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The anisotropy of the critical fields of individual grains determines the percolative nature of the 
superconducting transition of ceramics in a magnetic field. This result means that the broadening 
ofthe transition can be described by the field of a resistive transition, and the critical fields of a 
single crystal can be reconstructed. Analysis of the experimental data of N. Kabayashi et al. [Jpn. 
J. Appl. Phys. 26, L358 (1987) 1 for the compound La ,,,, Sr,.,, CuO, -, yields thevalues 
d H  i2/dTz0.25 T/K and d~ !, /dT X 3 T/K. A study is made of the effect of composition 
inhomogeneities, which give rise to a positive-curvature region on the plot ofHc2 ( T) for 
ceramics. The lower critical field H,, is also determined by anisotropy effects. In the existing 
large-grain ceramics, Hc, is shown to correspond to the minimal critical field of a single crystal, 
H . The effect ofthe transport current on the shift of the resistive transition is discussed. 

INTRODUCTION 

Single crystals of superconducting cuprites which dem- 
onstrate a pronounced anisotropy in electronic properties 
have now been synthesized. Resistive measurements in a 
magnetic field yield estimates of the critical-field anisotropy 
[ H ! ~ / H ~ ~  = 5-13 (Refs. 2 and 3) and H Z ,  /H !, = 10-20 
(Ref. 4) ] which stems from the layered structure of the lat- 
tice. It is nevertheless difficult to measure the anisotropy 
more accurately because of the poor quality of the single 
crystals and the large width of the resistive transitions. On 
the other hand, there are ceramic samples with narrow tran- 
sitions ( =: 2-3 K) in the absence of a magnetic field. When a 
field is applied, the resistive transition in these samples be- 
comes b r ~ a d e r . ' , ~ . ~  The customary method for determining 
Hc2 ( T) is to measure the shift of the transition temperature 
caused by a magnetic field at a fixed resistivity level. The 
curves of H,, ( T) plotted in this fashion yield dHc, /dT val- 
ues with a large scatter and have a positive curvature. 

Our purpose in the present study was to find the rela- 
tionship between the orientational disorder of anisotropy 
axes which is characteristic of ceramics and their observable 
properties. Some of the results have been published in sum- 
mary form.7 

In Sec. 1 we study the shape of the resistive transition of 
ceramics in a magnetic field. We attribute the experimental- 
ly observed broadening of the transition to a two-dimension- 
al anisotropy of grains. As for polycrystalline magnetic su- 
perconductor~,~ this transition is percolative for H #O. This 
result leads to the suggestion of a correct method for deter- 
mining the dependence H,, ( T) for ceramics and for finding 
the critical fields of a single crystal, H ?, , H i2. 

The appearance of a special direction, associated with 
the magnetic field, gives rise to macroscopic anisotropy of 
the resistivity of a polycrystalline sample near the resistive 
transition. It turns out that the resistivity tensor p4 (H,T) 
actually depends on only the one variable ( Tc - T)/H. 

In Sec. 2 we study the effect of variations in the critical 
temperature on the percolation transition in a magnetic 
field. The results show that these variations give rise to a 
region of positive curvature on the curve of Hc2 (T) .  This 

region is amenable to a quantitative description. We point 
out that it is possible to determine the transition-tempera- 
ture distribution of grains from the resistivity curves. 

The results presented above pertain to the case of infi- 
nitely low measurement currents. A current of finite magni- 
tude flowing through a sample, as in a magnetic field, re- 
duces the concentration of the superconducting phase and 
shifts the curve of the resistive transition. This effect is stud- 
ied in Sec. 3. 

Section 4 deals with the penetration of vortices into the 
interior of a polycrystalline sample. We link the critical field 
H,, found experimentally9 with the entry of vortices, certain 
parts of which are oriented parallel to the anisotropy planes 
in each grain. This mechanism for forming the field Hcl op- 
erates if the typical grain size d is far greater than the pene- 
tration depth 1. We also study the opposite limiting case, 
d<A. 

