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Wetting transitions in two-dimensional lattice systems are considered. To obtain exact solutions 
the transfer-matrix method is used. Attention is focused on transitions at proper line defects 
(domain walls). The effective thickness of the wall increases as the transition point is approached, 
this being connected with growth of the intermediate (wetting) phase inside the domain wall. 
Depending on the types of transformations in the system of domain walls, the phase transitions 
can be first-order, second-order, or infinite-order. The general analysis makes it possible to apply 
the results obtained to the description of the behavior of the domain walls in the ANNNI model; 
in particular, the problem of the coexistence of a wetting transition and pinning of domain walls at 
an external boundary is considered. 

1. INTRODUCTION 

The wetting transition at the interface of two phases 
(solid and vapor) is usually attributed to the formation of an 
intermediate (liquid) phase of macroscopic thickness. Wet- 
ting problems have been investigated for a long time, and a 
recent review of the topic is given in Ref. 1. In recent years 
serious attention has been paid to systems in which a solid 
substrate is subjected to partial or complete wetting by a 
system of adsorbed layers.' 

In the present paper we consider phase transitions of 
the wetting type in two-dimensional lattice systems with dis- 
crete degeneracy. Among these, transitions in a "domain- 
wall plus boundary system" (see the pioneering paper Ref. 
3),  and also the transitions that arise at proper line defects 
(domain walls) of an adsorbate commensurate with the sub- 
strate are of great interest. It is customary to illustrate the 
latter with the example of an anisotropic commensurate 
( p  X 1) monolayer withp>3 (Ref. 4) .  Herep and 1 denote 
the periodicity of the structure of the monolayer with respect 
to the elementary periods of the substrate. The monolayer 
under consideration can be modeled as a lattice gas with 
anisotropic interaction; an essential point is that along one of 
the directions the particles attract each other. 

Figure la shows possible vacuum states (A, B, and C) 
of a monolayer with a ( 3  X 1) structure, separated by walls 
of the same type (type b).  The different vacua differ by a 
translation through one period of the substrate, and their 
energies are assumed to be equal. When the temperature is 
nonzero the wall migrates along the surface through fluctua- 
tional formation of kinks. The probability of such a fluctu- 
ation is determined by the Boltzmann factor exp( - E, /T), 
where E, is the energy loss due to the formation of the kink. 
One can also cross spatially from vacuum A to vacuum B via 
the formation of an intermediate region with vacuum state 
C. For this it is necessary to introduce into the analysis a new 
type of domain wall (type a ) .  Figure lb shows the transfor- 
mation b+a + a, in which the walls a are arranged in neigh- 
boring positions. Fluctuations can either carry walls of type 
a apart, or collapse them again into state b. Unlike simple 
wall migration, the transformation of walls of one type into 
another causes the energy to increase linearly as a function of 
the length of the "unfavorable" walls. It is convenient to 
introduce the energies of individual walls (E)  per lattice con- 

stant. It is obvious that if the difference AE in the energies of 
walls of different types satisfies A&> T, the unfavorable walls 
appear extremely rarely in the structure of the monolayer, 
and are manifested only as point defects. But if their energies 
become close (A& 5 T), the entropy mechanism comes into 
play. Thus, in the example given above, for a sufficiently 
small difference AE = 2&, - E,  > 0 there exists a tempera- 
ture at which the fluctuation contribution to the free energy 
from two walls of type a compensates their energy disadvan- 
tage A&. As a result, the transition "b- free state of walls a" 
occurs. It should be noted that we are considering a situation 
in which the line defect (which has arisen, e.g., as a result of 
the preparation of the monolayer) is topologically nonremo- 
vable. The free energy (per unit length) associated with the 
defect i s b  T. Therefore, all the possible transformations of 
the walls (and the formation of new walls) leading to config- 
urations other than the competing b and a + a configura- 
tions are unimportant. 

The phase that arises between walls of type a plays the 
role of the third phase (liquid) that appears on the solid-gas 
boundary in the usual wetting transition, and therefore 
phase transitions involving the decomposition of domain 
walls in systems with discrete degeneracy are related to wet- 
ting phase transitions. 

As mentioned above, the phase transitions under consi- 
deration can be described in terms of the anisotropic lattice- 
gas model, one of the variants of which corresponds to the 
Hamiltonian 

FIG. 1. Possible structures of an anisotropic monolayer with domain walls 
(0 are particles, are empty sites): a )  two walls of type b (the right wall 
has a kink); b )  transformation of a wall of type b into two walls of type a. 
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In this model the particles attract each other along one of the 
directions [ V(r, r + a, ) < 01, and repel each other along the 
other direction [ V(r, r + ma, ) > 01. With regard to the re- 
pulsion, it is important only that it does not fall off too slowly 
with distance. In the ground state such a lattice gas forms 
linear chains, the equilibrium spacings between which are 
regulated by the chemical potential p .  Their exists a region 
of values of p for which the p x 1 structure has the lowest 
energy. Inside this region, at a certain criticalp, one type of 
line defect becomes energetically unfavorable and is re- 
placed by another type. 

In the analysis of a lattice gas possessing a commensur- 
ate 3 X 1 or 2 X 1 structure it is convenient to use the ANNNI 
(axial next-nearest-neighbor Ising) model, which is a partic- 
ular case of the more general model ( 1 ) and is described by 
the spin Hamiltonian 

The spin variables S take the value + 1 or - 1. The corre- 
spondence between the models ( 1 ) and (2)  is ensured by the 
equality n = +(1  - S) .  

