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A microscopic theory is developed for the energy dissipation of a moving domain wall of a weak 
ferromagnet by interaction between the wall and thermal magnons. Different dynamic regimes 
are considered-translational wall motion and propagation of flexure waves along the wall. The 
special roles of small system-energy terms that disturb the soliton character of the domain wall, 
and of the fact that the wall does not reflect the magnons with which it interacts, are pointed out. 
A phenomenological equation that describes consistently the domain-wall dynamics and 
relaxation is proposed on the basis of the microscopic calculations. 

1. INTRODUCTION 

Dynamic damping of domain walls (DW) determines 
the character of the phenomena accompanying rapid mag- 
netization reversal of high-grade magnets, the motion of 
solitary domains and DW, and others. Study of these phe- 
nomena is of interest for technical applications.' Analysis of 
problems encountered in DW relaxation is important also 
when it comes to use the highly developed theory of magnet- 
ic solitons2 in physical applications of magnetism. The prob- 
lems posed and solved in natural fashion involve in this case 
the interaction of a DW (magnetic soliton) with a magnon 
heat reservoir, or the allowance for the loss of total integrabi- 
lity in real magnets. 

Particular interest attaches to a comparison of the theo- 
ry of DW damping with experimental data on the viscous- 
friction coefficient (mobility) of DW in translational mo- 
tion, and on the damping of flexural waves in domain 
~ a 1 l s . l . ~  Experimental data on the damping of DW in a wide 
temperature range, however, have been obtained so far for 
two-sublattice weak ferromagnets ( WFM) such as orthofer- 
rites [and it can be assumed that DW damping in orthofer- 
rites is determined by intrinsic relaxation processes (see Ref. 
3) 1, whereas a theoretical analysis was carried out only for 
ferr~magnets .~.~ In addition to interpreting the experimental 
data, analysis of DW relaxation in WFM is also of general 
interest for soliton theory in real nonlinear systems. The 
point is that the dynamics of WFM such as orthoferrites are 
described, albeit approximately, by the sine-Gordon equa- 
tion (see Ref. 3), which has been thoroughly investigated 
and has become in a certain sense the standard exactly inte- 
grable equation.6 

The present paper is devoted to an analysis and relaxa- 
tion of DW based on a macroscopic approach to transla- 
tional motion and propagation of flexural waves (FW) of 
DW in WFM such as orthoferrites. The viscous-friction co- 
efficient of the DW and the damping decrement of the FW 
are found. A general phenomenological equation that ac- 
cords with microscopic calculations is derived for the DW 
coordinate. 

1. THE MODEL 

To describe the dynamic properties of a two-sublattice 
rhombic WFM we start with the standard equation for the 
energy7 

Herem = ( M I  + M2)/2 and1 (MI  - M2)/2 are respective- 
ly the weak-ferromagnet and the antiferromagnetism vec- 
tors; M I  and M2 are the sublattice-magnetization vectors 
Mo = 1 M I  1 = I M2 1 ; a and S are the exchange constants; Pi 
and bi are respectively the second- and fourth-order anisot- 
ropy constants; d l  and d, are the DzyaloshinskiY-interaction 
constants; x,  y, and z coincide with the a, b, and c axes of the 
WFM. 

It is convenient to begin with the equations for the nor- 
malized antiferromagnetism vector 1(12 = 1; see Refs. 8 and 
3 for details). The dynamics of the angle variables for the 
vector l(1, + iy, = sin Be@, I, = cos 8) is determined by a 
Lagrangian of the form 

where the two terms are of different order of magnitude, 

Here 8 = dB /dt, c = 1/2gMo(aS) ' I 2  is the spin-wave veloc- 
ity, g=21poI/fi, po is the Bohr magneton, and 
D = 6(dl  - d,)/gSM,. Note that the nontrivial term with 6' 
appears when d l  #d3, i.e., when the Dzyaloshinskii interac- 
tion is not antisyrnmetri~.~-" Usually Id, - d31 <d ,,, and 
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b, <pi (Ref. 7), therefore 2"" 4 Y"". The terms in 22"" , 
however, are basic for the analysis of the damping of the 
magnetic solitons that describe the DW. We shall ascertain 
later on that the basic difference between the models with 
9 = Y ( O )  (b, D = 0)  and with 2' = 2") + 2 ( j )  appears 
literally in all the aspects of the problem. We shall therefore 
consider these models separately, and name them respective- 
ly "idealized (for 2 = 2'") and "generalized" (when 
2"' is taken into account). Analysis of the idealized model 
is important not only from the procedural but also from the 
physical viewpoint, since the values of the constants b,/Pi 
and Dmo are usually small ( 5 10W2) (w, is the WFM mag- 
non frequency). 