In Sec. 5 we write an analytic expression for the magnet- 
ization M(H)  in strong magnetic fields. 

1. CURVE OF THE RESISTIVE TRANSITION IN A MAGNETIC 
FIELD 

We consider a uniform polycrystalline sample with a 
sharp resistive transition at T = Tc . In an external magnetic 
field H, this transition broadens, since the anisotropy of the 
field Hc2 causes the transition temperature of each grain to 
be determined by its orientation with respect to the magnetic 
field.7.10 As the temperature is lowered, the grains which are 
the first to go superconducting are those which are oriented 
with their layers parallel to H, so the shift of the point at 
which the transition begins, Tc - To, ( H )  should be deter- 
mined by the critical magnetic field parallel to the layers: 

As the temperature drops further, those grains whose upper 
critical fields become greater than H go superconducting. 
This situation corresponds to an inclination of the anisotro- 
py axes at an angle @> Tc, where the critical angle 8, is 
defined by 
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Hcz(T, 8,) =H. (1.2) 

It follows from simple geometric considerations that in the 
case of a uniform distribution of anisotropy axes the concen- 
tration of the superconducting phase in a magnetic field is 

( H ,  T )  =cos [ O ,  ( H ,  T )  1. 

Since the cuprites exhibit a clearly expressed type I1 super- 
conductivity, the distortion of the magnetic field lines can be 
ignored near the resistive transition. The specific form of the 
function c, (H,T) is determined by the dependence 
Hc2 ( T,B). When the Ginzburg-Landau equation holds, we 
have 

and thus 

where 

HeZ1I= ( T,-T)dHCZ1/dT, HeZL=( T,-T) dHCZL/dT 

are the critical fields respectively parallel and perpendicular 
to the layers (H!, $Hk2 ). It can be seen from expression 
( 1.4) that at the beginning of the transition (as c, +O), c, 
goes as the square root of Ton (H)  - T. The length of this 
region is small if the anisotropy is pronounced, and at tem- 
peratures satisfying the inequality Tc - T$ T, - Ton (H),  
the dependence c, ( T) is approximately linear: 

In the transition region, the resistivity is governed ex- 
clusively by the concentration of the superconducting phase, 
and, as we can see from expression ( 1.4), it depends on the 
temperature and magnetic field through the combination 
( Tc - T)/H. Figure 1 shows resistivity curves in the coordi- 
nates [p/p, , (T, - T)/H], plotted from the data of Ref. 1. 
The fact that the points corresponding to a large set of values 
of (H,T) conform to a common curve in Fig. 1 is evidence 
that the model used here can be applied to actual ceramics. 
The probable reason for the deviation from this common 
curve at the beginning of the transition is the existence of 
variations in the composition, whose role will be discussed 
below. 

The coherence length in the superconducting cuprites is 
a few tens of angstroms, far shorter than the typical size of 
the grains. For this reason we can ignore the Josephson tun- 
neling between grains which are not in contact. Consequent- 
ly, the resistivity vanishes only after the formation of an infi- 
nite cluster of the superconducting phase. This event 
happens when the concentration reaches the percolation val- 
ue (c, -0.17; Ref. 11 ), which corresponds to a temperature 

In the intermediate region, the resistivity becomes an- 
isotropic (the components of resistivity parallel and perpen- 
dicular to the magnetic field are different). In this case, an- 
isotropy can arise for two reasons. First, the grains which are 
the first to go superconducting are those which are oriented 
with their layers parallel to the magnetic field. The result is 

FIG. 1.  Resistivity curves for La, ,, Sr, ,, CuO, , (Ref. 1 ), plotted in 
reduced coordinates for several values of the magnetic field: A-5.0 T; 
A-9.7 T; 0-12.9 T; a-18.0 T; -20.3 T. 

to disrupt the uniformity of the angular distribution of an- 
isotropy axes. (Since the conductivity of each grain reaches 
a maximum parallel to the layers, this nonuniformity leads 
to a macroscopic anisotropy of the resistivity.) Second, 
layered grains generally have a flattened shape. For this rea- 
son, the grains which have gone superconducting are elon- 
gated along the magnetic field, and their contribution to the 
conductivity of the sample is anisotropic. 