A model in which the 3 X 1 structure arises was pro- 
posed in Ref. 5 to describe experiments on the adsorption of 
oxygen on a Pd ( l l 0 )  face [O/Pd( 1 lo ) ] .  The phase dia- 
gram in the variables J, , J2 for T = 0 and fixed h is shown in 
Fig. 2. The 3 X 1,2X 1, and 1 X 1 structures are indicated by 
( + + - ), ( + - ), and ( + ), respectively. The walls of 
type b shown in Fig. 1 correspond to a nucleus of the phase 
( + - ) superposed on an ordered ( + + - ) structure, 
while the walls of type a correspond to a nucleus of the ferro- 
magnetic phase ( + ). Near the line of coexistence of the 
phases ( + + - ) and ( + - ) the b walls have low energy, 
being "light," and the a walls are energetically unfavorable 
("heavy" walls). In the vicinity of the ( + + - )-( + ) 
coexistence line the roles of the walls are reversed. 

For the mathematical description of the wetting transi- 
tion the transfer-matrix the random walk meth- 
~ d , ~  and numerical by the Monte Carlo meth- 

FIG. 2. Phase diagram of the ANNNI model in a magnetic field at T = 0. 
For the ferromagnetic phase ( + + - ) the dashed line shows the line of 
coexistence of walls a and b + b, and the dashed-dotted line shows the line 
of coexistence of walls b and a + a. Also shown are the coexistence lines of 
one heavy and three light walls in the antiferromagnetic phase 
( +  + - -). 

od have been applied. In problems of two-dimensional 
wetting the method of Miiller-Hartmann and ZittartzI9 is 
extremely popular,3.1"'8 and is equivalent to an analysis of 
the one-dimensional SOS (solid-on-solid) model. The latter 
method has been applied mainly to the description of the 
transition from a bound state of a domain wall near a bound- 
ary to a free state. It can be interpreted easily using the exam- 
ple of an ordinary ferromagnetic Ising model in which one of 
the two vacuum states is surface-active. It should be noted 
that if transformations are possible near the boundary, i.e., 
the competition of different types of wall is important, the 
method of Miiller-Hartmann and Zittartz becomes ineffec- 
tive. In Sec. 7 we give the solution of such a model in the 
framework of a transfer-matrix method that is unique to the 
present paper. 

In Sec. 2 we present basic information on the transfer- 
matrix method and demonstrate its application to the prob- 
lem of the competition of one heavy wall and two light 
walls." In Secs. 3 and 4 we show in the framework of the 
lattice model that the transformation of a heavy wall into N 
light walls (N>3) is a first-order phase transition. Previous- 
ly this problem has been considered only with neglect of the 
discreteness of the possible positions of the walls, in the 
framework of a continuous random-walk model.4 In the fol- 
lowing section we take into account the effective pair inter- 
action of light walls in the decay 1 ? 3, which leads to the 
possibility of the formation of a new (intermediate) type of 
wall, in the form of a bound complex of two light walls. On 
the phase diagram an additional line of second-order transi- 
tions appears. In the short sixth section we use the results 
obtained to give a concrete picture of the wetting transitions 
for the ANNNI model. The seventh section, devoted to an 
analysis of a system in which the decay of a domain wall 
competes with its localization the boundary of the sample, 
ends the paper. 

The ANNNI model, which is widely used in the present 
paper to illustrate different wetting transitions in two-di- 
mensional lattice systems, is of special interest, since it is 
applicable to the description of such physical systems as oxy- 
gen on palladium (already men t i~ned ) ,~  and also hydrogen 
on iron [H/Fe( 110) ] (Ref. 12). 

2.THETRANSFER-MATRIX F0RMALISM;THE 1 # 2  WETTING 
TRANSITION 

The transfer matrix t (from the row with coordinatey to 
the row with coordinate y + a, ) corresponding to the Ham- 
iltonian ( 1 ) or (2)  has the form 

where t ,  is a diagonal matrix acting on the space of all possi- 
ble states of the row: 

and t2 is an operator that includes the diagonal matrix ele- 
ment and also all possible changes of configuration of the 
state of one row upon passage to another. The operator H ,  
contains variables pertaining to only one row. 

Thus, in the ANNNI model, 

and 
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where N is the number of sites in a row of the lattice, 
J,* = +lntanh(J,/T), and o".' are Pauli matrices. 

The transfer-matrix formalism and knowledge of the 
ground state and first excited state of the operator t of 
lowered dimensionality make it possible to find the follow- 
ing physical quantities20: the free energy per unit length, 

the average spacing between walls 

the transverse correlation length 

and the longitudinal correlation length 

The physical meaning of the latter is related to the longitudi- 
nal size of a wetting drop. 

In Eqs. (7)-( 10) $0 is the normalized wavefunction of 
the ground state of the operator t, I is the spacing between 
particles, and A, is the "energy" of the first excited state of 
the operator t and is defined in analogy with (7) .  

In the present paper we consider systems composed of 
one or several domain walls (an example of such systems- 
the line defects b and a + a,  is illustrated in Fig. 1 ). The 
addition of new domain walls to those already existing in- 
volves a large loss in energy. The contribution to the matrix t 
from all those configurations which differ from the compet- 
ing ones can be neglected. Since in the given formulation the 
problem reduces to that of the behavior of one or several 
walls (or particles, in the language of the transfer-matrix 
method), the matrix t can be taken into account exactly, by 
going beyond the framework of the low-temperature Hamil- 
tonian approximation (compare with Ref. 10). 