We shall assume that P, > 0 and p2 > 0, and that in the 
WFM ground state 1 and m are parallel to the axes a and c, 
respectively. The equations corresponding to the idealized 
WFM model have two particular classes of solutions of the 
form 6 = ~ / 2 ,  q, = p( r ,  t)  and q, = ~ / 2 ,  6 = 6(r ,  t )  (solu- 
tions of type ac and ab, see Ref. 3).  For P2 >PI ,  as is usually 
realized in orthoferrites, the ac-type solutions are stable (see 
Refs. 3 and 12). We consider henceforth just this case; the 
situation with the sign of (p2 - 8,) reversed are analyzed 
similarly. 

The dynamics of the angle variable q, in the ac-type so- 
lution is described by the Lorentz-invariant equation 

The simplest solution of (5)  describes an ac-type 180-deg 
moving DW: 

where yo = (a/P) ' I 2  is the DW thickness at v = 0, and y, is 
an arbitrary constant. For the generalized model we have at 
v = o  

where p = b1/2p,, with p <  1 for b<P. For v#O, however, 
allowance for the term with D can alter the DW symmetry,13 
and there is no known exact solution that describes the DW. 

2. SPIN WAVES ON A DW BACKGROUND 

A microscopic analysis of the DW relaxation calls for 
knowledge of the spectrum of the spin waves on a DW back- 
ground. Putting 

0=0,+6(r, t ) ,  cp=rpo+$(r, t ) ,  Bo=n/2, 6, $<I (8)  

and substituting (8)  in (3)  and (4) ,  we represent the La- 
grangian of the magnons in a WFM with DW in the form 

where 2, contains the variables if and $ raised to a total 
power n, and 2, = 0 for any WFM model by virtue of the 
equations for 6, and q,,. We represent the Lagrangians 2 , ,  
2 , ,  etc. in the form 9, = 2:' + Y:', where 2''' a bi 
or D. 

For v = 0 it is easy to calculate all the 2, from (7),  but 
for v #O only YLO' can be expressed exactly. We confine 
ourselves to the case of low velocities, assuming the small 
parameters b, /P, Dw, and v/c to be independent. 

We begin the actual analysis with the case of the ideal- 
ized model, for which we have at v = 0 

h 

where w, = c/yo, a = (p2 - Dl )/PI, and theoperator L has 
the form of a Schrodinger operator with a nonreflecting po- 
tential and a known complete set of eigenfunctions: 

E = - U ~ ' V ~ + I - ~ / C ~ ~  E, E=(y-ys)lyo, Zfj'hjf,, ( 11 ) 
fh=(Q1"bh)-'(th E-ik,yo) exp (ikr), Ih=1+k2yoZ; 

fx= (2yoS)-" (llch E)exp (ixrJ, h , = ~ ~ y ~ ~ .  (12) 

Here S1 is the volume of the crystal, S the DW area, 
bk = ( 1 + k ;  yi ) 'I2, x a two-dimensional vector in the DW 
plane, k = k2, and x2 = x2. 

For a correct description of the interaction between a 
moving DW and magnon heat reservoir we proceed as fol- 
lows. We assume that the DW is immobile at an arbitrary 
point y, and expand the functions if and $ is the eigenfunc- 
tions of the operator ( 12) : 

If the DW moves uniformly, the parameter y, = vt de- 
pends on the time. In this case, however, the functions f, and 
f, remain a complete and orthonormal system, and we can 
use as before an expansion in the form ( 13). This choice of 
the magnon states corresponds to a natural physical condi- 
tion that the magnon gas (heat reservoir) be at rest far from 
the DW, and that the magnons near the DW be adibatically 
"attuned" to the instantaneous DW position. 

For a moving DW y,, and hence f, (r, y, ), depends 
explicitly on the time. The kinetic part of Y$O' does not 
reduce therefore to the form 8 ,  q,q- ,, and contains addi- 
tional terms bilinear in q,, q, and Q,, Q,. The canonical mo- 
menta conjugate to q, and Q, are therefore not proportional 
to q-, and Q-,: 

[where (...) = (... )dr],  which makes H r' nondiagonal 
for v # O  (see Sec. 4 below). If, however, v = 0, then 
Hio' = H, and has a canonical form, and in terms of the 
magnon-field creation and annihilation operators $ and if 
(henceforth $ and if magnons) 

the Hamiltonian H p' = HI is diagonal: 
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and describes free magnons against the background of an 
immobile DW. The spectrum of a WFM with DW contains 
four magnon modes, two with wave functions fk and fre- 
quencies 

corresponding to bulk (intradomain) excitations, and two 
with wave functions f, having frequencies 

and corresponding to excitations localized on the DW (in- 
traboundary excitations). 