At low concentrations, the transversep, and longitudi- 
nalp, components of the resistivity depend linearly on c, : 

The constants here satisfy a,,, 2 1. They are estimated in the 
Appendix. When there is no anisotropy in the shape of the 
grains, the inequality a, < a ,  holds. If, on the other hand, 
the grains are highly elongated parallel to the layers there is 
an anisotropy of the opposite sign: a, > a , .  It follows from 
( 1.5) and ( 1.7) that under the condition H !, > H  :2 the re- 
sistivity depends linearly on the temperature over a large 
part of the transition; this conclusion is confirmed by experi- 
mental data. 1,5,6 Near the percolation point, the anisotropy 
in the resistivity is small, and the resistivity is a power func- 
tion of the concentration: 

where s = 0.8-0.9 (Refs. 12 and 13). 
The curves of H,, (T )  plotted from the resistivity 

curves are plots of H as a function of Tat  a fixed concentra- 
tion of the superconducting phase, c. From ( 1.4) we find 

It can be seen from this expression that the derivative dHc2 / 
d T  decreases as the relative level at which the transition tem- 
perature is determined drops (i.e., as c increases). In partic- 
ular, if the transition temperature is assumed to be the point 
at which the resistivity vanishes, then in the case of a pro- 
nounced anisotropy ( d ~  !, / d ~ > 6 d H  & /dT) we find 

If a sample contains pores or nonsuperconducting in- 
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clusions, and the superconducting phase occupies a fraction 
c, of the total volume, the relation ( 1.10) becomeslo 

For porous samples, c, can be estimated as the ratio of the 
actual density of the sample to the x-ray density. The slope 
dHc, /dT thus increases with the density of the sample. 

2. EFFECT OF COMPOSITION VARIATIONS 

Real ceramic samples have a resistive transition which 
is 2-5 K wide. We attribute this width to variations in their 
chemical composition. We cannot rule out the possibility 
that the broadening of the transition in the highest-quality 
samples is a consequence of Aslamazov-Larkin fluctuations, 
but we will restrict the discussion here to the case in which 
the transition width is much greater than the fluctuation 
width. Our second assumption is that we can assume that the 
length scales of the variations are far larger than the correla- 
tion length. In this case the composition variations lead to a 
random variation of the critical temperature in space, 
Tc ( R )  . The temperature dependence of the concentration of 
the superconducting phase, ci ( T), is determined by the criti- 
cal-temperature distribution of the grains, f ( T, ) : 

The distribution function has a width AT which exceeds the 
width of the resistive transition only by a numerical factor. 
We will consider here only the case in which there is no 
nonsuperconducting phase in the sample at T =  0: 
ci (0) = 1. Using relations ( 1.4) and (2.1 ), we can find the 
concentration of the superconducting phase as a function of 
the temperature and the magnetic field: 

Ton 

It follows from expression (2.2) that in the limit of strong 
magnetic fields the variations are unimportant, and we can 
use the relations derived in the preceding section of this pa- 
per [we need to replace Tc in those expressions by the aver- 
age transition temperature ( Tc ) = .f f( T, ) T, dTc ) ]. The 
overall shape of the resistivity curve and the point of the 
percolation transition are determined by the anisotropy of 
the field H,, (8) (not by the scatter in T, ) under the in- 
equality H>) ATdH /dT. The small region of a square-root 
temperature dependence of the resistivity, which we men- 
tioned back in Sec. 1, appears in far stronger fields, 
H %  ATdH b2 /dT. 

In the opposite limit, of weak magnetic fields, 
H g  ATdH X /dT, we find from (2.2) a correction linear in H 
to the concentration of the superconducting phase: 

where the angle brackets mean an average over angles. In the 
case of a pronounced anisotropy we would have 

It follows from expression (2.3) that in weak fields the slope 
dH,,/dT, regardless of the criterion we select for determin- 
ing Hc2 , is 

and it does not depend on the particular functional depend- 
ence f ( T, ). Comparing expressions ( 1.10) and (2.4), we 
conclude that when there are variations in the critical tem- 
perature the curve of Hc, ( T) has a region of positive curva- 
ture. In nonporous samples, the slope dH,, /dTincreases by 
a factor of about three with increasing field. 

