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We have investigated the influence of boundary transparency on the stationary properties of dirty 
SS 'Ssuperconductor structures within the framework of the microscopic theory of 
superconductivity.We have derived boundary conditions for the Green's function of a contact 
between two dirty metals which are valid for arbitrary boundary transparency, and have 
calculated the resistivity of such a boundary. In the limits of small and large weak-link lengths d, 
we obtain analytic expressions for the function I, ( p ) .  In the case ofSNS transition (i.e., the 
critical temperature of the weak-link material Tc = 0) we have computed numerically the 
temperature dependences of the product of the critical current I, and the normal-state transition 
resistivity R ,  for a number of values of the weak-link length and boundary transparency. 

Recently, the study of properties of Josephson struc- 
tures based on semiconductor materials has attracted more 
and more experimental1-5 and theoreticalvnterest. When 
the semiconductor is heavily doped or an inversion layer is 
created in some way at a surface which accumulates carriers, 
the bulk properties of the material differ very little from the 
properties of a high-resistivity normal metal. However, at a 
boundary between superconducting and semiconducting 
materials a Schottky barrier can appear whose transparency 
is less than unity, which automatically leads to a decrease in 
the weak-link critical current. A small-transparency barrier 
can also appear when the value of the Fermi momentump, of 
the weak link material is considerably smaller than the Fer- 
mi momentump, of the superconducting electrode material, 
if the boundary between the materials is abrupt on an atomic 
scale. A final point is that study of the processes in SS'S 
Josephson structures with barriers whose transparency 
differs from unity is a integral part of the problem of current 
flow in polycrystalline superconducting films with Joseph- 
son interactions between the small-size grains.' 

It is therefore clear that theoretical study of the influ- 
ence of finite-transparency boundaries on the critical cur- 
rent in dirty SS 'Sstructures is a relevant topic. This problem 
was discussed earlier for the case of large thicknesses of 
weak-link material's9 and for a specific form of the potential 
barrier at the boundary of the superconductor with the 
weak-link material; the latter was assumed to have no metal- 
lic cond~ctivity.~ 

The goal of this article is to investigate the stationary 
properties of a dirty SS 'S structure with barriers of arbitrary 
transparency at the SS ' boundaries for the case where the S ' 
material has some metallic conductivity; the barriers are as- 
sumed to be abrupt on the scale of an electron mean free 
path. In the case of an SNS junction (i.e., the critical tem- 
peratureof the weak-link material Tc, = O), the calculations 
are carried out for arbitrary thicknesses d of the weak-link 
material; for the case of small d the results are applicable for 
arbitrary Tc2 . 

1. MODEL AND DESCRIPTION OF THE CONTACT 

where I,,, and f t, are the electron mean free paths and co- 
herence lengths of thesands  ' materials. Since the weak-link 
material has a small metallic conductivity, the parameters y 
and y, which describe the suppression of superconductivity 
in the electrodes due to the proximity effect9 and the current 
flowing through the junctionlo are small even for SS' boun- 
daries of unit transparency: 

Here, a,,, are the conductivities of the Sand S ' materials and 
d is the weak-link length along the direction of current flow. 
In addition to this, we assume that the SS' boundaries are 
planes which are sharp on an interatomic scale and are char- 
acterized by a transparency D, while the structure itself is 
quasi-one-dimensional, so that all quantities vary only along 
the z-axis, which is perpendicular to the boundaries. 

Let us identify the coordinate origin with the center of 
the S ' layer and choose the gauge with zero vector potential. 
Taking into account the above assumptions concerning the 
stationary properties, we can investigate this structure by 
using the Usadell equations," which in the weak-link region 
can be written in the form 

Here, A, is the order parameter, w = (2n + l).rr/T are the 
Matsubara frequencies, and T,, and T,, are the critical tem- 
peratures of the S and S t  materials; the function @, is con- 
nected with the Usadell functions F, by the relation 
F = w-'G,@, and the dash denotes differentiation with re- 
spect to z. By virtue of condition (2),  the function @, in the 
superconducting electrodes equals its unperturbed value: 

