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The critical behavior of crystals (in which the phase transition is described by an m-component 
order parameter with hypercubic symmetry) containing frozen point defects is studied by the 
&-expansion method in the two-loop approximation. The random field of the point defects is 
described by symmetric matrices 5. It is shown that in the case of diagonal matrices Vg that are 
not multiples of the unit matrix all the components of the fluctuating order-parameter field are 
decoupled asymptotically in the impurity critical region, and the effective Hamiltonian of the 
system decomposes into a sum of m Hamiltonians of impurity Ising models. In the case of 
matrices Vg of general form a tendency of the fluctuating field to become isotropic is observed, 
and this makes it possible to conjecture the possibility of a phase transition to a state of the spin- 
glass type. 

INTRODUCTION 

The effect of randomly distributed "frozen" point de- 
fects [describable by the introduction of a scalar field-the 
"random temperature" of the phase transition (PT) ] on the 
properties of a second-order PT in the fluctuation region has 
been studied in a number of papers,14 in which it has been 
shown that at a certain temperature value T = T r  in such 
systems there occurs an unsmeared PT describable by criti- 
cal indices that do not depend on the impurity concentra- 
tion. Their values differ from the values of the indices for the 
pure crystal, if its specific heat diverges; otherwise, the pres- 
ence of defects does not change the critical behavior of the 
crystal. 

To describe the structure of certain rare-earth amor- 
phous magnets the authors of Ref. 5 proposed a model of a 
spin system with a random single-ion-anisotropy axis. In the 
case of an isotropic distribution of the directions of the ran- 
dom axis, with the aid of arguments analogous to those given 
in Ref. 6 for defects of the "random field" type it was estab- 
lished that for systems with a continuous symmetry group 
for spatial dimensions d<4 the uniform low-temperature 
phase is unstable (irrespective of the defect concentra- 
t i~n ) . ' -~  The similarity of the low-temperature state to the 
spin-glass phase has been pointed out in a number of papers 
(see, e.g., Refs. 7, 8, 10, and 1 1 ) . In particular, recently, the 
authors of Ref. 12 proved the existence of a PT to an Ising 
spin glass state in a three-dimensional model of an amor- 
phous magnet with strong random anisotropy and long- 
range interaction in the limit m + w (m is the number of spin 
components). 

In the case of structural phase transitions to commen- 
surate phases describable by many-component order param- 
eters the symmetry group of the crystal is discrete, and the 
crystalline anisotropy, as a rule, is not small. The low-sym- 
metry point defects present in the crystal (and violating the 
symmetry of the crystal class) can locally mix the coordi- 
nates of the normal soft modes and (or) lift their degener- 
acy. In particular, the mixing property is possessed in an 
obvious way by elastic defects creating internal shear stress- 
es. 

It is clear that such defects do not reduce, generally 
speaking, to models with a random anisotropy axis or a ran- 
dom PT temperature. In the present paper we investigate the 

question of the influence of randomly located low-symmetry 
point defects on the character of the PT in crystals in which 
the order parameter has hypercubic symmetry. 

1. EFFECTIVE HAMlLTONlAN AND RENORMALIZATION- 
GROUP EQUATIONS 

We write the Hamiltonian of our model with an m-com- 
ponent order parameter pi (x )  in the form 

where H, is the Hamiltonian of the perfect crystal with or- 
der parameter possessing hypercubic symmetry and Hi,, is 
the Hamiltonian of the interaction with the defects, written 
in the harmonic approximation. The symmetric random ma- 
trices v:, (x )  describe the local change of the force con- 
stants in the presence of the defects. The index t indicates the 
type of the given point defect; matrices with different values 
o f t  can be assigned both to defects with essentially different 
structures and to identical defects situated at different but 
crystallographically equivalent positions. The role of these 
latter defects can be taken by noncentral ions, impurity 
centers in dumbbell configurations, bivacancies, pairs of the 
impurity-impurity or impurity-vacancy type, and other de- 
fect complexes having several equivalent energy minima. 
For such defects the matrices Vik go over into each other 
under the action of a set of operators {G) corresponding to 
elements of the symmetry class of the crystal. We shall as- 
sume that the presence of the defects does not break the hy- 
percubic symmetry of the crystal on the average, i.e., the 
occupancies of defect states whose matrices are connected by 
the transformations {G) are equal. We shall assume that the 
arrangement of the defects is random and uncorrelated, and 
that their total concentration B,c,  is substantially below the 
percolation threshold. In accordance with the assumptions 
made, the correlation properties of the random field 
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can be written in the form 

where < ... > denotes a configurational average. From ( 1 ) 
and (2),  using the standard replica method4 we find a trans- 
lationally invariant effective Hamiltonian: 

where 
n 

and the region of the bare values of the impurity vertices is 
u,>O, u, - v,>O, w,>O. In particular, for a vector order pa- 
rameter (with m = 2, 3), 