In the magnetic-field interval 

expression (2.2) simplifies substantially: 

As we mentioned back in Sec. 1, the resistivity depends lin- 
early on the concentration c at low values of the latter. It 
thus follows from expression (2.6) that if the relative de- 
crease in the resistivity is small, i.e., if (p, -p) /p,  & 1, the 
quantity (p, -p)/p, will be inversely proportional to the 
magnetic field in this field interval. Figure 2 shows experi- 
mental results on the temperature dependence of 
H(p, -p)/p, for the beginning of the resistive transition 
(p, - p < 0 . 5 ~ ~  ) in La ,,,, Sr,,, CuO, -, (Ref. 1 ). The 
good agreement between these results for a set of values of H 
is evidence that the broadening of the transition is nonuni- 
form and the anisotropy of the critical fields is pronounced. 

Because of this pronounced anisotropy of the critical 
fields, it is possible to use the resistivity curves to reconstruct 
the temperature dependence of the concentration, ci (T) ,  
over the entire temperature range. Specifically, differentiat- 
ing (2.6) with respect to the temperature, we find 

Haci ( H ,  T )  /dT=-ci ( T )  dH,?/dT. (2.7) 

In field interval (2.5), the temperature dependence of the 
derivative d [ (p, - p )  /p, ] /dT thus reproduces the func- 
tional dependence of the concentration, ci (T) .  Further- 
more, expression (2.7) furnishes an independent method for 
determining d H  / d E  

FIG. 2. Beginning of the resistive transition in La, ,, Sr, ,, CuO, , (Ref. 
1) in a magnetic field. The temperature region T> 35 K corresponds to a 
nonuniform broadening of the transition. This figure illustrates the valid- 
ity of relation (2.6). &H = 2.0 T (the notation is otherwise the same as 
in Fig. 1 ) .  
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Measurements of the dependence Hc2 ( T) for a nonuniform 
sample also provide a method for reconstructing the func- 
tion ci ( T). Using expression (2.6), and calculating the de- 
rivative of the magnetic field with respect to the temperature 
at a fixed concentration of the superconducting phase, 
ci (H,T) = c (i.e., at a fixed value of the resistivity), we find 
the relation 

The temperature dependence of the quantity (pHc2 / 
pT),  measured at any resistivity level, thus also agrees with 
the functional dependence ci ( TI. For the temperature de- 
pendence of Hc2 ( T,c) found at different resistivity levels (at 
different levels of the concentration c),  we have the follow- 
ing scaling law in the interval (2.5) : 

The experimental data presently available in the literature 
are not an adequate basis for testing (2.7)-(2.10). 

3. EFFECT OF TRANSPORT CURRENT ON THE RESISTIVE 
TRANSITION OF A POLYCRYSTALLINE SAMPLE IN A 
MAGNETIC FIELD 

Critical current near the percolation threshold. At tem- 
peratures slightly below Tc (H) ,  the system of supercon- 
ducting paths in a sample has a low density. The number n of 
superconducting channels which cross a unit cross section is 
determined by the correlation length of the percolation 
problem," { a d ( c  - c , )  -": 

The transport current flowing along the superconducting 
paths disrupts the superconductivity in those grains which 
are closest to the transition point. In other words, the typical 
critical current for a single path is a function of the different 
Tc (H)  - T: 

Since the critical current is determined by the grains in 
which the field H2, ( T) differs only slightly from the applied 
field, the value of I, is determined by the pair rupture mech- 
anism14: I, a [ Tc (H)  - TI. From expressions (3.1 ) and 
(3.2) we then find an expression for the critical current den- 
sity: 

Since the value of this index is1' ~ ~ 0 . 9 ,  the value of the 
exponent in expression (3.3) for jc is close to 3.8. 