As the first example of the construction of the matrix t 
we shall consider the ANNNI model with those values of the 
parameters J, , J,, and H that lead to the formation at T = 0 
of the ( + + - ) structure (3  X 1 structure, in the language 
of the lattice-gas model). We shall regard the spin sequence 
- + + + - (the analog in Fig. 1 is the wall a )  as a topo- 

logically nonremovable defect. It is obvious that this wall 
can decay into two walls of the type - + - (walls b in Fig. 
1) .  Comparing the energies of these competing states, we 
find the a s  b + b coexistence line (see Fig. 2) .  Our analysis 
is valid in the vicinity of this line, but not too close to the 
point where the three phases ( + + - ), ( + ), and 
( + - ) coexist (point A in Fig. 2 ) .  

The transfer matrix contains diagonal matrix elements 
corresponding to an unchanged state of the walls upon pas- 
sage from row to row.The main nondiagonal elements are 
shown in Fig. 3. They describe kinks induced by two-spin 
flips; the others are associated with the mutual transforma- 
tion of walls. The probability of a single flip is proportional 
to y = exp( - 2J0 / T ) .  

It should be noted that the period of the magnetic struc- 
ture is three times greater than the period of the original 
lattice, and all elementary hops of walls occur through ex- 

FIG. 3. Spin flips inducing elementary kinks in walls (left) and inducing 
mutual transformations of kinks (right). 

actly one magnetic period. It is convenient to map the sublat- 
tices over which the migration of the walls occurs onto a 
fictitious so-calledf-lattice. All hops of particles on this lat- 
tice are to neighboring sites, and one of the configurations of 
the walls b (that shown in Fig. 3 )  corresponds to an arrange- 
ment of particles at one site of the f-lattice. Introducing the 
wavefunction amplitudes Cf, and f, ) corresponding to dif- 
ferent positions of the walls, we obtain the following system 
of equations: 

tfa(n)=(fa(n)+yYfc(n-l)+f.(n+l) )f yfb(n, n))e-'.IT, 

(11) 
tfb(n, m)=fb(n ,  m)+y2(fb(n-I ,  m)+fb(n+l ,  m )  

+fb(n ,  m-I )+ fb (n ,  m + l ) ) ,  m>n. (12) 

One further equation corresponds to the arrangement of the 
particles of b at one site of the f-lattice: 

tfb(n, n)=fb(n,  n )+  ~ f a ( ~ ) + y ' ( f b ( n - l ,  n )+ fb (n ,  n f l ) ) .  

(13) 
In Eq. ( 1 1 ) we have introduced the energy of an a particle, 
measured from the conventional zero-the energy of two b 
walls: 

&,=4Ji-412-2h. ( 14) 

We need to know the translationally invariant solutions 
of the system ( 1 I)-( 13). Then, if the smallest eigenvalue A, 
is separated by a gap from the other eigenvalues /Zi corre- 
sponding to these solutions, the state of the walls is a bound 
state. As the gap goes to zero the walls cease to be bound, and 
the average spacing between them diverges (compare with 
the result of Sec. 3 for the decay 1 F? 3) .  For the translational- 
ly invariant solutions the system ( 11 )-( 13) should be re- 
written in the form 

where m' = m - n. 
From Eq. ( 12') we can immediately find the transfer- 

matrix eigenvalue t ,  corresponding to the free state of the 
particles Vb (m ) -+ const as m - ] : 

t,=1+4y2. (15) 

From the form of Eqs. ( 11')-( 13') it follows that a solution 
describing a bound state can be found in the form 

fb(n) (16) 

Substitution of ( 16) into Eq. ( 12') makes it possible to ex- 
press the eigenvalue t in terms of the parameter q: 
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The remaining equations ( 1 1 ' )  and ( 13) ,  which are linear 
homogeneous equations in fa and f,, give the compatibility 
condition determining the parameter q: 

The vanishing of the parameter q determines the tempera- 
ture shift of the transition line shown in Fig. 3: 

It is obvious that for E,  < 0  there exists a wetting transition 
temperature T ,  below which the walls form a bound state. 

Solving Eq. ( 18) for small q, we find that the character- 
istic lengths defined by Eqs. ( 8 ) - (  10) diverge as follows as 
T ,  is approached: 
i - ~  I- q - l -  ( T ~ . - T )  - 1 ,  ~ ~ ~ - ( t - t ~ ) - ~ - q - ' -  ( T w - T )  -'. 

( 2 0 )  

In the solution demonstrated above it was assumed that 
the probability of formation of a kink at a wall is small, i.e., 
Y <  1, or 

The inequality ( 2  1 ) may be substantially weakened, since 
the problem of the competition of the a and b + b walls can 
be solved exactly even when kinks of arbitrary size are taken 
into account. The method of derivation of the equations for 
the amplitudes f ,  and f, ( n ) ,  which are a generalization of 
the system ( 1 I t ) - (  13') ,  is straightforward but cumbersome. 
We give the result: 

The simple substitution ( 16) ,  which gives the solution of 
Eqs. ( 1 1')-( 13') ,  now becomes insufficient-the right-hand 
side of Eqs. ( 2 3 )  has the following structure: 

where y,  = = e - " ,  z  = e ~ ~ ,  

A ( z )  = ( 1 - z / y  ) , and the expression for B ( z )  is un- 
wieldy and of no fundamental importance for the subsequent 
derivations. The form of the expression ( 2 4 )  makes it possi- 
ble to seek the solution of the system ( 2 2 ) ,  ( 2 3 )  in the form 

where O<q + <a < q- are the two roots of the equation 

Then the system of equations ( 2 3 )  turns out to be fully com- 
patible if for any n  the equalities 

are fulfilled, this being equivalent to the vanishing of the 
determinant 

The equations ( 2 6 )  and ( 2 7 )  determine the dependence of 
q + , q ,  and t o n  the parameters T and E,  . The vanishing of 
q + fixes the position of the wetting line T W ( & ,  ) . 