By the &-expansion method, for the effective Hamiltonian 
(3)  in the one-loop approximation we obtain the following 
system of Gell-Mann-Low (GML) equations for the renor- 
malized invariant charges A, g, v, u, and w for n = 0: 

dh/dt=~h/2-36h'-4 ( m - I )  gZ+48hu+8 ( m -  1 )  gw, 
dg/dt=g[~/2-2&-4 (m+ 2 )  g+16(u+2v) +8mw] +24hw, 
du/dt=u[e/2-2&+32u]-8(m-1) (g-w)v+4(m-I)  w2, 

(4)  
dv/dt=v[~/2--24h-8 (m-2)  (g-w)+l6(u+v) ] 

-8 (g-W) u+4wZ, 
dw/dt=,w[~/2-16gf 16 (u+2~)+4mw] .  

In (4)  t = In( l /r) ,  where r-"' is the correlation length. We 
start the discussion of the properties of the solutions of the 
GML equations with an analysis of the special case w, = 0, 
to which correspond diagonal defect matrices V i  = S,, V:, . 
In this case the system (4)  is found to be isomorphic to the 
system of GML equations obtained in Ref. 13, in which 14 
fixed points (FP) of this system were found and it was 
shown that none of them is stable. Correspondingly, in Ref. 
13 it was concluded that the trajectories "run away to infin- 
ity," and it was conjectured that this could be interpreted as 
the smearing of the PT in such a defect system. Alternative- 
ly, some of the phase trajectories could leave the stability 
region of the Hamiltonian, leading to a first-order PT. How- 

ever, as will be shown, the conclusion that the PT is smeared 
in such a model is incorrect. In fact, the system of GML 
equations with w = 0 in the one-loop approximation pos- 
sesses nonobvious random degeneracy, and in the two-loop 
approximation has a stable FP. Thus, to analyze the critical 
behavior of the model (3)  it is necessary to use the system of 
GML equations written in the two-loop approximation: 

In (5)  /3 2' are the GML functions of the one-loop approxi- 
mation. We note that for m = 2, as for the case of a perfect 
tetragonal crystal,14 there exists a covariant transformation - 
4)la,2a = (pla + 4)2a )/a that preserves the form of the ef- 
fective Hamiltonian (3)  apart from replacement of the set of 
bare vertex values { X }  + {g}:  

The invariance under the transformation (6)  leads to the 
appearance of functional equations that should be satisfied 
by the exact GML functions/3,,and the values of the indices 
77 and Y,  of course, do not change: 

2. CRITICAL BEHAVIOR OF A CRYSTAL WITH DEFECTS 
DESCRIBABLE BY DIAGONAL MATRICES 

If the structure of the defects is such that the matrices 
V: ,  are diagonal, the bare vertex satisfies w, = 0. The search 
for fixed points of the system (5 )  and analysis of their stabil- 
ity show that in this case, for any value of m, there is a unique 
physically accessible1 stable FP with coordinates 

The degenerate FP with coordinates 
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which was also not found in Ref. 13, is unstable. The FP ( 8 )  
corresponds to the situation in which the system reaches a 
Khmel'nitskii fixed point2 in each of m noninteracting Ising 
models with scalar impurities. The stability indices of the FP 
( 8 )  in the ( A ,  U )  plane are known from the solution of the 
problem of the PT in the impurity Ising model,' and the 
stability indices with respect to the renormalized invariant 
charges g and v are equal to 

There is a simple relation connecting these quantities with 
the specific-heat index in the impurity Ising model; this can 
be obtained without invoking the expansion of A, and A,  in 
powers In fact, near the FP ( 8 )  the fields <Pi fluctuate 
independently; consequently, the operators <Pf on the basis 
( 8 )  have dimension r'1-""2v ( a  and Y are the indices of the 
specific heat and correlation length in the impurity Ising 
model). It follows from ( 3 )  that A, = A,, and for the index 
A, we obtain 