Effect of transport current on the resistivity near the re- 
sistive transition. The lowering of the resistivity of a poly- 
crystalline sample near the resistive transition is governed by 
the appearance of superconducting grains. The current den- 
sity flowing through these grains, j,, is equal in order of mag- 
nitude to the current density in the normal matrix, jn (for 
spherical superconducting inclusions we would have 
j, = 3jn ) .  A transport current of finite magnitude flowing 

through granules with a low critical current density jc puts 
them in a normal state. There is accordingly a decrease in the 
function of the volume of the sample represented by the su- 
perconducting region, and the resistivity of the sample in- 
ceases. (This effect was observed in Ref. 15 in a granular 
Josephson medium.) Let us find the increment in the resis- 
tivity which stems from the current density j. The critical 
angle 8,, which determines possible orientations of the an- 
isotropy axes of the superconducting grains, is given by a 
relation which is a generalization of Eq. ( 1.2) : 

Since we have j, = 0 on the line of the superconducting tran- 
sition, Eq. (3.4) becomes (1.2) in the case j = 0. We also 
seek the correction Sp in the low-current limit. The super- 
conductivity is disrupted by the current only in the grains 
with angles 8 close to 8, , and we can use the limiting expres- 
sion for jc as a function of [Hc2 (8,T) - HI for the pair- 
rupture mechanism: 

whereg-el 3/f iZ (eis the charge of an electron). We will be 
interested below only in the shape of the functional depend- 
ence@( j) ,  so we will draw no distinction betweenj, and the 
average transport current density j. We will furthermore ig- 
nore all the numerical coefficients. It follows from expres- 
sion (3.5) that the quantity H in ( 1.4) and ( 1.5) should be 
replaced by H + ( j/g) ' I 2  at a nonzero measurement current 
j. In the linear part of the transition, where Eqs. ( 1.5) and 
( 1.7) hold, the correction to the resistivity satisfies 

4. THE FIELD H,, 

The critical field H,, is determined by the energy of the 
noninteracting vortex filaments, which we know are domi- 
nated by superconducting currents flowing around the nor- 
mal core of the vortex.16 The characteristic region "occu- 
pied" by the currents of one vortex is determined by the 
penetration depth A of a weak magnetic field. The effective 
penetration depth A, for ceramic samples generally depends 
on the relation between A and the typical grain size a', so an 
increase in A as T+ Tc leads to a change in the magnetic-field 
screening conditions. Let us estimate the critical field Hc, 
for two limiting relations between A ( T) and d.  

The case d>A, (T). If an individual grain is highly aniso- 
tropic, energy considerations favor a position of the vortex in 
the plane of the layers. The direction of a vortex in an easy 
plane is determined by the conditions for its transition to 
neighboring grains. We assume that a vortex passes through 
a sample without leaving the easy plane of each of the grains 
which it intersects. The shape of a vortex filament is far from 
rectilinear, and the field H,, exceeds the minimum single- 
crystal field H !, by a numerical factor P 2 1, which charac- 
terizes the relative elongation of the vortex: 

where 4, is the magnetic flux quantum. 
The case d<A,(T). In this case the currents which 

screen the magnetic field include a large number of disor- 
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iented grains. The slowly decreasing magnetic field interacts 
with rapidly moving currents (which move over distances 
on the order of d) .  This separation of scales makes it possible 
to reduce the problem of finding the effective penetration 
depth to the problem of the effective conductivity of a poly- 
crystalline medium." 