We will assume that the "dirty limit" conditions are @,(*d/2) = A ,  exp(*icp/2), (4) 
fulfilled for the materials which make up the SS 'S  structure: 

where A, is the modulus of the order parameter and p is the 
l i , z < ~ : . z ,  ( 1)  phase difference of the order parameters of the electrodes. 
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Equation ( 3 )  is not valid at distances on the order of 
I , ,  from the boundaries, and must be supplemented by 
boundary conditions. By virtue of the symmetry of the prob- 
lem, the function @, = Re@, + iIm@, must satisfy the re- 
quirements 

ReQ2'(0) =0, Im Q2(0) =O. ( 5  

The second condition on the function @, is sufficient to spec- 
ify it at one of the boundaries.The question of boundary con- 
ditions for Eq. ( 3 )  at t = d /2 in the case of arbitrary trans- 
parency D requires a separate investigation. 

2. BOUNDARY CONDITIONS FOR THE USADELL EQUATIONS 

In order to find the conditions we need, it is necessary to 
solve the system of Eilenberger equations in the immediate 
vicinity of the boundary, i.e., at distances on the order of I,,, 
from it.', By neglecting terms proportional to w and A , ,  in 
these equations, we arrive at 

Here, the angular brackets imply an integration over the to- 

tal solid angle: (...) = d0/4n-, while the subscripts c and a I 
denote the symmetric and antisymmetric parts of the matrix 
2 , .  which is made up of Eilenberger functions: 

(7)  
Far from the boundaries, i.e., at distances which exceed Z,,, , 
solutions of the system (6)  must reduce to the isotropic Usa- 
dell functions: 

and at the boundaries themselves these functions must satis- 
fy the conditions13 

on a drift path, and 

for electrons reflected from the boundaries whose compo- 
nent of momentum parallel to the boundary pl l  satisfies the 
conditionp, <pi ,  <p l .  Here, R = 1 - D is the reflection co- 
efficient of electrons from the boundary, while 

By averaging the right and left sides of Eq. (6a) over the 
total solid angle, we find that the quantity 

constant in each of the metals. The constants of integration 
C ,,, can be calculated far from the boundaries by using the 
relation (8b): 

On the other hand, from (9a), ( lo),  ( 12) and the condition 
of momentum conservation, it follows that 

p i 2 ~ l = p 2 2 ~ , .  (14) 

Relations ( 13), ( 14) determine the first boundary condi- 
tions for the Usadell equations: 

which ensure that the current flowing through the boundary 
is continuous for any value of D. 

In order to obtain a second boundary condition on the 
A 

function G ,,, , we will assume that for any value of boundary 
transparency the inequality 

holds (from here on, for brevity we will write conditions at 
the boundary in the form of matrix inequalities using a nota- 
tion which implies that the inequalities hold for all the non- 
zero components of the matrices). 

From the boundary condition (9b) it follows within 
this approximation that 

in which terms proportional to R (p), in the left side of (9b) 
are neglected. Because condition (8b) implies that k,,," is 
also small compared to g,,,' far from the boundaries, we 
have for all z that 

Using ( 18), we obtain a solution for the boundary problem 
(6),  (8)  in the form 

Substituting ( 19) into the boundary conditions (9)  and as- 
suming that the inequality 

holds, we obtain the relation 

from which, taking into account ( 12), ( 13 ) , there follows 
the desired boundary condition to the Usadell equations 

It follows from (22) that the quantity Dg' is proportional 
to (R12/{:)g'+ , therefore, conditions (16), (20) which de- 
fine the range of applicability of condition (22) are found to 
be fulfilled for any values of the transmission coefficient of 
the boundary as long as the conditions of the "dirty limit" 
( 1 ) are valid. 