Similar arguments were employed by the authors of Ref. 15 
in an analysis of the critical behavior of alloys from materials 
with m,- and m2-component order parameters of the com- 
peting-anisotropies type. In Ref. 15 it was shown that the 
two order parameters become asymptotically independent 
as the system approaches the tetracritical point. In the par- 
ticular case m = 2 the stable FP ( 8 )  coincides with the FP 
obtained in Ref. 15 for the values m ,  = m ,  = 1.  We stress 
that our conclusion that the critical behavior of the model 
with w, = 0 is equivalent to the behavior of a set of indepen- 
dent impurity Ising models remains valid for all values of m .  
We note that the critical behavior of the model with m = 2 
and diagonal matrices V; is isomorphic to the behavior of 
the model with nondiagonal defect matrices of the form V i ,  
= V:,, V:, = V:, , by virtue of the existence of the trans- 

formations ( 6 ) .  
The region of stability of the FP ( 8 )  for the case of small 

FIG. 1 .  Qualitative picture of trajectories of the GML equations ( 5 )  for 
w, = 0 in projection on to the (A, g )  plane for the case m = 3 and fixed 
initial values u,, v,@/l,, g,. The solid lines indicate the boundaries of the 
basin of attraction of the "pure" FP, while the dashed lines indicate the 
corresponding boundaries for the FP ( 8 ) .  The region of instability of the 
Hamiltonian ( 3 )  is indicated by the shading. 

bare values of the impurity vertices coincides approximate- 
ly, on the ( A ,  g )  plane, with the basin of attraction of the 
stable FP of the pure crystal. This situation for m = 3 is 
illustrated in Fig. 1. 

To conclude this section we note that recently, in Ref. 
16, for the model of a tetragonal crystal ( m  = 2) with scalar 
point defects, the degeneracy of the GML equations in the 
one-loop approximation was also pointed out. In the two- 
loop approximation the corresponding FP was discovered 
(in Ref. 16 it was labelled VIII). However, the expressions 
given in Ref. 16 for the GML functions contain a number of 
numerical errors, as is immediately clear from the fact that 
these expressions do not satisfy the exact relations (7 )  with 
w = 0 and u = v.  Correspondingly, the coordinates of the FP 
were also wrongly determined; in fact, they can be obtained 
from the coordinates of the FP ( 9 )  by the symmetry trans- 
formation ( 6 ) .  We shall not give the corrected values of the 
corresponding critical indices, since this FP is unstable. 

3. CRITICAL BEHAVIOR OF CRYSTALS WITH DEFECTS 
DESCRIBABLE BY ARBITRARY MATRICES 

We now consider the case of arbitrary low-symmetry 
defects describable by symmetric matrices VL of general 
form, when the vertex w#O. It is not difficult to convince 
oneself that the FP ( 8 ) ,  stable for w = 0, becomes unstable 
for all values of m when a nonzero vertex w is included. 
Thus, to analyze the character of the solutions of the system 
of GML equations we need to find the fixed points with val- 
ues w* # O  and to ascertain their stability. For this it is con- 
venient to introduce new renormalization-group variables: 

Using the GML system (4), in the one-loop approximation 
we obtain the following system of equations: 

da/dt=w[ -36a2+16ab-4 (m-1 )  b2+32ac+8(m-1) b-4ma],  
db/dt=w[-24ab-4 (m-2)  b2+24a+4mb], 
dc/dt=w [24  (b-a)  c+4 (4c+2-m) (c- 1) 1, ( 1 2 )  

df/dt=w(-16f + [-24a-8(m-3) b+4(m-2) I f  
+4 (1+2c-2bc) ), 

dw/dt=w [~ /2+w( -16b f  48f+16c+4m)]. 