The equation for the average vector potential (A) in the 
gauge div A = 0 is 

where 

n is a randomly directed anisotropy vector, and p is the 
phase of the order parameter. The energy of a vortex is deter- 
mined by the average magnetic field at a distance R, -d 
from the core of the vortex: 

[In the case of a pronounced anisotropy, the compo- 
nent of the vortex energy which comes from the distance 
interval{<R, < d  is smaller than (4.3) to the extent that the 
parameter A /A, is < 1 . ]  It follows from Eq. (4.2) that the 
average vector potential varies over distances of orderil. The 
screening current 

obeys the equation div j = 0 and varies over distances d<A, 
so its average value is determined by the "smooth" part of 
the expression (cfi/2e) Vp - A: 

In the vortex problem, the average phase is (g, ) = y ( y is the 
polar angle). Equations (4.4) and (4.5) are equivalent to 
the equations for the conductivity of a polycrystalline medi- 
um" [the quantity (cfi/2e)V(p ) - (A) corresponds to an 
external electric field, (c/4n-)A ; corresponds to the local 
conductivity, and c/4n-A corresponds to the effective con- 
ductivity of the medium]. Since the anisotropy of A ; is the 
same as the anisotropy of a,. , we reach the conclusion that 
A ; depends on A, and A 1r just as the effective conduc- 
tivity ue of this polycrystalline sample depends on u, and 
all . In particular, in the highly anisotropic case (A ll <A, ) we 
find A ; = VA 2, where v < 1. In the effective-medium ap- 
proximation (see the Appendix), we have v-0.52. Substi- 
tuting (4.4) into (4.2), we find an equation for (A) which is 
the same as the London equation for an isotropic supercon- 
ductor. We thus find the following expression for the field 
Hcl : 

In the case of a pronounced anisotropy, the field Hcl is 
smaller than the maximum single-crystal field Hi, to the 
extent that the numerical parameter is small: 

@ All H c , = 0 , 5 2 2  ln-. 
4nhIl2 d 

In the Ginzburg-Landau approximation we would have 

A (  T) cc ( Tc - T) - 'I2. If the size of the grains satisfies 
d ) A ,  (0),  then two linear regions with quite different slopes 
should be seen on the plot of Hc, versus T, - T: Near the 
transition temperature [A ll ( T) > d l ,  relation (4.6) holds, 
while at relatively low temperatures [A, ( T) < d l ,  expres- 
sion (4.1 ) holds. It should be noted, however, that the first 
of these intervals becomes narrower as the ratio A (O)/d de- 
creases, and in the experiments which have been carried out 
(d- lop4 cm, A - 10W5 cm) this interval was not observed. 

5. MAGNETIZATION OF A POLYCRYSTALLINE SAMPLE IN 
STRONG MAGNETIC FIELDS 

For type I1 superconductors with a Ginzburg-Landau 
parameter x %  1, the magnetization falls off rapidly at fields 
H >  H,, , and the condition 4?iM<H holds over a broad in- 
terval of magnetic fields. In this case, the magnetic induction 
is approximately the same as the magnetic field, and for an 
isotropic distribution of anisotropy axes the magnetization 
of the polycrystalline samples, M(H) ,  is equal to the single- 
crystal magnetization M(H,O), averaged over angles: 

n/z 

M(H)= j ~ ( ~ , ~ ) s i n e d ~ .  (5.1) 
0 

To evaluate the integral (5.1) we use the approximationl' 

which become exact in the limitI4 H-. Hc2. In (5.2) we have 

andp- 1.16 is the Abrikosov parameter for a triangular vor- 
tex array.16 Averaging over angles, we find the following 
expression for the magnetization of the polycrystalline sam- 
ple: 

1 -'" H,," H,, (H,,11)2 
4nM(H)= -- 

2Bxl12 

This expression simplifies in two limiting cases: 
4nM (H) 

[xL/~xl l~2H, ,11)  "I (H,,"-H) "I, (Hc,ll-H)/Hc,ll<i 
={ - (H,,~) 3 / 1 2 ~ ~ 1 2 ~ 2 ,  H,,ltH<HCd . 