It is known (see Ref. 3 that the $-magnon localized 
mode describes FW propagating along the DW, and the op- 
erators a: and a, have the meaning of FW-quantum cre- 
ation and annihilation operators. This permits the FW 
damping decrement y ( x )  to be calculated as the imaginary 
part of the mass operaor of localized $ magnons having a 
momentum fix (see Refs. 14 and 15). A contribution to 
y(x)  can be made by three- and four-magnon processes de- 
scribed by Hamiltonians H3 and H,. 

In the idealized model the three-magnon Hamiltonian 
H3 = 2, = - ( 2 p '  + 2:") takes the form 

or in terms of the magnon creation and annihilation opera- 
tors 

wherel, =k ,  o rx ,k ,  = (k,,O, k,), 

df1 fzf, 
")"((t3sh~-Yo- - ~i..3=2'or' ( 2mo,Q2Q, dy ) ch' ) 

- exp ( i Q i 2 3 v t ) .  (23) 

We have left out of these equations the terms proportional to 

For each of the interaction processes described by Eq. (2 1 ), 
the DW acquires in the direction of its normal a total mo- 
mentum %?123, where Qk ,k3 = kIy + kZy k,, , 
QklkZk3 = kly + kZy, etc., and the momentum of the DW 
plane is conserved. 

Note that the amplitude of a process in which three 
surface $ magnons participate is strictly zero by virtue of 

(22). (A similar process is possible with 0 magnons. ) This 
holds true for any WFM model if the DW does not stick to an 
inhomogeneity. If the DW sticks, such a process is possible 
and should make the main contribution to the FW damping, 
especially at low temperatures (a similar problem was ana- 
lyzed for a ferromagnet by Janak16). In a homogeneous mag- 
net, the contribution of the three-magnon processes with 
participation of activated magnons may have to compete 
with four-magnon processes H: = 2:" (see Ref. 3 )  with 
participation of only FW magnons (see below), and the FW 
damping decrement y('"(7c) of the idealized model takes the 
form 

Note that if the DW moves, the Hamiltonian H iO' de- 
pends explicitly on the time via the factor exp(iQ,,,vt) [see 
Eqs. (22) and (23)l.  The same holds also for the off-diag- 
onal part of the two-magnon Hamiltonian H ;d; the existence 
of this part was already noted above." The explicit time de- 
pendence of the terms in HI,  H,, and Hid at u # O  cause a 
change of the magnon-gas energy: the DW transfers an ener- 
gy fiQv to the magnons in a single event. (In this approach, 
the DW enters in the magnon Hamiltonian H =  H, 
+ H, + ... as an external time-dependent classical field.) 
Since the "DW + magnons" system is closed, the quantity 
d E  /dt, where E is the energy of the magnons, is naturally 
connected with the DW damping. In particular, the dynam- 
ic-damping force Facting on a uniformly moving DW can be 
expressed in terms of d E  /dt (see Refs. 4 and 5)  : 

We have thus two approaches to the calculation of the 
DW relaxation characteristics. In one approach we investi- 
gate the damping rate of the DW FW, while the FW magnon 
is treated together with all others on the basis of the general 
Hamiltonian. In the second approach the DW acts as an 
external field and leads to inelastic processes in the magnon 
gas, and the DW damping is determined by the value of dE  / 
dt. we shall compare below the results of analyses based on 
the two approaches. 

3. FW RELAXATION IN THE IDEALIZED MODEL 

As noted above, the three-magnon Hamiltonian H p' of 
the idealized model contains a large number of terms that 
describe processes of the aaa or AAA type. Ten processes 
vital in the discussion that follows are shown schematically 
in Fig. 1. 