At the end of this section we shall discuss one further 
wetting transition, arising as a result of the competition of 
the b and a + a walls. The position of their coexistence line 
at T = 0  is shown in Fig. 2. Without restricting ourselves to 
consideration of only the smallest kinks, for the amplitudes 
g, ( n  ) and g,  we can obtain equations analogous to the sys- 
tem ( 2 2 ) ,  ( 2 3 ) :  

m 

I+yk +( n-p + -) y"n-p}g. ( p )  
I -y4  

where E ,  = - 4JI + 2h. 
The substitution ( 16) ,  as in the case of Eqs. ( 2 3 ) ,  again 

leads to the structure ( 2 4 ) ,  with the same t,  but different 
functions A (z) and B ( z ) .  The scheme of the exact solution is 
given above. It should be noted that the critical indices in 
this case, as in the preceding case, are determined by formu- 
las of the type ( 2 0 ) .  

In Sec. 7 we shall need the equation describing g, ( n  ) in 
the case when the transformation a + a - b can be neglected. 
In Fig. 2  this is the region to the left of the dashed-dotted line 
( E ,  > T )  . The required equations are a consequence of Eqs. 
( 2 9 ) :  

In the usual ANNNI model, y4 = y ,  = yZ. For reasons that 
will be clear in the following, we have introduced the inde- 
pendent notation y4 for the Boltzmann factor per unit length 
of the coalesced kink of two walls. Such kinks, of the mini- 
mum and doubled length, are depicted in Fig. 4.  

FIG. 4. Parallel "hops" of two walls of type a. 
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3. DECAY OF A DOMAIN WALL INTO THREE 

We shall consider the general problem of the wetting 
transition in a system of three equivalent light domain walls, 
which, when they come together, can be transformed into 
one heavy wall, and vice versa. Let y ,  be the Boltzmann 
factor (statistical weight) corresponding to a kink in a light 
wall, let y, be that corresponding to a kink in a heavy wall, 
and let y, be that corresponding to the point of the 1 2 3  
transformation. The values of y,  for specific phase transi- 
tions in the ANNNI model are given in Sec. 6. 

where the amplitudes f(n, m )  (for the case of three light 
walls) andg (for a heavy wall) are already taken in transla- 
tionally invariant form, and 

The distances between the light walls (n  and m )  are assumed 
to be measured in such a way that their closest approach 
corresponds to n = 1 or m = 1, so that in (31) we must set 

Substitution of (33) into (32) leads to the equation 

tf(1, I ) = ( I + U ) f ( l ,  1)+7l[f(1,2)+f(2,1) I,  (35) 

U=ys2/(&t-I-~Tz),  

which can be combined with ( 3  1 ) into a single equation 

which is valid for n, m > l  with the boundary conditions 
(34). If we regard n and m as the coordkates of a point on a 
triangular lattice (Fig. 5 ) ,  the operator A, will be the lattice 
Laplacian. By completing the right-hand side of (36) in an 
antisymmetric manner, we can extend this equation to arbi- 
trary integer values of n and m: 

FIG. 5. The sector with positive n and m is physical. The sites at which f 
vanishes are marked by 0. The sources are indicated by plus and minus 
symbols. 

here the boundary conditions (34) will be fulfilled automati- 
cally (this follows from symmetry considerations). 

The solution of (37) can be found in the form of a linear 
combination of plane waves: 

,I ?7 

dk, dk, 
exp i (k,n+k2m) fk. 

-n  -n 

Substitution of (38) into (37) leads to 

where 

and 

Sk = sin (kt+ k,) + sin (k,-Zk,) + sin (-2k,+k,) 

kl+" ( ) ( k; ) 
= -4 sin - 

2 
sin -- k, sin k, -- 

The equations (38 and (39) are mutually consistent only if 
the condition 

is fulfilled; this condition is essentially the equation of state 
specifying the dependence t ( ~ )  implicitly. 

Light walls that have moved apart to infinite distances 
correspond to the eigenvalue t, = 1 + 6y, .  The equation 
(41 ) has a solution t > t, only for 

' y 2  d2k +-I- s k 2  

37, ( 2 ~ ) '  3 - cos k, - cos k, - cos(k,-k,) 

This inequality determines the region of stability of a heavy 
domain wall, and, in the terminology of the wetting transi- 
tion, corresponds to the absence of wetting. 

In the neighborhood of the phase-transition point 
( r = t  - t ,  ( y ,  the equation of state (41 ) can be rewritten 
in the form 

and therefore the phase transition occurs as a first-order 
transition: 

and the leading singular correction to the free energy is pro- 
portional to ( A ~ ) ~ l n (  l/A&). 