(5.4) 
The asymptotic functional forms of M(H)  are given in Ref. 
10. The reason for the fairly strong dependence M ( H )  in the 
interval from H to H !, is the increase in the concentration 
of the superconducting phase with decreasing magnetic 
field. The curve of the generalized susceptibility x(H) 
= dM /dH versus the magnetic field has a slope change at 
H = HA because of the transition of the entire polycrystal- 
line sample into the superconducting state. The jump in the 
second derivative d 'M /dH can be found from (5.1 ) and 
(5.2): 

(dZM/dH2)H=Hc,l+o- ( d 2 A f / d H 2 ) ~ = ~ 5 2 ~ - ~ =  ( ~ ~ P X ~ ~ H ~ Z ~ ) - ' .  
(5.5) 

In real samples, this jump is blurred by inhomogeneities. 
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CONCLUSION 

We have examined several superconducting properties 
of a polycrystalline sample in a model which considers only 
the anisotropy and the scatter in the values of Tc of the var- 
ious grains. Despite the simplicity of this model, it gives a 
satisfactory description of the changes observed experimen- 
tally in the shape of the resistive transition over a broad 
rang: of magnetic field.',' We can accordingly use ( 1.1 ) 
and (1.10) to evaluate the upper critical fields for 
La ,,,, Sr,,, CuO, -, from the experimental results on poly- 
crystalline samples1 : dH:2/dTz0.25 T/K, 
d~ ! , d ~ 2  3 T/K. 

Measurements of the field Hcl involve an analysis of the 
behavior of the magnetization of the sample, M(H) ,  in weak 
fields. The quantity M ( H )  turns out to be very sensitive to 
the quality of the samples, particularly their porosity. In the 
highest-quality ceramics, however, the field Hcl = 800-900 
Oe (Ref. 18) is found to be approximately the same as the 
minimum value of the field Hcl for single crystals: 
H !, = 800 Oe (Ref. 4) (the compound YBa,Cu,O, -, ). 
This result agrees with the results of Sec. 4 [see (4.1 ) 1. 

In this model we have taken account of the formation of 
a superconducting state in the interior of grains, and we have 
assumed that the conductivity through the contacts between 
grains is direct. An explanation of the various fine points of 
the transition thus goes beyond the scope of this model. The 
long tail on the R(T)  curve at low temperatures which is 
sometimes observed falls in the category of these fine 
pointse6 One possible reason for the tail is that a small frac- 
tion of the resistivity of a sample is determined by S-I-S 
contacts, in which the Josephson junction is suppressed by a 
magnetic field. Also unclear are whether nonuniform super- 
conducting states can form near the surfaces of grains and 
the role which these states would play. It can be shown, how- 
ever, that for polycrystalline samples there is no field Hc3 
associated with the external surface. An infinite supercon- 
ducting cluster forms in the interior before it does at the 
surface. 

We sincerely thank L. P. Gor'kov and D. E. Khmel- 
'nitskii for useful advice and comments. 

APPENDIX 

The lowering of the resistivity as the concentration in- 
creases, described by ( 1.7), stems primarily from the ap- 
pearance of superconducting inclusions in the normal ma- 
trix. In addition, there is a component, linear in c, which 
comes from the change in the effective conductivity of the 
normal matrix itself. The coefficients a, and a, are the prin- 
ciple values of the tensor au . The superconducting-inclusion 
component of this tensor, a:, is 

where nu is the depolarization-coefficient tensor,I9 which is 
determined by the shape of the superconducting inclusions. 
If the grains have typical dimensions d, and d ,, in the direc- 
tions along the anisotropy axis and in the basal plane, then 
we can estimate a; from the depolarization coefficients for 
an ellipsoid with an eccentricity 7 = ( d  i/d: - 1)'12: 

ar '=q3/ ( i+q2)  (q-arctg q), u11=2/(1-at-').  (A21 

For superconducting inclusions of arbitrary shape, the in- 

equality (2a, + a, )/3 2 3 holds. 
I fd =:dl,  the difference between the longitudinal resis- 

tivity of the sample and the transverse resistivity arises be- 
cause of a nonuniformity in the angular distribution of the 
anisotropy axes of the nonsuperconducting grains. To deter- 
mine the corresponding component a; of the tensor ao, we 
need to find the effective conductivity of the normal matrix, 
6.. This quantity is determined by the equations (Ref. 17, 
for example) 