We begin with an analysis of the FW damping decre- 
ment y:". In the Born approximation, yiO) is determined by 
the four process, 2, 3, 7, and 10 of Fig. 1: 

where n = n (&I, ) or n(fi112, ) are the magnon occupation 
numbers. The amplitudes of the processes can be easily de- 
termined form Eqs. (2 1 )-(23) and the wave functions ( 12). 
We present one of them for v = 0: 
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@"' (k,kzx)  = 6P-,,,, we can calculate the dependence of y'"' on x and on the 
temperature T i n  the limits of high and low temperatures, 

inoo2(trSSyo) " (b12-b,l) A (kt,-kz,-x) T> E~ and T< E,,, where E~ = jiWo is the magnon activation 
- - (27) energy (E,- 16-18 K for orthoferrites). 

2b, b2 (2Q) a (mo,,o,w,) '' 
For T > E ~ ,  corresponding to nitrogen and room tem- 

Transforming in (26) from summation to integration, peratures, the damping decrement yiO' is given by 

and for T <  E ~ ,  particularly helium temperatures, 

cibed in the Born approximation by the Hamiltonian 
H y )  = - yiO), 

the numbers in the curly brackets denote the processes that H:"= y4 ( 1 2 , 3 4 )  al+a2+a,a4, 
make the main contribution to yy'. Note that yl0' = Ax2-0 1231 

As noted above, for T < E ~  account must be taken of the y , ( 1 2 , 3 4 )  = y 4 ( x l x , ,  x 3 x 4 )  

four-magnon processes with FW interaction. They are des- 

The amplitude '4, diverges as % -0, but this divergence 
is offset by the contribution of the three-magnon processes in 
the perturbation theory of order higher than the Born ap- 
proximation. The effective vertex that takes into account the 
diagrams of Fig. 2 is given by 

FIG. 1. Three-magnon processes that contribute to the DW damping FIG. 2. Effective four-magnon interaction amplitude r ( ~ , ,  x,, x,, 
strength in the Born approximation: single lines-$ magnons, double-t9 %4) = r( 12, 34): light square-"initial" vertex (27),  circles-three- 
magnons, solid-bulk magnons, dashed-magnons localized on DW. magnon vertices, see Fig. 1. 
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where nj = x,/lxj I .  Calculating the decrement yiO'(x, T) 
on the basis of (3  1 ), we obtain in the interval %yo< 1, T<co 
of interest to us 

At extremely small I xl the value yiO' a x2 predominates over 
yiO' a I x 13, but even for sufficiently small x 2 x, (x, - 0 as 
T-0), where 

we have yiO' > y:", and in the idealized model y'O'(x) a 1x1 3. 

Let us emphasize the main result of the present section: 
in the idealized WFM model all the processes considered 
lead to a y(x)  that tends to zero as x-0. This behavior is 
typical of nonactivated Goldstone excitations and is the re- 
sult of the vanishing of the amplitude on the mass shell of the 
process as x - 0 [the Adler principle, see Ref. 15. This prin- 
ciple is valid for the amplitudes of the idealized model (see 
Eqs. (17) and (31)l .  

First, however, there are no grounds for regarding FW 
in an isolated DW as Goldstone excitations, and second, the 
result y (x )  -0 as x-0 contradicts both physical intuition 
(relaxation should occur also at x = 0, corresponding to 
translational motion of a planar DW), and the calculation of 
Sec. 4. 

4. DAMPING OF TRANSLATIONAL MOTION OF A DW IN THE 
IDEALIZED WFM MODEL 

We calculate the energy lost by a moving DW per unit 
time by transfer of energy to the magnon gas through inelas- 
tic two- and three-magnon processes. 

Two-magnon processes. At arbitrary DW velocity, the 
two-magnon Hamiltonian of the idealized WFM model can 
be written in the form 

where H, corresponds to the case v = 0 and is di?gonaL[see 
Eqs. ( 15 ) and ( 17) 1,  and the off-diagonal terms Tand R are 
%mall to the extent that the DW velocity u is low. The term 
T a  v appears because the momentum satisfies p ,  = mq-, 
for v f 0 [see Eq. ( 14) 1, and 

The term R  ̂c v2 stems from the decrease of the DW 
thickness as it moves yo-y,(u) = y,(l - v2/c2)'I2, and zl, 
and I? are expanded in terms of the set ( 12) which contains 
yo rather than y,(u). 