We have found the function f(n,  m )  in the form of a 
linear combination of "waves" created by six sources, which 
in Fig. 5 are denoted by plus and minus symbols. It is not 
difficult to establish (e.g., by going over to the continuous 
approximation) that for one source f(n, m )  behaves as KO 
( q r ) ,  i.e., 
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where 3 = n2 + nm + m2 and t - t, = 3y,q2/2. For the six 
sources of alternating signs depicted in Fig. 5, f(n, m )  falls 
off as r 3  sin3p ( 1 < r < q -  '), so that the transverse correla- 
tion length (the average spacing between the outer light 
walls) remains finite as t+ t, + 0. 

4. DECAY OF A DOMAIN WALL INTO SEVERAL DOMAIN 
WALLS (THE GENERAL CASE) 

The analysis performed in the preceding section can be 
generalized to the case of an arbitrary number N>2 of equiv- 
alent light walls, which can be transformed into one heavy 
wall, and vice versa. In the general case the translationally 
invariant function f(n ,  , ..., n ,  , ) should be regarded as 
specified at the sites of an ( N  - 1 )-dimensional Bravais lat- 
tice generated by N unit vectors e, (a = 1, ...,N; 2, e, = 0 )  
oriented at equal angles to each other: 

For example, in the case N = 4 this will be a bcc lattice in 
three-dimensional space. 

The boundary conditions, analogous to the conditions 
(34), require the vanishing off on the ( N  - 2 )  -dimensional 
planes bounding the sector ni > 0 (i = 1, ..., N - 1) .  The to- 
tal number of these planes and also of the planes equivalent 
to them by symmetry is equal to N ( N  - 1 )/2 (each of them 
is defined by a pair of different vectors e, ( a  = 1, ..., N),  to 
which the plane is perpendicular). These planes passing 
through the coordinate origin divide the space into N! equiv- 
alent sectors, in each of which a source should be placed. 
Correct alternation of the signs of the sources makes vanish 
automatically on N ( N  - 1)/2 ( N  - 2)-dimensional planes. 
It followsfrom this that f for 1 < r < q - '  (q2-T) falls offlike 
the [N(N - 1 )/2] th spherical harmonic, i.e., 

The form of the expression (42) indicates that the average 
spacing between walls 

remains finite right to the transition point for N2> 6. 
The singular term in the equation of state is proportion- 

al to 

(with logarithmic corrections when N2 is odd), so that the 
phase transition under consideration is a first-order transi- 
tion for N2>5. 

The results of this section agree with those obtained by 
Huse and Fisher4 in the continuous approximation by means 
of a random-walk analysis. 

5. ALLOWANCE FOR THE EFFECTIVE PAIR INTERACTION OF 
LIGHT WALLS 

The technique that we have used makes it possible to 
elaborate further the problem under consideration. We shall 
increase the number of nondiagonal transfer-matrix ele- 
ments included in the analysis, introducing y, (the statisti- 
cal weight of a kink on a complex of two light walls at the 

minimum separation) and y, (the statistical weight of a 
kink on an analogous complex of N light walls-Fig. 6 ) .  The 
quantity y, determines the effective contact interaction of 
light walls, while the quantity y, determines the stability of 
the N-wall complex. Allowance for y, is trivial and reduces 
to a change of the quantity U that appear in the equation of 
the form (35): 

However, allowance for a nonzero matrix element y, is a 
much more complicated problem, since it requires the use of 
boundary conditions that do not reduce to the simple form 
(34). 

We shall denote the amplitude corresponding to the dis- 
placement of N light walls on the sites n , ,  n,, ..., n, by 

fn , .  It is obvious that the equations for f "in the bulk" 
(i.e., for nj+ , >n, + 2, j = 1 ,..., N - 1) 

are satisfied as before by an arbitrary plane wave 

where, in order that the amplitude f, be translationally in- 
variant, we must impose the restriction 

The equation for f with n,+ , = nj + 1 will have the 
form 

where we have omitted the terms corresponding to a shift of 
the remaining arguments. In order that Eq. (44) hold, it 
turns out to be necessary to add to : he wavefunction (43) the 
same wavefunction with interchanged values of the mo- 
menta kJ and kJ + , , i.e., to use the Bethe substitution: 

f=exp i [. . . +kjnj+ kj+,nj+,+. . . -0 (k,, k j+ , ) ]  

-exp i [ .  . . +k,+,nj+kjnj+,+. . . +O(kj, k ,+, )] ,  

where 

A sin ' / ,  (k -k ' )  cos (k+k') 
t g 0 ( k ,  k ')= 

cos ' l ,  ( k+kJ )  -A cos (k+k') cos (k-k') ' 

Yr Ys 
FIG. 6. 
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In order that all the N - 1 boundary conditions of the 
form (44) be satisfied, we must take a linear combination of 
N! plane waves with all possible permutations of the mo- 
menta kj. In the case N = 3 such a linear combination can be 
written out (in the notation introduced earlier in Sec. 3, with 
two independent arguments n = n, - n , , m = n3 - n, ) as 

where 8, = 8( - k,,k,), 8, = 8(k2,kl - k,), 8, = 8(k,  - k,, 
- kl).  