Here the vector $, is determined by q, = rE + IJJE, where E 
is the external field, and q, is the potential of the resultant 
electric field in the sample. When the conductivity of the 
grains is highly anisotropic we would have uo = uil (Su 
- nin j  ), where n is a random unit vector distributed in the 

region c < In, I < 1. Equations (A3) cannot be solved exact- 
ly. To estimate the conductivity and its anisotropy, we used 
the effective-medium approximation. In this approximation, 
the random conductivity gin on the left side of Eq. (A3b) is 
replaced by its effective value ofn : 

Equations (A3a) and (A3c) constitute a self-consistent set 
of equations for determining of,, . In the case dl, z d ,  we find 

I '  Expression (5.2)  determines the magnetization component parallel to 
the magnetic field. The angular average of the component M (  H) which 
is perpendicular to the field is zero. 

'N. Kabayashi, T. Sasaoka, K. Oh-ishi, etal.,  Jpn. J. Appl. Phys. 26, L358 
(1987). 

'Y .  ~ i d a k a ,  Y. Enomoto, M. Suzuki, et al. ,  Jpn. J. Appl. Phys. 26, L377 
(1987). , - - -  c -  

'Y. Hidaka, T. Enomoto, M. Suzuki, et al., Jpn. J. Appl. Phys. 26, L726 
(1987). 

4T. R. Dinger, W. J. Worthington, W. Callagher, et al., Phys. Rev. Lett. 
58,2687 ( 1987). 

5W. K. Kwok, G. W. Crabtree, D. G. Hinks, etal . ,  Phys. Rev. B35,5343 
(1987). 

6M. K. Wu, J. R. Ashburn, C. J. Torng, et al., Phys. Rev. Lett. 57, 908 
(1987). 

'L. I. Grazman, A. E. Koshelev, and A. G. Lebed', Pis'ma Zh. Eksp. 
Teor. Fiz. 46, Supplement, 148 (1987) [JETP Lett. 46, supplemeit, 
S123, (1987)l. 

'A. I. Buzdin and L. N. Bulaevskii, Fiz. Nizk. Temp. 6, 1528 (1980) 
[Sov. J. Low Temp. Phys. 6,744 (1980) 1. 

9 ~ .  Takumoto, M.-~iraba~ashi,  H. 1hara; et al., Jpn. J.  Appl. Phys. 26, 
L517 (1987). 
'OV. G. Kogan and J. R. Clem,,Jpn. J.  Appl. Phys. 26, 1159 (1987). 
"B. P. Shklovskii and A. L. Efros, Elektronnye svoistva legirouannykh 

poluprovodnikov (Electronic Properties of Doped Semiconductors), 
Nauka, Moscow, 1979. 

"I. Webman, J. Jortner, and M. H. Cohen, Phys. Rev. B16,2593 ( 1977). 
I3D. C. Wright, D. J. Bergman, and Y. Kantor, Phys. Rev. B33, 396 

(1987). 
I4N. Ya. Fogel', A. A. Moshenskii, A. M. Glukhov, and I. M. Dmitrenko, 

Pis'ma Zh. Eksp. Teor. Fiz. 22, 450 (1975) [JETP Lett. 22, 217 
(197511. 

I5L. I. Grazman, A. M. Glukhov, I. M. Dmitrenko, et al. ,  Fiz., Nizk. 

1240 Sov. Phys. JETP 67 (6), June 1988 Glazman eta/. 1240 



Temp. 12, 373 (1987) [Sov. J. Low Temp. Phys. 12,213 (1987)l. Pergamon, New York (1984). 
16P. G. de Gennes, Superconductivity of Metals and Alloys, Benjamin, I9R. Landauer, J. Appl. Phys. 23, 779 (1952) 

New York, 1966. 
"C. Herring, J. Appl. Phys. 31, 1007 (1960). 
'"L. D. Landau and E. M. Lifshitz, Electrodynamicsof Continuous Media, Translated by Dave Parsons 

1241 Sov. Phys. JETP 67 (6), June 1988 Glazman etal. 1241 