Relations ( 15 ), (22) reduce to two conditions on the 
functions @,,, ; these functions must satisfy these conditions 
at theinterface between theSandS1 materials ( for t  = d /2): 
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Equations (23) automatically ensure continuity of the su- 
percurrent flowing through the boundary. As was pointed 
out in Ref. 13, for small values of y, conditions (23) reduce 
to the previously established requirementsI4 that the func- 
tions @ and the quantitiesp21@' cc d' be continuous; for y, 
>) 1 they reduce to conditions at the boundary of an insula- 
tor. l 5  

The boundary conditions for the Usadell equations 
were studied previously in Refs. 16 and 17, where only the 
first condition, corresponding to current continuity through 
the boundary, was obtained correctly. In Ref. 16 boundary 
conditions for the Usadell functions were obtained by aver- 
aging boundary conditions obtained by the authors for the 
Eilenberger equations over the Fermi surface for the case of 
identical materials separated by a 6-function potential bar- 
rier. The boundary conditions (23b) differ from the ones 
obtained in Ref. 16, where different boundary conditions for 
the original Eilenberger equation were used and a different 
dependence on the boundary transmission coefficient was 
given, although the test evaluation of these conditions given 
by the authors of Ref. 16 for the cases D = 1 and D = 0 gave 
the correct results of Refs. 14 and 15, respectively. In Ref. 17 
a derivation of the boundary conditions was presented for 
temperatures close to the critical temperature, based on the 
solution of the linear integral equations. However, the 
expression used in this paper for the kernel of the integral 
equation for A took into account only the portion of the 
waves reflected from the boundary, which in the general case 
leads to incorrect results. 

It is qualitatively clear that the relations (23) which we 
have derived are correct for boundaries which are smooth on 
an atomic scale but abrupt on the scale of the electronic 
mean free path, if we understand R and D to be the reflection 
and transmission coefficients of electrons through these 
boundaries. 

Multiplying (23b) by G,@T and using (3c), we imme- 
diately obtain the well-known sinusoidal current-phase rela- 
tion for a Josephson S 'IS junction derived from tunnelling 
theory, with critical current I, equal to 

It is necessary to point out that Eq. (24) is correct only for 
small values of the transparency for which we can neglect the 
proximity effect of the Sand S'  materials. 

The normal resistivity of this structure equals the sum 
of the resistivities of the boundaries and of the weak-link 
material. In determining the resistivity of a plane boundary 
between two normal metals, we make use of the boundary 
conditions (22) : 

Heref,,,' is the symmetric part of the electron distribution 
function averaged over the Fermi surface, f, is the Fermi 
distribution function and V, is the potential jump at the 
boundary. From the definition of the current, together with 
condition (25a), we obtain a linear relation between current 
and the potential jump at the boundary: 

where S * is the area of the section surface. 
Thus, the resistivity of the SS 'S structure in the normal 

state equals 

An analytic expression for the critical current of an SS'S 
junction can be obtained only in certain special cases. 

3. THE SS' BOUNDARY IN THE SMALL-TRANSPARENCY 
APPROXIMATION 

The properties of SS 'S  structures depend significantly 
on the parameter T,, which in fact is equal to the ratio of the 
resistances of the boundary and weak-link material, along 
with the intrinsic superconducting properties of the layer 
material. 

Actually, if T,, #O, then the maximum value of the su- 
percurrent flowing through the boundaries Iau2A2A,/  
6 Fys for small values of their transparency can turn out to 
be significantly smaller than the depairing current in the 
weak-link material I, a u2A:/6 F .  In this case, 

and the SS'S structure should possess the properties of a 
system consisting of two tunnelling junctions with the same 
critical currents. When condition (27) holds, the gradient 
terms in (3a) are small, and to lowest order in y, ' it follows 
from (3a) and (5)  that 

It is convenient to calculate the magnitude of the super- 
current flowing through the structure at the boundary point 
z = d /2, where using (4)  and (23b) we have to first order in 
Y B  I 

From (28), (29) and relation (3c) for the supercurrent we 
obtain the sought-after function I, (p) : 

with a critical current I, determined by Eq. (24). If the ma- 
terials which make up the superconducting electrodes are 
different, the results obtained are easily generalized and lead 
to a function I, (p) of the form 

I,=I,I, sin cp[Ii2+I,2+21,1, cos cp]-'", 

Ic=min{Il, 12} ,  
(31) 

where I,,, are the critical currents of each of the two con- 
secutive Josephson junctions. Relations (30) and (31) are 
valid when condition (27) holds and when the thickness of 
S '  material is not too great: 