Another way of satisfying the boundary conditions (45) 
is to add imaginary parts to the wave numbers: 

where Q > 0 is connected withp by the relation 

eQ cos p=A cos 2p, 

andp belongs to one of the sectors 
1 I+ (1+8A2) '" 

ip I < - arccos 
2 4A2 ' 

and 

The sector (47a) exists only for A > 1. 
Thus, for N = 3 it turns out to be also necessary to in- 

clude in the analysis the wavefunction 

&(n, m) =A,{exp [ (-ip-Q)n+ (ip-Q)ml 
-exp [2ipn+ (ip-Q) m+2i8 (p-iQ, -2p)I 

-esp [ (-ip-Q)n-2ipm-2i8 (p-iQ, -2p)]), (48) 

where A, is a normalization factor and p belongs to the re- 
gions (47). 

The wavefunctions (46) correspond to the eigenvalues 
t ,  determined by formula (40), while the wavefunctions (48) 
correspond to the eigenvalues 

tp=1+2y, (cos 2p+ 2 cos p ch Q) 

The complete system of equations for f(n, m )  is finally 
found to consist of Eqs. (31) (for n, m>2),  two boundary 
conditions for m = 1 and n = 1: 

The solution of this system can be sought in the form 

where the integration over k should be limited to one of the six 
equivalent triangular parts of the hexagonal Brillouin zone, 
and the integration over p should be limited to the regions 
(47). 

The complete system of equations for f(n, m ) can then be 
rewritten in the form of a single equation 

(t-I-6yt)f (n, m) =-y1AL'f+6ni6rni[ uf (1, 1) -yr(f (0, 1) 

+!(I, 0))1, (50) 
h 

yhere the operator A t  coincides with the lattice Laplacian 
A, "in the bulk" (but not on the boundary) and has its own 
eigenfunctions (46) and (48),  and the quantities f(0, 1) and 
f( 1,O) are assumed to be determined in terms of (46), (48), 
and (49). 

Fourier transformation of Eq. (50) leads to 

(t-tk)fk=$k'(l, 1)F,  (t-tp)fp=$,'(l, 1)F,  (51) 

F=Uf( l ,  l)-yJ(O, l)-y4f(l, 0) .  

Since the quantities f( 1, 1 ), f(0, 1 ), and f( 1 ,0)  should them- 
selves be expressed in terms of fk and&,, Eqs. (5  1 ) turn out to 
be self-consistent only if the condition 

d~ @~'(111) [ U $ P ( ~ ?  l)-y4($p(01 I)+$p(l,O)) I 
= 1 

t-t, 
(52) 

is fulfilled, where the integration over k is again performed 
over the complete Brillouin zone. Equation (52) is the gener- 
alization of Eq. (41 ) to the case y4 #O. 

For y, < y, the integration overp is limited to the sectors 
(47b). For such values o fp  we have t, < 1, so that the second 
term in the left-hand side of (52) in this case cannot affect the 
critical properties. As in Sec. 3, the critical value of E can be 
found by substituting t = t ,  - 1 + 6y, into the equation of 
state (52), and the leading singularities can be found by ex- 
panding in r r  t - t, about this point. 

Since, for y4 < y, , the quantities $, ( 1, 1 ), $, ( 1, O), and 
$, (0, 1 ) for small k are proportional to k3, as in the case y4 
= 0, the singular term in the free energy has the same charac- 

ter as before. 
The behavior of f(n, m )  at large distances is determined 

by the term 

d2k $k(n, m)$k'(I, 1) ,. 
f (n ,m)=  5-- 

(2n) t-tk 

Approximating, for small k and k ', 

b 
0 (k, k') = -(k-k') , b=A (1-A) -I, 

2 
we can represent $, (n, m ) $: ( 1, 1 ) in the form 
exp i [k,(n-l)+kz(m-I)]  

and a special equation for the point ( 1, 1 ): 
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+exp i  [ k ,  ( n - 1 )  +k,(m+2+3b) ] 
-exp i [ k ,  ( n + i + 2 b ) + k z ( m + i + 2 b ) ]  

+exp i  [ k ,  (n+2+3b)+k2 ( m - i ) ]  
-exp i [ki ( n + i + 2 b )  +k,  ( m - 2 - b ) ]  . 

Thus, at large distances f(n, m ) has, as before, the form 
of a wave created by six sources, and, although their positions 
are found to be displaced in comparison with the case y4 = 0, 
they form, as before, a regular hexagon. This implies that no 
qualitative difference from the case y4 = 0 arises, and, for the 
region 1 + b4r(q-  I ,  f will fall off as the third circular har- 
monic (i.e., as r -  ') and gl will be finite at the transition point. 

For y4 = y , ,  both $, (1, 1) and $, ( L O )  and $, (0, 1) 
have finite limits ( 6'") as /kt-0, so that a smoothing of 
the first-order transition occurs: 

As the transition point is approached the region in which f(n, 
m) behaves as the zeroth cylindrical harmonic (i.e., logarith- 
mically) gets wider and wider, and l1 diverges as T - " ~ .  We 
emphasize that this transition will occur only for y, < y4; oth- 
erwise, a heavy wall remains stable against decay for all values 
of E. 

For y4 > y, the "high-temperature" (i.e., corresponding 
to large values of E) phase is found to consist not of three 
individual light walls separated from each other by infinite 
distances but of a light wall and a bound complex of two other 
light walls. This is due to the fact that the parameter value 
A = 1 is critical for the wetting transition in a system consist- 
ing of two light walls. For y4 > y,  the critical value of t  is 

and the critical behavior is determined by the second term in 
the left-hand side of the equation of state (52). As we should 
expect, the transition belongs to the same universality class as 
the standard 1 s 2  transition (considered in Sec. 2), as does 
the phase transition on the line y, = y4, E > E,. As in the case 
y4 = yl , for y, > y, a phase transition will occur only for not- 
too-large values of y, . 