It can be seen from ( 1 2 )  that for the FP coordinates a*, b *, 
c* there is a closed system of three equations. To each set a*, 
b *, c* there correspond two different values of the coordi- 
nate f *. Since w* can be determined in an elementary manner 
from the known values of a*, b *, c*, and f *, in the following 
we shall confine ourselves to indicating the first four coordi- 
nates of the FP. The coordinates of some of the FP can be 
found easily2': 

A,: a*=b*=O, ca=l, f,*='/,{m-2+ [ (m-2)Z+48] '" ) ,  
B,: a'=ba=O, c*=(m-2)/4, f+'='/,[m-2+(m+2) 1, 

Solving the system of equations da/d t  = d b  / d t  = dc/ 
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TABLE I. Fixed-point coordinates obtained from the relations ( 14) for certain values of m. 
I I 

dt = 0 is equivalent to finding the roots of an eighth-order 
equation. Since we know four roots of this equation, the 
problem becomes solvable in quadratures. With the aid of 
simple algebraic substitutions, and also using ( 13 ), we ob- 
tain the corresponding fourth-order equation and relations 
determining the coordinates of the FP in terms of its roots: 

b [m- (m-2) b ]  
a =  

6(b-1) ' 

We note that the case m = 4 is degenerate and there is 
an additional root a* = 0, b * = 2, c* = - 1 not described 
by the relations ( 14). The numerical values of the real roots 
b * for the physically interesting cases m = 2, ..., 8, and also 
the corresponding values of the coordinates a*, c*, and f *, 
at the FP are given in the table. Using the data from this 
table, and also(13), it is easy to find the coordinates of all 
the FP with w* $0 in the original variables; because of their 
cumbersomeness, we shall not give these values. Investigat- 
ing the fixed points obtained, we convince ourselves that 
none of them is stable. 

If we go over from the parameter t in ( 12) to the new 
monotonic variable 

a standard analysis of the stability of the FP in the subspace 
{a, b, c, f) shows that the only stable and physically accessi- 
ble FP in this subspace is the point D + . In particular, it is 
reached in the case of the usual relative magnitudes of the 
initial values of the pure and impurity vertices: A,, go 9 u,, v,, 
w,. The eigenvalues Ri corresponding to this FP (for the 

running variable I )  are equal to 

The qualitative behavior of the phase trajectories projected 
on to the subspace (s = a - b, c )  for m = 3 is depicted in 
Fig. 2. 

It is important to note that satisfying a = b and c = 1 is 
equivalent to the satisfying R = g and u - v = w, implying 
the raising of the symmetry of the system to isotropic sym- 
metry. The presence of the stable D+-point in the subspace 
{a, b, c , f i  is evidence of the tendency of the phase trajector- 
ies of the system of Eqs. ( 12) to emerge on to an attracting 
set {a = b, c = 1). Here the invariant charge w goes to infin- 
ity in the five-dimensional space {A, g, u, v ,  w}, but the phase 
trajectories do not leave the region of stability of the Hamil- 

FIG. 2. Qualitative picture of phase trajectories of the system (12) in 
projection on to the (s = a - b, c )  plane, illustrating the isotropization of 
the solution of the GML equations. The dashed line indicates the bound- 
ary of stability of the bare Hamiltonian. 
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tonian. Thus we arrive at the conclusion that in the system of 
GML equations (4)  we have a situation of the "running 
away to infinity" type. In the particular case of an isotropic 
system ( A ,  = go, u, - v, = w,, w,/v, = - m), which arises 
in the problem of the critical behavior of a magnet with an 
impurity of the "random anisotropy axis" type, the existence 
of "running away to infinity" was first pointed out in Ref. 13. 
The change to the variables {a, b, c,f, w} has made it possible 
to elucidate the specific character of the "running away to 
infinity" in our case: In the impurity critical region the fluc- 
tuation interaction displays a tendency to isotropization. Of 
course, strictly speaking, only in the region of values w 5 E is 
it possible to verify this conclusion, which was obtained in 
the framework of the one-loop approximation of the renor- 
malization group. It is interesting, therefore, to clarify 
whether the isotropization of the system is an effect inherent 
in just the one-loop approximation (4) ,  or whether it also 
occurs in higher approximations. 