Tke ampjtudes in the off-diagonal part of H: (the 
terms T and R )  are proportional respectively to the small 
parameters u/c and (V/C)'. The value of dE/dt and the 
damping force F ( u )  can therefore be calculated by using 
standard thermodynamic perturbation theory in the param- 
eter v/c. It is easy to verify that F 2 ( u )  is determined in the 
Born approximation only by the bulk-magnon scattering: 

where q,, = k ,, - k ,, , and n, and N, are the Bose distribu- 
tion functions of the zl, and fi magnons, respectively. Since 
the amplitudes T ;, and T ;; are proportional to v, and fur- 
thermore, on account of the S function, n2 - n, and N2 - N, 
are also proportional to v, it may turn out that F2 a v3 and 
this is the contribution of principal order in the parameter v/ 
c to the damping force. The amplitudes in T,,, however, van- 
ishatk,, = +k2, , i . e ,T12a(k~,  -k:,).Thisquantity,by 
virtue of the condition k,, = k,, , is proportional to w: - w: 
(or fl: - fl: ). The amplitudes T ;, and T ;; acquire there- 
fore an additional factor v/c and the integral in ( 34) is found 
to be proportional to v5 rather than u3. A contribution of the 
same order in v, however, is made also by the Text higher 
perturbation-the02 orders for the Hamiltonian T, and also 
the Hamiltonian R. The situation is likewise similar for a 
ferr~magnet,~.' and also in the three-dimensional sine-Gor- 
don and q, models (Ref. 17). Analysis has shown that the 
damping force can be calculated, with account taken of the 
vital orders of perturbation theory, by using Eq. (34) in 
which the amplitudes are replaced by effective amplitudes 
V12 a v2 (see Ref. 17 for details). It ::as turned out there for 
WFM the effective amplitude vanishes on the mass shell of 
the process (see the preliminary communication, Ref. 18), 
i.e., in the idealized WFM model described by the Lagran- 
gian 2"' the two-particle processes fail to contribute not 
only to the viscous friction coefficient 7 (F = ~ v ) ,  which de- 
termines the DW mobility, but also to the nonlinear damp- 
ing force, and it is necessary to resort to processes in which 
three (or more) quasiparticles take part. 

Three-magnon processes. Contributions to the damping 
of moving DW are made by all ten processes of Fig. 1, and 
the amplitudes of these processes are easily calculated (see 
Ref. 18). We present only a formula for the amplitude of a 
process in which three bulk zl, magnons participate: 

It is easily seen from this that in the one-dimensional 
case, when w, = mob, = o o ( l  + k :, yi )'I2, the amplitude 
a, vanishes on the mass shell (at w, = w2 + w,). This result 
is understandable: when only the dynamics of the angle q, is 
taken into account, the WFM model reduces to an exactly 
integrable sine-Gordon equation in which there is no dissi- 
pation. In the q, model, which is not exactly integrable, the 
corresponding amplitude is in the homogeneous case also 
@, # 0 and leads to dissociation of the DW. In WFM, even in 
the one-dimensional case, processes (in which both zl, and I? 
magnons participate, e.g., the processes a,A :A,) occur and 
lead to DW relaxation. It can therefore be stated that even 
the idealized WFM model is not exactly integrable in the 
homogeneous case and has, in analogy with the q, model, 
only the property that it reflects no magnons (the amplitude 
for magnon scattering by a DW is zero on the mass shell). 

The damping force F acting on a unit of a DW can be 
represented as a sum of the ten terms F, to F,,. For the DW 
viscosity coefficient 7, ( T ) ,  where 7 = lim [F(y)/v 1, we can 

"-0 

also write 
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Here fiQ is the momentum transfer, 6, = 1 for F,, F, to F,, 
and Flo and Cj = 4 for F,, F,, F,, and F,. 

At low temperatures ( T ~ E ~ ) ,  all the r]?' are exponen- 
tially small, and the main contributions are determined by 
the process 3, 

(2n)  "e2 
&(T) m ?J3)  ( T )  = ( e T  T<e., 

211m~3y,,4 (37) 

while at high temperatures ( T> E,) 

where ((u)  =. 1 for u- 1, a value typical of most orthofer- 
rites at room temperature [for yttrium orthoferrite 
( YFeO,), in particular, a=. 1.461. Since E, - 16 - 18 K for 
orthoferrites, at room temperature the values of all three 
terms of (38) are comparable. Analysis of the idealized 
WFM model predicts thus a transition from an r] a T de- 
pendence to an r ]  a T dependence near room temperature. 

Let us'summarize the analysis of DW relaxation in the 
idealized WFM model. The damping decrement of the DW 
flexural waves has a "Goldstone" dependence on the wave 
vector x ,  y = AxZ as x - 0. The viscous-friction coefficient of 
a moving DW differs from zero and is determined by three- 
magnon processes. The temperature dependences of the re- 
laxation constants y(x, T) and r],(T) are substantially dif- 
ferent, let alone the fact that a comparison of the result r ]  #O 
with y(x)  = 0 is impossible at x = 0. 