Ford  > 6 :y, it is necessary to include the linear advance in 
the phase of the order parameter in the S ' material caused by 
the flowing supercurrent; this leads to a change in the func- 
tion I, (p), but not of the critical current, which will be pri- 
marily determined by Eq. (24). 
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If Tc2 = 0, i.e., the weak-link material is not supercon- 
ducting, then for sufficiently small transparencies of the SS' 
boundaries the function @, can be small compared to RT; 
Eq. (3a) and the boundary conditions (5)  and (23) can then 
be linearized, and it is not difficult to obtain for Re cP2 and 
Im @, the values: 

GIAi sin (cp/2) 2Pz 
Im cD2 (z) = sh - 

2rBpchp+ shp d ' 

Substituting these solutions (33) into the expression for 
the supercurrent (3c), and taking into account (26), we ob- 
tain a sinusoidal function I,(@) with a critical current I, 
equal to 

Equation (34) is valid when the condition l@,(d /2) I < r T ,  
is fulfilled, i.e., in the case 

For f l% 1, Eq. (34) implies an experimental depen- 
dence for I, (d)  , which coincides with the expression derived 
earlier for SNSjunctions with low-transparency barriers.' In 
the low-temperature region T< V,, 12/6rd the dependence 
of the critical current on the length of the weak link ceases to 
be exponential, and the result given in Ref. 8 coincides to 
logarithmic accuracy with the function I, (d)  which follows 
from (34). 

It follows from (35) that for T=: T,, the value of the 
characteristic voltage of the Josephson structure Vc = IcR, 
is determined by Eq. (34) for any parameter values J?, and 
p. In this temperature range, for small values of r, condi- 
tion (34) reduces to a result established previously for SNS 
bridges of variable thickness,I9 while for large values of r, 
the product IcRN decreases as the value of this parameter 
increases: 

In particular, for d g 6  :, it follows from (36) that the func- 
tion Vc ( T) , 

where (x)  is the digamma function, differs little from the 
result of Aslamazov and Larkinz0 

for y, <g :/d. For large values of y, 

i.e., the parameter Vc decreases in inverse proportion to y,. 
Thus, the stationary properties of weak links of SS'S 

type in the presence of low-transparency barriers at the SS ' 
boundaries differ significantly from the properties of analo- 
gous structures with transparent boundaries2', independent 
of whether the weak-link material is superconducting or 
normal metal. As the boundary transparency increases, i.e., 
as y, decreases, the difference between these two types of 
junction decreases; the character of the behavior of V, ( y, ) 

depends significantly on the relation between d and 6 t. 

4. THE APPROXIMATION OF SMALL WEAK-LINK LENGTHS 

It follows from the structure of Eq. (3a), the boundary 
conditions (23), and the solution (33), that for d<(: the 
real part of the function @, increases with decreasing y, as 
y,-'; however, its imaginary part increases much more 

- slowly: Im@, cc T, ' = (6 :y,/d) - I .  This implies a range 
of parameters y, and d /{ :: 

min {Ai/A2, 4) >y,Bdlg2*, (40) 

for which the supercurrent flowing through the SS'S struc- 
ture exceeds the depairing current of the weak-link material 
for T,, #O. It turns out, however, that this current is still 
considerably smaller than the weak-link critical current of a 
fully transparent barrier I,, ar A ,  2u2/d (Ref. 22 ) . 

For those values of y, which satisfy the inequality (40), 
we can neglect the nongradient terms in (3a) in determining 
Re @,(z), and in the solution of the equations so obtained 
with the boundary conditions (5)  and (23b), and find that 

Equation (29), which determines the value of Im @; ( d  /2), 
remains valid if we insert the quantity G, = w[w2 + A: 
cos2 (p /2) ] - ' I 2 ,  for G2; the sought-after function I, (p) fol- 
lows immediately from (3c) and (29): 

sin cp I ,  = - . (42) 

Relation (42) shows that the supercurrent in the SS'S 
structure is determined primarily by electron tunnelling 
through the barriers at the SS' boundaries from the super- 
conducting electrodes to the weak-link region; in this region, 
the order parameter is determined by the function Re @, 
given by (4  1 ), and does not depend on the properties of the 
weak-link material. 