An investigation, to this end, of the behavior of the 
phase trajectories of the system of GML equations ( 5 ) ,  re- 
written in the variables a, b, c , f ,  w, showed that the isotropi- 
zation of the solutions is preserved in the two-loop approxi- 
mation as well. Here, as before, the trajectories pass to the 
subspace with coordinates (a = b, c = 1);  however, instead 
of the situation in which the invariant charge w runs away to 
infinity we have discovered the appearance of a completely 
stable FP b, situated at a finite distance from the coordinate 
origin. The numerical values of its coordinates ii*, T* ,  B* 
depend weakly on m, and for m = 2 ,3  are respectively equal 
to (to within terms of order E )  

What physical consequences can be derived from the 
fact of the existence of the stable FP a in the two-loop ap- 
proximation? Of course, we cannot conclude that a sharp PT 
of the system to an ordinary uniform state at a definite tem- 
perature T = T r  is possible. Although, formally, there is no 
running away to infinity in the two-loop approximation, the 
FP b nevertheless lies beyond the limits of applicability of 
the &-expansion. In addition, for the isotropic model (a  = b, 
c = 1 ) it has been proved that the uniform low-temperature 
phase is unstable, and in the case m- w with long-range 
interaction the authors of Ref. 12 established the equiv- 
alence ofthe PT in the system to a transition to an Ising-spin- 
glass phase. 

On the other hand, we suggest that the conclusion that 
the system becomes isotropic in the critical impurity region, 
which follows from the fact that the phase trajectories tend 
toward the subspace (a  = b, c = 1 ), is evidently reliable. In- 
deed, comparing the coordinates of the fixed points D+ and 
D in the subspace {a, b, c, f}, we see that the position of the 
stable FP in this subspace changed little when we went from 
the one-loop to the two-loop approximation of the GML 
equations. We note that the system of equations satisfied by 
the coordinates of the FP with w*#O in the (N  + 1)-loop 
approximation can be written in the form 

where z = {a,  b, c, f}, P )O' (2) are functions corresponding 

to the one-loop approximation, and P jk '  ( z )  are functions in 
the ( k  + 1 )-loop approximation. Since, according to ( 16), 
the value of the coordinate LO* for the fixed point b is nu- - 
merically small, and ii* = b * = 1 and Z.* = 1, we arrive at the 
conclusion that it is most probable that the position of the FP 
5 changes little in calculations in higher orders as well. 

CONCLUSION 

To conclude we shall summarize the main results ob- 
tained above. In the case of comparatively symmetrical 
point defects, e.g., in the presence of noncentral ions lying on 
symmetry axes of the crystal, the defect matrices Vi ,  are 
diagonal. In this case the phase transition in a cubic crystal 
remains sharp, but the critical behavior in the presence of the 
defects is changed. For any number of components of the 
order parameter, as the PT point is approached, the fluctuat- 
ing field decomposes asymptotically into a set of m noninter- 
acting Ising models with scalar impurities. We note that it is 
well known that the presence of ordinary scalar impurities 
does not affect the critical behavior of a crystal with m23 
components of the order parameter, so that defects describ- 
able by diagonal matrices that are not multiples of the unit 
matrix give rise to a stronger perturbation of the critical be- 
havior than do scalar defects. 

When the crystal contains point defects with arbitrarily 
low symmetry the phase trajectories of the system of renor- 
malization-group equations, while not leaving the region of 
stability, do go beyond the limits of the region of applicabili- 
ty of &-expansion, and we have a situation of the "running 
away to infinity" type. Here an interesting feature of the 
solutions of the renormalization-group equations is the spe- 
cial way the trajectories run away to infinity, which implies 
isotropization of the field of the fluctuations, both in the one- 
loop and in the two-loop approximation. Since in the case of 
the isotropic model there exist arguments that it has a transi- 
tion to a spin-glass state, it is highly tempting to postulate the 
possibility of a PT in a cubic crystal with low-symmetry 
point defects to a state, with finite correlation length, of the 
spin-glass type at a temperature T;  lying in the impurity 
fluctuation region of temperatures. 

Data from the observation of the long-lived relaxation 
phenomena inherent to states of the spin-glass type could 
serve as experimental data confirming the possibility of a 
phase transition of this type. 

The authors are grateful to S. L. Ginzburg, S. V. Ma- 
leev, I. Ya. Korenblit, and D. E. Khmel'nitskiy for useful 
discussions of the results of the work. 

"The stable FP with coordinates /2 * = g* = 0, u* = u* = - 6/64 de- 
scribes the PT in polymers, but is not accessible in our problem. For 
m > 4 there appears one further stable FP, but it lies in the region of 
instability of the system. 

''We note that the FP  C+ in ( 13) corresponds to the degenerate FP of the 
system (4).  
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