case (46), when the proper accelerations of 
the charges differ noticeably, the position of the principal 
maximum of the spectrum coincides essentially with the po- 
sition of the minimum of the denominator of z(v), which 
varies in this region approximately S- ' times faster than the 
denominator. An arbitrarily accurate position of the princi- 
pal maximum can be obtained by perturbation theory in the 
small parameter S. As a result we obtain for the position and 
exponent of the principal spectral maximum 

-- z*/=(vI)= - 4[2a(a+l)  1" 
3 

6"+. . . . (66) 
3 (a-l) X' 

In the approximation considered, the exponent (66) is equal 
to the exponent (48) of the dominant mode of splitting in an 
electric field. The position of the second, lower maximum of 
the spectrum can be found by reducing the equation 
z' ( v )  = 0 to a quadratic one with the aid of the just obtained 
root v,, We obtain thus for the position and the exponent of 
the second maximum in the spectrum 

2 - 9 ( ~ - 1 ) ~ / 4 ~ '  for 6<a-1<1 
- - zY*(vz) = 

3 -8c2/3~' for a>l (67) 

This exponent has qualitatively the same dependence on a as 
the exponent (50) of the second splitting mode in an electric 
field, but is somewhat higher in value. 

6. CREATIVE FORCE AND FORMATION LENGTH 

We see thus that at a low binding energy (8  =I /m < 1 ), 
in the case of noticeably different accelerations of the 
charged particles participating in the reaction, the exponent 
turns out to be smallest and proportional to S3", whereas if 
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the accelerations differ little it is proportional to 6. A particle 
(e, m) can be regarded as consisting of virtual particles (e', 
ml ) and (en, m, ) with masses m, and m, adding up to m 
and different from the masses m' and m" of real particles 
with energies A' and A" of the order of the binding energy: 
m I - m l - A f , m 2 = m " - A " , m l + m 2 = m , A ' + A " = I .  - 
As the particle (e, m) is then accelerated, an additional force 
is produced between its constituent virtual particles; this 
force can be found from Newton's equations m,a = e ' ~  -f, 
m,a = e " ~  +f: 

It can be seen that this force is due to the difference between 
e/m of the initial particle and el/m, or e"/m,, i.e., to the 
difference of the accelerations imparted by the electric field 
to the virtual and particles and to the incident one. At low 
binding energy, f - eE for noticeably differing accelerations 
of the real charged particles and f - 6 e ~  for slightly differing 
accelerations. 

Obviously, the splitting process evolves over a length I 
over which the force f produces work I: 

We obtain hence, in the case of different accelerations, a 
formation length I- I / l e ~ l  . The kinetic energy acquired by 
the particles over this length through the action of the exter- 
nal force is also of the order of I, i.e., the charged particles 
move nonrelativistically, in the proper system of the initial 
particle, during the process formation time. The difference 
between processes in equally strong electric and crossed 
fields is therefore insignificant, see (48) and (66). 

If the accelerations are close, we have I-m/le~l. The 
particles therefore become relativistic in the formation re- 
gion and the actions of the electric and crossed fields on them 
are noticeably different, cf. (45) and (64). 

Returning to the concept of forcef, we note that owing 
to the spread of order I in the values of the virtual masses m , 
and m, the force f is always different from zero. The situa- 
tion is different if the particle is accelerated by a uniform 
gravitational field. The charges turn then into masses and it 
is necessary to replace ee, e ' ~ ,  e " ~  in (68) by mg, m,g, m g ,  
and this leads to f = 0: a uniform gravitational field acceler- 
ates virtual and real particles in the same manner, and the 
process does not take place. A change to an inertial system 
that falls together with the particle, where the latter is not 

acted upon by forces, leads to the same conclusion. A true 
gravitational field, however, is not uniform, and it can trans- 
fer its energy via tidal forces to virtual particles and convert 
them into real ones. 

In sum, it can be stated that the processes due to accel- 
eration of a particle depend substantially on the nature of the 
accelerating force, and on its ability to alter the interaction 
with the virtual particles of the vacuum and imparting to 
them the energy needed to convert them into real ones (to 
excite the detector). It is just the latter circumstance which 
leads to the simultaneous existence of the direct and inverse 
processes and to a relation of type ( 12). 

In conclusion, we are sincerely grateful to V. L.Ginz- 
burg for stimulating discussions that prompted the publica- 
tion of this paper, and to L. V. Rozhanskii and V. P. Frolov 
for information and discussions. 

"The components of p are the eigenvalues of the conserved operators II,, 
II,, p, = I I ,  - e&xo, where I I ,  = - i.3, - eA, is the kinetic-momen- 
tum operator. 

'A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz. 56, 2035 (1969) 
[Sov. Phys. JETP 29, 1093 (1969)l. 

2A. I. Nikishov and V. I. Ritus, ibid. 59, 1262 (1970) [32,690 (1971)l. 
'W. G. Unruh, Phys. Rev. D14,870 (1976). 
4L. P. Grishchuk, Ya. B. Zel'dovich, and L. V. Rozhanskil, Zh. Eksp. 
Teor. Fiz. 92,20 (1987) [Sov. Phys JETP 65, 11 (1987) 1. 

'T. H. Boyer, Phys. Rev. D29, 1096 (1984). 
6V. L. Ginzburg and V. P. Frolov, Usp. Fiz. Nauk 153,633 (1987) [Sov. 
Phys. Usp. 30, 1073 (1987)l. 

'N. Burrell and P. C. W. Davies, Quantized Fields in Curved Space-Time 
[Russ. trans]., Mir, 19841. 

'W. Greiner, B. Muller, and J. Rafelski, Quantum Electrodynamics of 
Strong Fields, Springer, 1985. 

'N. B. Narozhny? and A. I. Nikishov, Trudy FIAN 168;175 (1986). 
''A. I. Nikishov, ibid. 111, 152 (1979). 
"A. Erdelyi, ed. Higher Transcendental Functions, Vol. 1, McGraw, 

1953. 
12V. I. Ritus, Zh. E~sD.  Teor. Fiz. 82, 1375 ( 1982) ISov. Phys. JETP 55, 

799 (1982)l. 
I3H. Buchholz, The Confluent Hypergeometric Function with Special Em- 

phasis on Its Applications, Springer, 1969. 
14V. B. Berestetskii. E. M. Lifshitz. and L. P. Pitaevskil. Ouantum Elec- . - 

trodynamics [in Russian], ~ a u k i ,  1980. 
ISM. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical 

Functions, Dover, 1964. 
I6S. Takagi, Progr. Theor. Phys. Suppl. 88, 1 (1986). 
I7L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Nonrelativistic 

Theory, Pergamon, 1977. 
"L. B. Okun', Leptons and Quarks [in Russian], Nauka, 1981. 
I9A. I. Nikishov and A. I. Ritus, Asymptotic Representations for Some 

Functions and Integrals Connected with the Airy Function, FIAN Pre- 
print No. 253, 1985. 

Translated by J. G. Adashko 

1321 Sov. Phys. JETP 68 ( I ) ,  July 1988 A. I .  Nikishov and V. I. Ritus 1321 