From (42) it follows that for arbitrary temperatures the 
function I, (p) is nonsinusoidal. In particular, for T g  T,, , 
by changing the summation to integration over w we obtain 

A1 (0) cP 
(9) =  sin ~ R N  2-) sin cp, 

where K(x)  is the complete elliptic integral of the first kind. 
The function I, (p) defined by Eq. (43) has a maximum at 
p--, 1.86; the value of the characteristic voltage V, exceeds 
the corresponding value for tunnelling transitions" by 22% 
and is 8% smaller than the value of V, for dirty weak links 
(based on the theory of Kulik and Omel'yanuk, e.g., KO-1 
or Ref. 22). Numerical calculations show that as the tem- 
perature increases the function I, (p) given by (43 ) gradual- 
ly becomes sinusoidal, and the function V, ( T) approxi- 
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mates the results of the KO-1 theory2', the difference being 
no more than 3% for T k  T,, /2. 

When large-transparency barriers are present at the SS ' 
boundaries, i.e., 

they have only a weak influence on the function I, ( p ) .  In 
this case Re @, is primarily determined by Eq. (41);  in de- 
termining Im we can neglect the gradient terms in (3a) 
and obtain the expression 

CzA, 
Im (z) =A,  tg - 1 A,= [wZ+AlZ cos"cp/2) ] I h ,  (45) 

for which the constant of integration C is found from the 
conditions (23b) : 

Using (3c) we can determine the value of the supercurrent 
flowing through the SS 'S structure: 

2nTd (1+2rB) 
Al cos (cp/2) 

Is = - C. 
eRN o,o m a  

Condition (46) is conveniently rewritten in the form 

For small barrier transparencies (r, % 1) we can obtain a 
solution to Eq. (48) by the method of successive approxima- 
tions in the parameter T,, from which, according to (47), 
there follows an expression for the current 

2nTAiZ sin cp 
I ,  = --- ' (m2+A12)' A m  

(49) 
~ R N  W > "  

which asymptotically goes to (42).  In the case of large 
boundary transparencies, the function I, ( p )  is determined 
by the expression 

2nT 2Ai cos (cp/2) 
I 8 = - X  4 (50) 

~ R N  .,>o A ,  
which for r, g 1 reduces to the result of the KO-1 theory. 

The results we have obtained indicate that for d< f 
there should occur a decrease in the critical current and a 
growth in the normal-state resistivity of theSS 'Sstructure as 
the transparency of the barriers at its boundaries decreases; 
the characteristic voltage V, remains practically constant 
and does not depend on the properties of the weak-link mate- 
rial. 

5. LARGE THICKNESSES OF WEAK-LINK MATERIAL 

If the thickness of the weak-link material is large com- 
pared to f T  and its critical temperature T,, = 0, then the 
function I, (p) is sinusoidal, while the critical current of the 
structure equalsy 

The constant C, is determined by the boundary conditions 
(23),  which are related for w = rrT to the real parts of the 

solutions of the Usadell equations in the superconductor ( 4 )  
and in the layer material: 

Re @ , ( z ) = n T  tg (4 arctg [Co exp ((2-d/2)lE2)]), (52) 

This constant statislies the equation 

A I 
sin - - 4 arctg c.) - 2yB ($-) sin (2 arctg c,) =o. ( n T  

In the case of an SS ' boundary with a small transparen- 
cy, the constant C,, is small: 

and the critical current I, is determined by the expression 

which is not difficult to obtain from (34) using the appropri- 
ate limits. 

In the region of small values of y, the critical current to 
first order y, decreases linearly as y, increases: 

wherea = ( 1  + b') ' I2 and b = A,/TT. 
From Eqs. (55) and (56),  it follows that in contrast to 

an SS'S structure with d&{T, for which the function 
V, (y, ) is smooth (for T &  T,, , the maximum difference of 
the values of V, for the cases r, < 1 and r, 3 1 amounts to 
only 8%) ,  for dB{: the characteristic voltage V, of the 
junction decreases monotonically as y, increases. 