The phase diagram obtained is depicted in Fig. 7 in the 
variables A, E for the case y, < y4. 

Thus, we have shown that allowance for the effective pair 
interaction of light walls leads to a change of the phase dia- 
gram of the system, but does not change the critical behavior 
on the 1 s 3 phase-transition line. The scheme of calculations 
used also makes it possible to include in the analysis the direct 
interaction of light walls on neighboring sites (which vanishes 

A 

FIG. 7. Qualitative form of the phase diagram: 1 )  region of existence of a 
single heavy wall; 2)  region of existence of a light wall and a bound complex 
of two light walls; 3 )  region of existence of three individual light walls. 

in the ANNNI model; see Sec. 6 ) .  The analysis of a system 
with a larger number of light walls leads to considerably 
greater complexity of the equations. 

6. DECAY OF A DOMAIN WALL INTO THREE IN THE ANNNI 
MODEL 

The wetting problem associated with the transformation 
of domain walls via a 1 s 3 scheme was considered in Ref. 13 
for the case of an ordered ( + + - - ) phase (see Fig. 2) in 
the framework of the ANNNI model. In this case, as for the 
phase ( + + - ), we can distinguish two types of competing 
walls. The wall which corresponds to the appearance of an 
extra plus (i.e. ( + + + - - )), will be denoted by a, 
while the other, corresponding to the disappearance of one of 
the minuses (i.e. ( + + - ) ), will be denoted, of course, by 
b. The position of the lines on which the energy of one of the 
walls is comparable with the energy of three walls of the other 
type is also shown in Fig. 2. In Ref. 13 the positions of the 
a s  3b and b s  3a phase-transition lines at finite temperature 
were analyzed numerically and by the transfer-matrix meth- 
od without allowance for the possibility of transformation of 
the walls. 

We can now apply the results of Sec. 5 to analyze two of 
these concrete problems. The statistical weights y, (a = 1,2, 
. . ., 5 ) appearing as parameters can be expressed, in this case, 
in terms of a single parameter y (see the table). For y 4 1, in 
both cases, y4 4 y, , and this, according to the results of Sec. 5, 
guarantees a first-order phase transition. 

An analogous problem can be formulated for the same 
phase ( + + - - ) in the absence of a magnetic field. The 
difference from the case of a finite field consists in the fact that 
the domain walls are degenerate with respect to the sign of 
their magnetization. An elementary kink in this case is found 
to involve a change of sign of the magnetization of the wall 
(e.g., in the case of a wall of type a, we have a transition from 
( + + + - - ) to ( + + - - - )), while in the decay 
of one wall into three there appear walls of different signs 
( (  + + + - - ) undergoes a transition to 
( + - + - - ) ) . These differences lead to a change in the 
values of the parameters y, (see the table), but, as before, the 
condition y, &y4 will be fulfilled and both phase transitions 
will be first-order. 

7. TWO WALLSAND THE POSSIBILITY OF PINNING AT AN 
EXTERNALBOUNDARY 

The problem considered in the present section arises in 
the ( + + - ) phase of the ANNNI model in the case when 
the system is semi-infinite, i.e., there is an external wall (sam- 
ple boundary). In this formulation there exist different possi- 
bilities, associated with the competition of wetting transitions 
and pinning of domain walls at the boundary. The boundary 
conditions on the external wall are specified as the absence of 
three bonds at two boundary sites of a chain. 

There exists a nontrivial example, which is analyzed ex- 

TABLE I. 
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FIG. 8. 

actly here. We assume that at infinity there exists a strictly 
specified sequence ( + + - ). In the example under consi- 
deration the vacuum state (Fig. 8a) corresponds to the abso- 
lute absence of domain walls, and rearrangement of the 
boundary region induces the appearance of two domain walls 
of type a (see Secs. 1 and 2). They can be localized near the 
boundary (Fig. 8b) or can be tom away from it (Figs. 8c, d ) .  
Here, in principle, three different states of the system are 
found to be possible. 

I. The vacuum state (Fig. 8a) mixed with a fluctuation- 
generated pair of domain walls localized on the external 
boundary. 

11. A bound complex of two domain walls, remote from 
the boundary. 

111. Two free domain walls. 
If the energy difference 

is negative and IAEI) T, the system is found to be in state I. 
For positive values, with AE) T, state I1 or state 111 should be 
realized, depending on the state (bound or free) in which the 
pair of domain walls is found in the absence of the external 
boundary. 

The statistical weights of kinks of the minimum size on a 
single domain wall (y, ) and on a complex of two maximally 
close walls ( y4 ) coincide in the model under consideration, 
and are equal to F. Thus, to first order in a system of two 
domain walls is found to be exactly on the line of the wetting 
transition in the bulk (see Sec. 5). This accidental degeneracy 
is lifted when larger kinks are taken into account. 

Now we can return to the end of Sec. 2, where an equa- 
tion determining the behavior of a pair of walls a was written 
out. In Eq. (30), parameters y, and y4 of kinks of general 
form were introduced. We shall be interested in the solution of 
this problem on the transition line, where z + = 1, and the 
second solution of Eq. (26) : 

The functions A(z) and B(z) appearing in Eq. (27) are as 
follows: 

22 
B (z) = (54) 

As a result of substituting the values (53) and (54) of these 
functions at the points z + and z- into Eq. (27) we obtain on 
the transition line 

It can be verified that for all possible O< y, < 1 Eq. (55) gives 
Y4 >Yl. 