5. RELAXATION INTHE GENERALIZED WFM MODEL 

If we start with the generalized model, for which 
9 = 9'" + 9(') [see Eqs. (3 )  and (4)  1, two-magnon 
off-diagonal terms appear even at v = 0, and the three-mag- 
non Lagrangian acquires additions. The corresponding ad- 
ditions z:'' and Yii) can be easily determined and contain 
terms proportional to D and bi. The smallness of the coeffi- 
cients Dw, and b /D makes it possible to regard 9"' as a 
perturbation, so that the additional terms in the system 
Hamiltonian are Hi:; = - 2;;;. Expanding 9 and $ in 
9:: in terms of the set ( 12), we obtain the WFM Hamilto- 
nian in the form H = H2 + H, + ... , where Hz,, 
=Hip: + H i ? ,  

The amplitudes Dl, and Dl,, are due to the first terms in 
(4) ,  which are associated with the inequality of the con- 
stants d l  and d, 

The amplitudes B ' and B " in (39) and (40) take into ac- 
count the fourth-order anisotropy. They depend differently 
on the magnon frequencies , B ;, a (w ,a,) - ' I 2  and 
B a (Cl,Cl,) -'", so that the viscosity coefficient has a di- 
ferent temperature dependence. We proceed now to calcu- 
late the dissipative properties of the DW. The damping of 
FW is determined in the Born approximation by equations 
similar to (26), in which a ( 1 2 x )  must be replaced by the 
total amplitudes of the processes, including the amplitudes 
Hi1). It is important that the amplitudes Dl,, and B,,,, in 
contrast to a,,,, do not vanish on the mass shells of the 
corresponding processes as x - 0. For example, the ampli- 
tude of the a,alA ,+ process for w, = 0, + w, and x-0 is 
equal to 

where q: = u + qi , q = q, - q2, and q, = kj,, yo. The damp- 
ing rate therefore remains finite as ?c +O, viz., yi') - y,#O. 
As a result, while the contribution of the Hamiltonian H :'I 
does contain the small parameters Dw, and b /D, it is impor- 
tant and must be taken into account, but it suffices here to 
calculate yo. 

In addition to the Born approximation in H :", contri- 
butions of the same order in Dw, and b /Dare made by terms 
due to allowance for H io) and H io' in the next orders of 
perturbation theory (see the graphs in Fig. 3). Instead of the 
unwieldy calculation of a tremendous number of terms of 
this type, it is convenient to carry out a unitary transforma- 
tion that diagonalizes the two-magnon Hamiltonian 
H2=Ho+H:"a tv=0 .  

We consider only that part of H"' that corresponds to 
the first terms in 3"' of Eq. 40) and is due to d l  #d,; the 
analysis of the fourth-order anisotropy contribution is simi- 
lar. The effective amplitudes D '(k,xk2) and D " (k,xk2) of 
the processes vital to the FW relaxation, such as b,b,B ,t 
and b ,+ b,B, (b, and B, are the operators obtained after the 
unitary transformation) in the limit x-0 take the form 
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FIG. 3. Effective amplitude D '(k,xk,) of three-magnon interaction in the 
generalized model; light triangle-"initial" amplitude D,,; [Eq. (42)  1, 
circle-three magnon vertex PI, ,  or R , , ,  [Eqs. (22)  and ( 2 3 ) ]  dia- 
mond-two-magnon vertex D, ,  (Eq. (44)  1. 

D" (k,xk,) = [D' (k,xk2) 1'. 

These amplitudes, like the "initial" amplitude in H y ,  di- 
verge like w; '" as x-0, i.e., they do not satisfy the Adler 
principle. Writing down the expression for the FW damping 
decrement due to d l  #d, (D #O)  in the limit as x + 0: 

4no, yo, = -x ID' (k,xkz) I 'n, (%+I) 6 (01-Q2), 
hT 12 

we find that yo, #O as x-0. The contribution to Hi" from 
the second group of processes governed by bi leads similarly 
to a finite value yo, #O as y-0. Prior to the actual calcula- 
tion of yo, and yo, it is convenient to discuss the dynamic 
damping of a forward-moving DW. 

Viscous friction of DW. The main contribution to the 
friction coefficient 77 is made by two-magnon processes de- 
scribed by the Hamiltonian H ii'. Since the coefficient 77 is 
determined in the idealized model by three-magnon pro- 
cesses, the corresponding contributions do not interfere and 

where 7, is determined by the equations of Sec. 4 and 77, by 
the two-magnon processes governed by H if). 