If the weak-link material is a superconductor with a 
critical temperature T,, < T,, , then it is clear qualitatively 
that within the range of temperatures T, < T <  T,, the pa- 
rameter V, also will decrease with increasing y,. For lower 
temperatures, i.e., T <  T,, , the weak-link material is found 
in the superconducting state, while for large boundary trans- 
parency ( y, < A ,/Az) the value of the critical current equals 
the depairing current of the weak-link material and the pa- 
rameter V, increases linearly as d increases." When the con- 
dition (27) is fulfilled, the SS'Sjunction may be treated as a 
system with two consecutive tunnelling junctions in series. 

6. ARBITRARY VALUES OF dAND y, 

For arbitrary values of the weak-link length and trans- 
parency of the barriers, it is necessary in investigating the 
stationary properties of the SS 'S junction to solve Eq. ( 3 )  
with boundary conditions (5) ,  (23) by numerical methods. 

The programs we have developed" allow us to carry out 
calculations for arbitrary critical temperatures of the weak- 
link material. However, in this paper we limit ourselves to 
the case which is most important from a practical point of 
view, i.e., T,, = 0. The results of numerical calculations are 
shown in Fig. 1 in the form of a family of dependences of the 
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2 b c 
FIG. 1. Temperature dependence of the product V, 
= Z,R, for a dirty SNS junction ( T, = 0) for sev- 

eral values of the weak-link thickness d and for var- 
ious values of the parameter y, (23b): a--0.1, b- Z K : ~  0.3, c-1. Curve I is the asymptotic dependence of 
the theory of Aslamazov and Larkin, 
V, = 2 d ( T ,  - T)/7{(3)e (Ref. 20); curve I1 is the 

1 function V, ( T )  from the KO-1 theory (Ref. 22) for 
d(<, , y, = 0; curve I11 is the function V, ( 7') fol- 

I lowing from Eq. (42) (d(<,,d /<,,, ( y, ( 1); the 
dashed curve is the function V, ( T)  for an SNSjunc- 

5 5 tion of width d = 6, (Ref. 19); A, is the value of the 
order parameter of the electrodes for t = 0, e is the 
electron charge, <, = < :. 

0 0 5 1 0  0.5 I 0 0.5 I 

T /  Tc 

characteristic voltage Vc on temperature T for several values solving both stationary and nonstationary problems for the 
of the weak-link thickness and parameter y,. It is clear that contacting dirty metals (if the thickness of the region in 
for fixed values of the weak-link thickness d and T / T c  the which the change in metallic properties takes place-the size 
parameter V, decreases with increasing y,. This decrease is of the boundary-is much smaller than V F I , ,  / E  and I , , ,  , 
more marked than the larger d is. For values y, 2 1 the re- where E = max {T,A, V,w); V is the voltage across the junc- 
sults of numerical calculations match the asymptotic depen- tion, w is the frequency of an external perturbation). 
dence (34); as this parameter decreases, a smooth transition 
takes place ford /{: > y, to the function Vc ( T) calculated 
in Ref. 19 for weak SNS links with transparent boundaries 
(the dashed curve in Fig. la) .  As we pointed out in Sec. 4, in 
the region of small we&-link lengths d ( { !  the function IT. Kawakami and H. Takayanagi, Phys. Rev. Lett. 54,2449 (1985). 
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From the calculations we have carried out it follows 
that the presence of potential barriers at the boundaries of an 
SS'S Josephson structure allows us to realize in practice a 
new type of Josephson junction which combines the advan- 
tages both of a tunnelling structure (the large value of R ,  
which for y, > d /{ f, is independent on the layer material 
thickness, and the small critical current) and a weak link 
(the small junction capacitance). The magnitude of the 
characteristic voltage Vc which determines the high-fre- 
quency properties of the junction is only a few percent 
smaller than the value of this parameter for weak links. 
From the results of numerical calculations it follows that for 
any thickness of the weak link and y, -- 1 the value of V, is 
smaller than the corresponding values for weak links with 
transparent boundaries by no more than 20% for T g  T,, ; as 
the temperature T approaches Tc, this difference decreases. 
This new type of Josephson junction can be realized if we 
fabricate a weak link using a conductor with a Fermi level 
pz < p ,  ( 1,/6 T) whose boundaries with the superconducting 
electrodes are sharp on an interatomic scale. 

The boundary conditions derived in this paper for the 
Green's function in the dirty limit (23) are valid both for the 
Matsubara and temporal representations, and can be used in 
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