Thus, for y4 = y,, which corresponds to the usual 
ANNNI model, the effective attraction of the walls that is 
expressed through y4 turns out to be insufficient for the for- 
mation of a "dry" phase--a bound state of the walls a. Of 
course, the virtual presence of a wall b enhancing the effective 
attraction makes the existence of such a state possible. But 
here we assume that the wall b is unimportant, since the line of 
coexistence of the b and a + a walls (see Fig. 2) turns out to 
be far from the line AE = 0 (the wavy line in Fig. 2). 

Thus, everything that has been said above makes it possi- 
ble to conclude that in the system considered by us in this 
section a phase transition from state I to state 111 will occur, 
and all the singularities will have the same form as for y4 = 0. 

With neglect of the kinks y4 the system of equations for 
the eigenvalues of the transfer matrix will (in lowest order in 
y) have the form 

(t-I-4y2) f (n, m) =6,16,z~f (I, 2) +y26'f, lGn<m, (56) 
h 

where U =  f ( ~ t  - I)- ' ,  E = exp(A~/T), AL is the lattice 
Laplacian on the square lattice, and 

f (0, m )  =f (n, n) =O. (57) 

In order that the boundary conditions (57) be fulfilled auto- 
matically, the source appearing in the right-hand side should 
be supplemented by seven sources of the same intensity but 
different signs. Their arrangement is shown in Fig. 9. Then 
Eq. (56), after Fourier transformation, goes over into 

where 

tk=1+2y2(c0s kt+ cos k2), 

S(k)=4 sin 2k, sin k2-4 sin kt sin 2k, 

k,+kz k2-k, 
= I6  sin k,, sin k, sin - sin - 

2 2 .  

Equation (58) is self-consistent only when the condition 

is fulfilled. As before, this is the equation of state. 
Since for small k we have S(k) - k4, the phase transition 

is found to be first-order and the singular term in the expan- 
sion of the free energy in the localized phase is proportional to 
( A ~ ) ~ l n (  l/Ae). At large distances f ( n ,  m) falls off (for 
1 < r < q - I )  as 

r-' sin 4cp (r2=nz+m2), 

and lL remains finite right to the transition point. 

FIG. 9. Arrangement of sources for y, = 0 and their displacement for y, 
z 0. 
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If, nevertheless, the reader wishes to verify directly that 
not-too-large values of y4 do not lead to a change of the criti- 
cal behavior, we refer to the scheme of the solution of the 
problem with y4 # O .  

The boundary condition f(n, n  ) = 0  should be replaced 
by 

( t - I )  f (n ,  n + l !  =I, [ f  ( n - I ,  n+l)+f  ( n ,  n + 2 ) ]  
+y i  [f (n-1,  n )  + f  (n+ 1, n+2)1 ,  

and f(n, m) (0  < n  < m) should be sought in the form 

where 

t jk  = 2112{sin k,n sin [k,m-0 ( k , ,  k , )  +0 ( k , ,  - k , ) ]  
-sin k,nsin [k,m+O(k,,  k , )+O(kl ,  - k , ) ] ) ,  

$,=sin [ p  (n+m)  +0 (p+iQ, -p+iQ)]  exp [ - Q ( m - n ) ]  
-sin [ p  ( m - n )  +0 (p+ iQ, -p+iQ)]  exp [ - Q ( m + n )  1 ,  

and 8(k ,  k  '), Q(p), and the region in which p is defined are 
given in Sec. 5. 

Since for y4 < y, for small k we have $, - k4, a finite 
value of y4 does not have a qualitative effect on the singularity 
at the transition point. The behavior of f(n, m) at large dis- 
tances is determined by the term 

where the numerator of the integrand can be approximated 
for small k as 

exp i [ k , ( n - l ) + k , ( m - 2 ) ]  -exp i [ k , ( n - 2 - b ) + k 2 ( m - l t b ) ]  
+exp i [ k , ( n - 2 - b ) + k ( m + l + b ) ]  -exp i [ k i ( n - I )  
+k2(m+2+2b)]  +exp i [ k { ( n + l )  +k2(m+2+2b)]  

-exp i  [ k ,  (n+2+b) + k , ( m + l + b ) ]  +exp i [ k ,  (n+2+b) 
+ k , ( m - l + b ) ]  -exp i [ k ,  ( n + l ) + k , ( m - 2 ) ] .  

Although the sources do not now form an octagon that is 
symmetric about the coordinate origin (see Fig. 9 ) ,  it follows 
from the symmetry that f(n, m) will nevertheless fall off at 
large distances as the fourth circular harmonic with center 
displaced from the point n  = 0, m = 0.  The asymptotic be- 
havior remains the same ( - r - 4). 

We emphasize once again that although here we have 
given the proof only for y4 < y, , when kinks of arbitrary size 
are taken into account it will also be valid on the line y4 = y, 
pertaining to the same phase. 

"In addition, in Sec. 2 we also give a generalization of the transfer-matrix 
method to the case of not-too-strong interaction along a line defect. In 
other words, the proposed procedure makes it possible to take account of 
kinks of arbitrary size in a system of competing domain walls. 
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