In the Hamiltonian H ii', the difference between d l  and 
d, leads to conversions of magnons of different modes of type 
A,a> and A ;C a,, while the terms connected with bi deter- 
mine magnon scattering processes of type a;a2 or A ,+ A,. 

By virtue of the damping, the contribution of the scat- 
tering processes is determined by Eq. (34) in which T ;, and 
T ;; are replaced by B i 2  and B h. An expression for the 
contribution of the conversion processes can also be ob- 
tained from (34) by replacing I Ti ,  1' with ID,, 1' and n, - n, 
with n, - N,. The equations for the two-magnon contribu- 
tions to 77 (77, and 77, ) are also obtained in elementary fash- 
ion, e.g., 

Comparison of this equation with expression (45) for yo, 
shows readily a definite similarity of their structures. If, 
however, the expressions for Dl, and D ;,, are compared as 
x - 0, it is found that 

Comparing (47) and (45) and taking (48) into ac- 
count, it is easy to verify that the damping rate yo, and the 
DW viscous-friction coefficient r], are equal, apart from a 
trivial dimensional factor: yo, = 7, y0/2m. A similar rela- 
tion holds also for the contributions made to r], by magnon 
scattering and to y, by processes of type a,a;Ca, and 
a,A :A,. All these contributions and the total dissipative 
characteristics satisfy a common relation 

This answer is physically understandable, for in the long- 
wave limit ( x  -0) propagation of flexural waves in DW and 
translational motion of DW are identical physical phenome- 
na. It can be shown that to every n-magnon inelastic DW- 
magnon intereaction a,+ ... amA ,+ ... An -, exp(iQvt), which 
make a contribution 77, to the DW damping force there cor- 
responds an (n + 1 ) -magnon interaction 
a,a,f ... amA ,+ ... A, -, of the magnons with one another, 
and the contribution of the latter interaction to yo is connect- 
ed with 77, by relation (49). This can explain the apparent 
contradiction of the results for y (x)  and 77 in the idealized 
model, noted at the end of Sec. 4. Actually, two-magnon 
processes make no contribution to the damping of a planar 
DW (exact integrability in the one-dimensional case), so the 
three-magnon FW damping rate yiO'(x), while different 
from zero if x #0, does not vanish as x -0. A nonzero yo is 
obtained in the idealized model when account is taken of 
processes in which four bulk magnons participate, and its 
value is connected with 7, by relation (49). 

Relation (49) suggests thus, first, a consistent phenom- 
enological description of DW dynamics (see below), and 
second, permits the calculation of yo to be replaced by a 
much simpler calculation of the dynamic-damping coeffi- 
cient 7. 

Let us present equations for the coefficient 77'. At low 
temperatures ( T <  E,,) the main contribution to v2 are made 
by $-magnon scattering process having the lowest activa- 
tion: 

and at high temperatures ( T >  E,) by magnon-transforma- 
tion processes 

where A, ( a )  - 1 for 0- 1 is an unwieldy numerical coeffi- 
cient. Estimates for orthoferrites show (see also Refs. 11 and 
18) that the value of 77, at T- 300 K are approximately an 
order of magnitude larger than the three-magnon contribu- 
tion 7, [Eq. (38)l.  The value 77, of Eq. (51) agrees well with 
experiment for orthoferrites. l 9  
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CONCLUSION 

Note that although the analysis was carried out for 
orthoferrites, the situation is in many respects analogous for 
other WFM. The idealized model is universal, and the equa- 
tions for y (x)  and q3 for all WFM are the same. As to the 
generalized models, contributions to 3"' come from the 
uniaxial anisotropy of next higher order (of type bl: ) for all 
WFM, or by anisotropy in the basal plane for unmiaxial 
WFM, and also by the deviation from antisymmetry of the 
Dzyaloshinskii interaction (the invariants m, 1, + my 1, for 
WFM such as NiF, and MnF,; 
im, [ (Ix + iIy ) - ( I, - iIy )3  ] for rhombohedra1 WFM for 
WFM such as MnCO,, FeBO,, etc.). Analysis has shown 
that the dependence of two-and three-magnon amplitudes 
on the magnon frequencies is the same for Lfg' and Y$' as 
for an orthoferrite. As a result, the temperature dependence 
of the friction coefficients q, and qD is identical with (50) 
and ( 5  1 ) for any orthoferrite. A relation q a T or q a T 
should therefore be observed at high temperatures for any 
WFM if two- or three-magnon processes predominate, re- 
spectively. 

Let us discuss the following important circumstances. 
The finite y (x)  as x -0 means that the FW of the DW are 
not weakly damped modes if x is small enough, [y(x) /  
w ( x )  ] -, co as x - 0. The reason, in our opinion, is that the 
FW of the DW are not Goldstone excitations in the strict 
meaning of this word, since in magnets with a solitary DW 
there exists at T # O  a preferred reference frame connected 
with the magnon heat reservoir. 

The microscopic calculation developed here permits 
development of a phenomenological theory of DW motion, 
in which the DW position is determined by the coordinate of 
its center: u = u(r,, t ) .  The dynamics of u can be described 
by the Lagrangian 

where o is the DW surface energy, with a = 2M$ (afi1)'l2 

for anac-typeDW, and V, = ex (a /ax) + ey (d  /dy). Equa- 
tion (52) takes also into account the external magnetic field 
H capable of displacing the DW, the modulus Hm, of the 
scalar product in H, and the weakly ferromagnetic moment 
in the domains; positive values of u correspond to motion of 
the DW towards a domain with mo.H > 0. 

The dissipative function Q{U} should be chosen in ac- 
cordance with the microscopic calculations in the form 

~ { h )  = (o/cz) dr, {y.i2+h (v,ri)'). (53 

Here yo and /Z are the constants calculated above, which 
determine y(x)  = yo +Ax2 [see (49) and also (28) and 
(29) 1. Note that according to the theory R has a universal 
form for all WFM, while yo depends substantially on the 
constants of the Lagrangian 3 ' " .  The DW equations of 
motion are obtained by the usual variation SL /Su - SQ/ 
Sic = 0. 

The dynamic equations for u determine the spectrum 
and the damping of FW having a two-dimensional wave vec- 
tor x, a, = ~1x1, y = yo + Ax2, and also the homogeneous- 
DW motion induced by the field H. The DW mobility 
p = u/H is related as H-0 to yo by p = moc2/ayo, from 
which, taking (49) into account 

(m, = 2dM&, m = P,M$ y$/c2), we obtain the standard 
equation p = 4dmo/Sq, see Ref. 3. Relation (49) thus 
makes it possible to reconcile the dissipative characteristics 
of DW in various modes of their motion. 

The description on the basis of (52) and (53) differs 
from the standard one3 by the last term in the dissipative 
function Q. Note that yo is small, ydR = X: <yo2, where 
(yo%. ),-rnax (Dwo/fi,, p )  or (yo". ) = (/3/S)112(a/yo)3 
(a is the lattice constant) for the cases 77, > q3 and q3 > v2, 
respectively. Consequently, the term with /Z dominates at 
fairly small values x > x. < l/yo. No such strong dispersion 
of the FW damping occurs in the standard phenomenologi- 
cal description of DW dynamics. The limits of validity of the 
dynamic theory, which are connected with a transition to the 
nonanalytic y ( x )  dependences, y a 1 xi3 for x > x, [see 
(33)] or y a  1x1 [see (39), and (30)],  can also be deter- 
mined within the scope of the microscopic method. 

Bar'~akhtar,'-'-~~ has recently generalized the equations 
of magnitization dynamics. On the basis of his approach, the 
dispersion of the FW damping is obtained in a natural man- 
ner. In his theory, however, R -yo y$ and x. - l/yo. The 
reason is apparently the following: this theory takes full ac- 
count of the dynamic symmetry of the exchange and relativ- 
istic interactions, but disregards the "latent" symmetry due 
to proximity of the system of being exactly integrable (to the 
smallness of the constants in 3"' ). The results of the two 
approaches agree qualitatively only if bi =Pi and DwO-Pl, 
i.e., d l  - d,-d,. The microscopic approach is therefore es- 
sential not only for the prediction of the values and tempera- 
ture dependences of the relaxation constants, but also for a 
description of arbitrary magnets with allowance for the 
proximity of the models that describe them to exact integra- 
bility. 

The authors thank V. G. Bar'yakhtar, I. E. Dzyalo- 
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"Note that diagonalization of H, = H, + H i d  is possible at v = 0 in an 
arbitrary magnet and reduces to solution of a stationary Schrodinger 
equation. If u#O, the terms describing the inelastic processes cannot be 
"disposed o f '  by an arbitrary unitary transformation. Diagonalization 
for v f  0 is possible only in exactly integrable systems. 
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